
Abstract 
Denial-of-Service (DoS) and Distributed DoS (DDoS) attacks can 
cause serious problems in wireless networks due to its limited 
network/host resources. Attacker traceback is a promising solution 
to take a proper countermeasure near the attack origin, for forensics, 
and to discourage attacker from launching attacks. However, 
attacker traceback in wireless multi-hop networks is a challenging 
problem, and existing attacker traceback schemes developed for the 
Internet cannot be directly applied to wireless multi-hop networks 
due to the peculiar characteristics of wireless multi-hop networks 
(e.g., dynamic/autonomous network topology, limited network/host 
resources such as memory and bandwidth). We introduce a protocol 
framework for attacker traceback geared toward wireless multi-hop 
networks with special attention to cross-layer abnormality 
monitoring. The basic building blocks of our protocol framework 
consist of abnormality detection, abnormality characterization, 
abnormality searching, abnormality matching, and countermeasure. 
We show that our protocol framework successfully tracks down 
attacker (Avg. of 100% in DoS attacker traceback, avg. of 96% in 
DDoS attacker traceback) under diverse network environments (e.g., 
high background traffic, DDoS attack, and partial node 
compromise) with low communication, computation, and memory 
overhead. 

Categories and Subject Descriptors 
C.2.0 [COMPUTER-COMMUNICATION NETWORKS]: 
General – Security and Protection G.3 [PROBABILITY AND 
STATISTICS]: Statistical Computing  

General Terms: Algorithms, Security  

Keywords: DoS/DDoS attack, Attacker Traceback, Cross-layer 
Monitoring, Wireless Multi-hop Networks 
 
1. INTRODUCTION 

Wireless multi-hop networks include Mobile Ad-hoc 
NETworks (MANET), wireless mesh networks, and wireless sensor 
networks, among others. Wireless multi-hop networks have been 
under active research due to their numerous promising applications 
and their practical deployment is near. However, security issues are 

not properly addressed in wireless multi-hop network research. 
Especially, DoS/DDoS attacks can cause a serous problem since (1) 
they are easy to perform using popular tools, and (2) wireless multi-
hop networks are severely limited in network resources (e.g., 
bandwidth) and host resources (e.g., battery, and memory).  

The different types of DoS/DDoS attacks can be broadly classified 
into software exploits and flooding attacks. In software exploits (e.g., 
Land attack, teardrop attack [1][15]), the attacker sends a few 
packets, or even single packet, to exercise specific software bugs 
within the target’s OS or application, disabling or harming the 
victim. On the other hand, in flooding attacks, one or more attackers 
send incessant packet streams aimed at overwhelming link 
bandwidth or computing resources at the victim. In this paper, we 
mainly focus on flooding-type DoS/DDoS attacks since they cannot 
be fixed with software debugging. In flooding-type DoS/DDoS 
attacks, an attacker transmits a large number of packets towards a 
victim with a spoofed source address. For instance, in SYN Flood 
[2], at least 200-500 pps (packet per second) of SYN packets are 
transmitted to a single victim. UDP Echo-Chargen [4] and Smurf [3] 
also attacks victim using a large amount of packets with a spoofed 
address. It is reported that DoS attacks occur more than 4,000 times 
per week, and more than 600,000 pps of attack packets are used for 
attack in some cases [8] on the Internet. In general, we can say that 
the following are some characteristics of flooding-type DoS/DDoS 
attacks: (I) Traffic volume is abnormally increased during attack 
period. (II) Attackers routinely disguise their location using 
incorrect/spoofed addresses. (III) Such attacks may persist for tens 
of minutes, and in some case for several days [1]. 

The goal of attacker traceback is to identify the machines that 
directly generate attack traffic, as well as the network path this 
traffic subsequently follows [5]. There are several attacker traceback 
schemes proposed for the Internet such as packet marking [14], 
logging [13], ICMP traceback [6], etc [5]. Such traceback schemes 
developed for the fixed networks are not directly applicable to 
wireless multi-hop networks due to the following peculiar 
characteristics of wireless multi-hop networks: (1) In wireless multi-
hop networks, there is no fixed infrastructure. Each node works as 
an autonomous terminal, acting as both host and router. (2) In 
general, network bandwidth and battery power are severely limited 
in wireless multi-hop networks compared to wired networks. (3) 
Nodes in wireless multi-hop networks have limited trust.  

To perform efficient DoS/DDoS attacker traceback under such a 
harsh environment in wireless multi-hop networks, we propose a 
protocol framework for attacker traceback. Basically, we pay special 
attention to cross-layer (network layer and MAC layer) abnormality 
and extract useful information for attacker traceback. Every node 
captures protocol layer abnormality, which is observed during attack, 
and statistically characterizes the abnormality. The abnormality 
characterized by victim is called an attack signature and 
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abnormalities characterized by intermediate nodes are called 
candidate attack signatures. Then, the victim sends a query with 
attack signature to intermediate nodes, to find the region that 
observed a similar candidate attack signature. The searching process 
is recursively continued to the attack origin. For searching, we use 
overharing capability of MAC layer to increase robustness against 
node compromise and reduce false negative/positive. After finding 
the attack origin, we take proper countermeasure to stop/lessen any 
attack effectively using cross-layer information (MAC layer and 
network layer).  

The contribution of this paper can be summarized as follows: 

• We use cross-layer information (i.e., network layer and MAC 
layer) to increase traceback accuracy. Noise factor by 
background traffic is largely reduced by using cross-layer 
information. In addition, cross-layer information provides 
robustness against highly Distributed DoS (DDoS) attacks. 

• We use overhearing capability of MAC layer, which increases 
robustness against node compromise and reduce false 
negative/positive. In addition, it provides robustness against 
partial node mobility on the attack route. 

• We propose traceback-assisted countermeasure, which 
provides optimal defense strategy against attack traffic and 
decreases negative impact on legitimate traffic.  

• We perform extensive simulation-based analysis to show the 
efficacy of our proposal 

The paper is organized as follows: In section 2, we briefly describe 
existing attacker traceback schemes. In section 3, we provide the 
overview of our protocol framework. We describe abnormality 
detection, characterization, matching, searching, and overall 
traceback algorithm in section 4,5,6,7, and 8 respectively. In section 
9, we provide a traceback-assisted countermeasure scheme. In 
section 10, we provide performance analysis for our protocol 
framework. We conclude our paper and present future work in 
section 11. 

 

2. RELATED WORK 
The method in [7] using controlled flooding tests network links 

between routers to determine the origin of the attack traffic. 
Downstream node intentionally sends a burst of network traffic to 
the upstream network segments. At the same time, it checks 
incoming attack traffic for any changes. From the changes and 
frequency of the incoming attack traffic, the victim can determine 
which upstream router the attack traffic is coming from. The same 
process is continued a level higher until finally reaching the attacker. 
Since this is a reactive method, the trace needs to be completed 
before the attack is over. 
Packet marking [14] and ICMP Traceback Message (iTrace) [6] 
attempt to distribute the burden of storing state and performing 
computation for attacker traceback at the end hosts rather than in the 
network. For instance, in ICMP-based notification, a router 
generates an ICMP message containing information about where 
each packet came from and where it was sent. Then, routers notify 
the packet destination of their presence on the route. Collection of 
these messages can be used to trace the attack origin. ICMP 
traceback message uses ICMP but limits to generating a ICMP 
message for every 20,000 packets (recommended). In Probabilistic 
Packet Marking (PPM), routers insert traceback data into each 

packet probabilistically, so the number of packets marked at each 
router is enough for the reconstruction of attack path at the victim.  
Logging scheme requires the routers to log meta-data in case an 
incoming packet proves to be offensive. Audited packet flow is 
logged at various points throughout the network and then used for 
appropriate extraction techniques to discover the packet’s path 
through the network. To reduce the size of the packet log and 
provide confidentiality, hash-based logging is proposed [13]. 
The existing schemes developed for the Internet are not directly 
applicable to wireless multi-hop networks due to the following 
reasons: (I) Intermediate relay nodes in wireless multi-hop networks 
can move in/out and may fail due to power outage, frequently 
changing network topology. In addition, each node in wireless 
multi-hop networks has limited trust due to the autonomous nature 
of nodes. Hence, traceback schemes that rely purely on relay nodes 
are problematic in terms of robustness and trust. (II) Storage 
capacity of each node is limited in wireless multi-hop networks. In 
packet marking and logging, a large amount of per-packet 
information needs to be stored at either end-host or inside the 
network. (III) Existing schemes incur high processing load for attack 
path reconstruction. For instance, in iTrace, end host first searches 
the database, which stores path information of packets. Then, based 
on the per-packet information, end-host should run reconstruction 
algorithm to find out attack path. On the other hand, controlled 
flooding consumes a lot of bandwidth for traceback, which is highly 
undesirable in bandwidth-constrained wireless multi-hop networks.  
SWAT [11] is the first traceback protocol developed for ad-hoc 
networks. SWAT consists of two main building blocks: Traffic 
pattern/volume matching and small world construction. It uses 
Traffic Pattern Matching (TPM) and Traffic Volume Matching 
(TVM) techniques to deal with address spoofing problem and 
utilizes a small-world model for efficient search. However, SWAT 
has the following drawbacks: (1) SWAT cannot successfully trace 
back attacker when a high volume of background traffic exists. (2) 
SWAT fails to track down Distributed DoS (DDoS) attackers. (3) 
SWAT also shows weakness under node collusion, and false 
reporting, since it relies only on relay nodes of attack traffic for 
traceback. (4) SWAT does not provide any countermeasure 
mechanism after traceback. 

3. ARCHITECTURAL OVERVIEW 
Our traceback protocol framework consists of the following 

five architectural components: (1) Abnormality detection. (2) 
Abnormality characterization. (3) Abnormality matching. (4) 
Abnormality searching. (5) Countermeasure.  Abnormality is 
detected at all nodes in the networks. Note that there exists a 
difference between “attack detection” and “abnormality detection.” 
The attack detection is done by intrusion detection of victim, with 
application-level information. On the other hand, abnormality 
detection in our scheme is done by every node with available 
network/MAC layer information. The purpose of abnormality 
detection is to capture and log any abnormality as (candidate) attack 
signature for later traceback. Basically, each node monitors 
network/MAC layer activity (e.g., number of packets and frames). 
Once abnormality, which is largely deviated from normal profile, is 
detected, the information is captured. The abnormality detected by 
either the victim or intermediate nodes is statistically characterized 
and logged. In our scheme, the abnormality is characterized by 
cumulative distribution function of data. The data is the number of 
frames over monitoring timeframe. Once the attack signature is 
characterized, victim node initiates efficient search, and matching 
process is done at the nodes that observe candidate attack signature. 
By finding nodes in the neighbors, which observe similar or same 
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attack signature (high matching level), we can find the nodes or 
region that relayed the attack traffic. The process is continued 
recursively from the neighbor nodes of victim back to the attack 
origin. For efficient and robust attacker searching, we use small 
world model [9] and overhearing capability of MAC layer activity. 
Helmy [9][10] found that path length in wireless networks is 
drastically reduced by adding a few random links (resembling a 
small world). These random links need not be totally random, but in 
fact may be confined to a small fraction of the network diameter, 
thus reducing the overhead of creating such network. The random 
links can be established using contacts [10]. As shown in Fig.1, 
victim node, V, sends queries with attack signature to its vicinity 
nodes (nodes within radius R) and contacts (C1, C2, and C3). To 
send to the contacts, the victim node chooses three borders, B1, B2 
and B3, to which it sends the queries. The borders in turn choose 
three contacts at r hops away, to which the borders forward the 
queries. If there is no node that observed (relayed or overheard) an 
attack signature, it suppresses query. Otherwise, it sends the next 
level query to the contact of contact. In doing so, we can perform 
directional search for DoS attacker traceback and multi-directional 
search for DDoS attacker traceback, where the search process has 
directionality towards attacker(s). Directional and multi-directional 
search significantly reduces communication overhead. We will 
verify the reduction in the simulation section. To provide robustness 
against node compromise, mobility and high background traffic, we 
take a majority voting approach. That is, we take a region as an 
attack route region, if a majority of nodes observes similar 
abnormality. A majority of nodes that overhear MAC layer 
abnormality can be found in an attack route region since the wireless 
medium is shared by neighbor nodes. Once attack origin is 
identified, we take a traceback-assisted countermeasure. Traceback-
assisted countermeasure has the following advantages: (1) 
Countermeasure can be taken at the nearest place to attack origin. 
Consequently, bandwidth/memory consumption of intermediate 
nodes between attacker(s) and victim can be minimized. (2) We use 
cross-layer information and abnormality matching level information 
to maximize the efficiency of attack traffic dropping and minimize 
negative impact on legitimate traffic. We describe each component 
of our traceback framework in the following sections. 
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[Figure 1] Each node has vicinity of radius R hops. A victim sends query 
with attack signature to its vicinity nodes and border nodes Bi. Then, the 
border nodes choose one of its borders Ci, to be the contact and sends 
query with attack signature. 

4. ABNORMALITY DETECTION 
Abnormality detection is needed to start logging abnormality 

information. That is, each node monitors protocol layer activity and 
if abnormality is observed, a node logs the abnormality as candidate 
attack signature. The candidate attack signature is compared with 
attack signature, which is characterized by the victim for traceback. 
To detect the abnormality, we need to define normal profile. Normal 
profile, AR, is defined based on information observed during period 
[t0, tn].  Let AS the number of frames in a given unit time slot and AR 
be the average number of frames of the long-term reference model, 
then the distance of the Fractional Deviation from the Mean (FDM) 
statistic is given as follows.                     

R

RS

A
AADist −

=  

(Eq.1) 
The distance, Dist, is defined as abnormality level. If the 
abnormality level is over a threshold (e.g., 0.5), it is considered 
suspicious, and candidate attack signature is logged. 
 
• Coarse-grained vs. Fine-grained detection 
We define coarse-grained detection and fine-grained detection. In 
coarse-grained detection, abnormality is detected in aggregate traffic 
level. The advantage is that it is computationally simple. However, 
the problem of aggregate traffic-based abnormality detection is that 
it is hard to detect small abnormalities accurately under the presence 
of large/bursty background traffic or DDoS attack. That is, a small 
amount of increased abnormality is not detected as an abnormality, 
since it is under the threshold. If we lower the threshold, there is a 
good chance that we could erroneously capture normal traffic as an 
abnormality and decrease logging efficiency. To address the 
problem, we define fine-grained abnormality detection with cross-
layer monitoring, which uses minimal fine-grained network/MAC 
layer information (i.e., destination address, previous-hop MAC 
address).  In doing this we can drastically reduce noise traffic (i.e., 
background traffic from non-attacker nodes) that is included in 
attack traffic.  
 
 

Attack traffic

Backward noise 

Forward noise 

Attacker 

Victim 

Relay nodes 
 

[Figure 2] Illustration of forward/backward noise reduction using cross-
layer monitoring 
 
First, we can reduce noise traffic using network-layer information. 
That is, candidate attack signature is captured based on traffic 
destined to each destination (i.e., we make abnormality table 
indexed by destination address). We can rely on the destination 
address, since an attacker does not spoof destination address to 
achieve his goal. As shown in Fig.2, a monitoring node (inside 
dotted circle) can remove noise traffic that is not destined to victim 
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node. We call the noise traffic forward noise. In addition, we can 
reduce noise traffic using MAC layer information. That is, by using 
the previous-hop MAC address, we can filter out background traffic, 
which is coming from a different route than the attack traffic. We 
call the background traffic backward noise. By using fine-grained 
cross-layer information of network layer and MAC layer (i.e., 
destination address, previous hop MAC address), we can drastically 
reduce noise traffic that is included in the attack traffic. In addition 
using MAC layer overhearing capability, abnormality monitoring 
region (solid circle area in Fig.2) is largely enhanced, which 
increases robustness against against node compromise, false 
reporting and mobility. 

5. ABNORMALITY CHARACTERIZATION 
Once an abnormality is detected, the abnormality needs to be 

characterized for matching test. We characterize the abnormality as 
cumulative distribution function [16]. That is, when the time series 
data (i.e., number of frames per unit time slot) in n unit time window, 
(a1,a2,…,an), is observed, the distribution function is given in terms 
of the order statistic. Let y1<y2,<…<yn be the observed values of the 
order statistics of a sample a1,a2,…,an of size n. Then, the 
distribution function is defined as follows. 
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(Eq.2) 
Where k= 1,2,…,n-1. We use Fn(x) as characterized (candidate) 
attack signature. Sampling window, D, is expressed as follows. 

dnD •=   
(Eq.3) 

Where d is unit time window length. Traceback performance varies 
depending on efficient characterization. For efficient 
characterization, parameters such as unit time windows, and total 
time window need to be carefully desigined. We will analyze those 
factors in the analysis section. 
 
• Coarse-grained vs. Fine-grained characterization 
For fine-grained characterization, the destination address and 
previous hop MAC address are used for characterization (Table 1).  

Destination_addr Source_MAC_addr Abrnoamlity 

1 2 Ξ(1,2) 

1 3 Ξ(1,3) 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 
 

[Table 1] Abnormality table using cross-layer information 
 
There is obvious tradeoff between coarse-grained and fine-grained 
characterization. When coarse-grained characterization is used, 
space complexity for abnormality logging becomes O(1). However, 
abnormality matching and consequent traceback performance 
becomes low. On the other hand, when fine-grained characterization 
is used, space complexity becomes O(N*M), where N is the number 
of destination_addr and M is source_MAC_addr. However, 
traceback back performance is improved since background traffic is 
drastically decreased. 

6. ABNORMALITY MATCHING 
We are interested in using the Kolmogorov-Smirnov (KS) 

statistic Dn [16] to test the hypothesis that the two abnormality, 
Fn(x),and F0(x) is matching. F0(x) corresponds to reference 
abnormality (i.e., attack signature), which is included in query 
message, and Fn(x) is the candidate attack signature observed by 
intermediate nodes.  
                    ]|)()(|[sup 0 xFxFD nxn −=            (Eq.4) 

 
H0 : Fn(x)=F0(x) 
Ha : Fn(x) ≠F0(x) 

(Eq.5) 
We accept H0 if the distribution function Fn(x) is sufficiently close 
to F0(x), that is, if the value of Dn is sufficiently small. The 
hypothesis H0 is rejected if the observed value of Dn is greater than 
the selected critical value that depends on the desired significance 
level and sample size. When the H0 is accepted (sufficiently similar), 
we can infer that the abnormality is matching, meaning that the 
attack traffic is traversed the region of candidate attack signature. 
Computation overhead of the matching test is very low with O(1). 
Similar to detection and characterization, we use coarse-grained and 
fine-grained matching. By reducing noise with fine-grained 
information, we can increase matching accuracy. In this section, we 
analyze how much noise can be reduced in more detail. 

• Fine-grained matching with network-layer 
information 

To investigate how much noise traffic can be removed using fine-
grained network-layer information, we perform connection-level 
analysis. We first define total noise included in coarse-grained 
attack signature as follows. 

n
S

n
D

n
TN NNN +=  

(Eq.6) 
Where, 
Nn

D: Noise traffic (Number of connections), which is heading to 
different destinations from victim, 
Nn

s: Noise traffic (Number of connections), which is heading to the 
same destination (as victim) but not coming from attacker, 
Noise reduction rate that can be achieved with fine-grained network-
layer information is calculated as follows: 
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(Eq.7) 
The noise reduction rate depends on the congestion factor and 
destination diversity. If there is high volume of traffic (high 
congestion) coming into a node, there is a high chance that there 
exists normal traffic heading to the victim. In addition, if the 
destination of traffic is not uniformly distributed (e.g., traffic is 
going into several server nodes only - low destination diversity), the 
chance of sharing the same destination as attack traffic becomes 
high. Taking into the congestion and destination diversity factor, we 
performed an analysis to show how much noise traffic can be 
reduced as follows:  
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where, 
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(Eq.9) 
 

M: Destination diversity factor 
Nn

C : congestion factor 
 
Hence, noise reduction rate is calculated as follows. 
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(Eq.10) 
In addition, actual noise rate that is included in attack traffic is 
calculated as follows. 

n
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n
RN

N
NrateNoise
+

=
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(Eq.11) 
There exists a difference between noise reduction rate and noise rate. 
Even if we can drastically reduce relative noise rate (i.e., noise 
reduction rate) with the fine-grained scheme, the noise may still 
exist in attack traffic (noise rate >0). As we can see in Fig.3, we can 
drastically reduce noise rate, especially when destination diversity is 
high. However, noise still exists when destination diversion is low. 
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[Figure 3] Noise rate comparison with network-layer information 
 
• Fine-grained matching with MAC-layer information 
To investigate how much noise traffic can be removed using fine-
grained MAC-layer information, we performed a connection-level 
analysis. We define total noise as follows: 

m
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TN NNNN ++=  

(Eq.12) 
Where, 
Nm

D: Noise traffic that is coming from neighbor node that does not 
relay attack traffic,  
Nm

SD: Noise traffic that is coming from neighbor that relays attack 
traffic, and heading to the victim (but not attack traffic), 
Nm

DD: Noise traffic that is coming from neighbor that relays attack 
traffic, but not heading to the victim. 

 

Noise reduction rate that can be achieved with fine-grained MAC-
layer information is calculated as follows: 
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(Eq.13) 
 

The noise reduction rate depends on how many one-hop neighbors 
exist. If there are many one-hop neighbors that generate background 
traffic to a node, we can reduce the background traffic noise by 
having separate attack signatures based on the one-hop neighbor 
node. The actual noise reduction rate and noise rate are calculated as 
follows: 
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Where, 
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(Eq.15) 
P: Number of one-hop neighbors 
Nm

C : congestion factor 
 
Hence, noise reduction rate is calculated as follows: 
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Noise rate is defined as follows:  
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(Eq.17) 
As we can see in Fig.4, the noise rate gradually decreases as the 
number of one-hop neighbors increases. However, the noise rate is 
high when the number of one-hop neighbor is small. 
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[Figure 4] Noise rate comparison with MAC layer information 
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• Fine-grained matching with cross-layer information 
To investigate how much noise traffic can be removed using cross-
layer information (destination address, and previous-hop MAC 
address), we performed a connection-level analysis. Total noise with 
network-layer information was defined as follows: 

 
n
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TN NNN +=  

       (Eq.18) 
By further applying MAC-layer information on Nn

S, we can define 
the total noise as follows: 
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(Eq.19) 
Where, 
Nn,m

D: Noise traffic that is coming from neighbor node that does not 
relay attack traffic and heads to the victim, 
Nn,m

SD: Noise traffic that is coming from neighbor that relays attack 
traffic, and heading to the victim. 
 
Noise reduction rate that can be achieved through cross-layer 
information is calculated as follows: 
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(Eq.20) 
Eq.20 implies that we can eliminate all the noise traffic except 
traffic that comes from the same one-hop previous neighbor and 
heads to the same destination (i.e., victim). Noise rate is defined as 
follows:  
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(Eq.21) 
Fig.5 shows noise rate with random number of one-hop neighbors. 
Noise rate is reduced throughout various destination diversity, 
which drastically decreases the negative impact of background 
traffic on matching test. 
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[Figure 5] Noise rate comparison with cross-layer information 

7. ABNORMALITY SEARCHING 
For efficient and robust attacker searching, we use the small 

world model. Helmy [9] found that path length in wireless networks 
is drastically reduced by adding a few random links (resembling a 
small world). These random links need not be totally random, but in 
fact may be confined to a small fraction of the network diameter, 
thus reducing the overhead of creating such a network. The random 
links can be established using contacts [10]. Contact nodes are a set 
of nodes outside the vicinity, which are used as short-cut (random 
links) to build small world. We describe a detailed small world 
construction scheme in the following: Each node in the network 
keeps track of the number of nodes in its vicinity within R 
hops away. This defines the vicinity of a node. The vicinity 
information is obtained through the underlying routing 
protocol. Each node chooses its vicinity independently, and 
hence no major re-configuration is needed when a node 
moves or fails. There is no notion of cluster head, and no 
elections that require consensus among nodes.   
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[Figure 6] Small world construction with multi-level contacts. Victim, v, 
selects level-1 contacts. Level-1 contacts select its level-2 contacts. 

The above contact selection scheme provides a mechanism to select 
NoC contacts that have distances up to R+r hops away from V. We 
call these contacts level-1 contacts. To select farther contacts 
(contact of contact), this process is repeated as needed at the level-1 
contacts, level-2 contacts and so on, up to a number of levels called 
maxDepth, D. SWAT also extends contact architecture for efficient 
traceback. However, our search policy has the following important 
distinctions. First, we take majority voting to find the region where 
attack traffic is traversed. It becomes possible since we use the 
overhearing capability of MAC-layer activity of neighbor nodes on 
the attack route. It increases robustness against node compromise, 
partial node mobility and reduces false positives due to a similar 
traffic pattern. Second, we use the signature energy concept, which 
is calculated by abnormality matching of KS fitness test. We will 
show that it increases against false negatives and false positives 
under diverse network environments. For robust searching, we 
define and use the following metrics: 
 
• Individual attack signature energy 
Each contact gathers individual attack signature energy for each of 
its vicinity nodes. The individual attack signature energy of node i is 
defined as follows:  

i

i

D
E 1

=  
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(Eq.22) 
where, Di is defined as follows. 
 

|])()([|sup 0 xFxFD ixi −=  
(Eq.23) 

Di becomes small when there is high abnormality matching between 
the attack signature and a candidate attack signature. Consequently, 
Ei is increased when there is high abnormality matching.  
 
• Regional attack signature energy 
Regional attack signature Energy (RE) is defined as follows: 

                               
2/1

2/1 )(
μ

uE
RE

i

=                            (Eq.24) 

where, )(2/1 uE i  is median of the signature energy among nodes of 
contact u that observe abnormality. 2/1μ  is the median value of 
distance (i.e., hop counts) between contact and the nodes that 
observe similar abnormality. The reason we take the median value 
instead of an average is to prevent negative impact of false reports 
from malicious or compromised nodes. In addition, RE should 
satisfy the following condition: 

δα >=
N
n  

(Eq.25) 
Where, α is the majority voting factor (N: total number of vicinity 
nodes of the contact, n: number of nodes that observe abnormality). 
n is drastically increased when we use MAC layer abnormality 
overhearing nodes. When, α is extremely low (e.g., α<0.1), we can 
infer that there is high chance of false reporting. Region around the 
attacker and attack route shows a high RE value.  Intuitively, we can 
infer that the attacker is residing or attack traffic is traversing the 
region where high RE value is observed.  

8. OVERALL ATTACKER TRACEBACK 
8.1 DoS Attacker Traceback 

We describe overall DoS attack traceback scheme as follows: 
(1) when a victim node, V, detects an attack such as SYN flooding, 
it first extracts attack signature. It then sends a query to the nodes 
within its vicinity and level-1 contacts, specifying the depth of 
search (D) large enough to detect an attacker. The query contains a 
sequence number (SN) and an attack signature. (2) As the query is 
forwarded, each traversed node records the SN and V. If a node 
receives a request with the same SN and V, it drops the query. This 
provides for loop prevention and avoidance of re-visits to the 
covered parts of the network. 

(3) In case a high RE is observed by vicinity of a victim and 
contacts, the first step of trace is completed. For instance, victim (V) 
sends query to the vicinity nodes and 5 level-1 contacts in regions 
{(H3,V1), (H3,V2), (H4,V2), (H5,V1), (H5,V2)} around the victim 
in Fig. 7. Then, one level-1 contact in region (H4,V2) reports to the 
victim that some of its vicinity nodes have observed high RE. To 
reduce the risk of false matching reports from vicinity nodes, the 
contact requests candidate attack signature observed at the vicinity 
nodes during given time slots instead of distributing attack signature 
to all vicinity nodes and waiting for individual attack signature 
energy response. Matching test is done at each contact. 
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[Figure 7] Victim (V) sends queries with attack traffic signature to its 
neighbor region {(H3,V1), (H3,V2), (H4,V2), (H5,V1), (H5,V2)}. Only 
(H4,V2) region that observed highest RE sends next level queries to its 
own neighbor region. (Each cell corresponds to contact region, and 
intensity of color represents RE). 

Although it cannot completely eliminate the risk of false matching 
report, it can reduce such risk. (4) Next, only the contact in region 
(H4,V2) that observes high signature matching in its vicinity sends 
next level query to level-2 contacts, with the partial attack path 
appended to the query. It also reduces D by 1. This processing by 
contact is called in-network processing. Other contacts that do not 
have nodes that observe attack signature, suppress forwarding the 
query (query suppression). This results in directional search 
towards the attacker. (5) When there are no more contact reports or 
no other nodes outside the vicinity, the last contact reports the 
complete attack route to the victim.  
Our scheme is based on majority voting (Eq.25). That is, even if 
some nodes move out from the attack route or are compromised by 
attackers, we can still find an attack route using available 
information from good nodes residing in the vicinity. 

  
8.2 DDoS Attacker Traceback 

In this section, we describe an overall DDoS attacker traceback 
scheme. DDoS attacks involve a sufficient number of compromised 
nodes to send useless packets toward a victim around the same time. 
The magnitude of the combined traffic is significant enough to jam, 
or even crash, the victim or connection links.  
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[Figure 8] Victim (V) sends queries with attack traffic signature to its 
neighbor region {(H3,V1), (H3,V2), (H4,V2), (H5,V1), (H5,V1)}. Regions 
{(H3,V2), (H4,V2), (H5,V2)} that observed highest RE sends next level 
queries to its own neighbor region. 

Similar to DoS case, a victim node sends a query to its vicinity and 
level-1 contacts with its characterized attack traffic signature. In 
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DDoS attacker traceback, multiple candidate attack signatures are 
observed and returned from multiple contacts. Unlike DoS attacker 
traceback, a combinational matching test needs to be done by a 
victim or lower level contact to find the branch attack route. That is, 
abnormality matching should be performed between the attack 
signature and all multiple candidate attack signatures. Then, contacts 
that show the highest matching level are selected as branch attack 
routes. For instance, in Fig.8, three responses are returned from 
level-1 contacts in regions {(H3,V2), (H4,V2), (H5,V2)}. In this 
example, the highest abnormality matching is observed between the 
summation of the three candidate attack signatures from regions 
{(H3,V2), (H4,V2), (H5,V2)} and attack signature at the victim. As 
a result, a victim concludes that branch attack traffic comes from 
regions {(H3,V2), (H4,V2), (H5,V2)}. Contacts that are determined 
as the attack routes by the victim node perform next level query in a 
recursive manner. The searching process leads to multi-directional 
searching. 

9. TRACEBACK-ASSISTED 
COUNTERMEASURE 
Existing countermeasures against DoS/DDoS attack can be 

broadly classified into packet filtering and rate limiting. Current 
packet filtering and rate limiting techniques against DoS/DDoS 
attack have the following drawbacks: (1) They are taken at the 
nodes where an attack is detected. For instance, they are taken at the 
ingress point of victim. However, they are inefficient since the 
attack traffic already exhausts valuable network/host resources of 
intermediate nodes. (2) Packet filtering is challenging since it is hard 
to distinguish between malicious and legitimate traffic. Legitimate 
traffic may experience sudden QoS degradation due to packet 
filtering. (3) In rate limiting, it is hard to know how much rate 
limiting should be applied to reduce the negative impact on 
legitimate traffic and increase rate-limiting efficiency against attack 
traffic.  
We propose a traceback-assisted countermeasure, which effectively 
users of traceback information. Basically our countermeasure 
mechanism finds the closest point to the attack origin and takes a 
countermeasure based on the abnormality matching level. We also 
use cross-layer information (i.e., destination address, previous MAC 
address) to increase countermeasure efficiency. That is, using cross-
layer information, we can reduce negative impact on legitimate 
traffic and increase packet drop/rate-limiting efficiency against 
attack traffic, since we can differentiate attack traffic and legitimate 
traffic more accurately. Our scheme can be considered as a hybrid 
scheme between packet filtering and rate limiting with abnormality 
matching level information. That is, when abnormality matching 
level is the highest, we apply packet filtering. On the other hand, 
when abnormality matching is moderate level, we apply rate 
limiting based on abnormality matching level. To determine optimal 
rate limiting level under medium matching level, we define and use 
Confidence Index (CI). CI is normalized value between [0,1] of 
inverse of distance in KS fitness test. Rate limiting level (P) is 
determined with the following equation: (refer to Fig.9) 

 

hMinCIThreshMaxCIThres
hMinCIThresCIMaxPP

−
−

•=  

(Eq.26) 
 

As shown in the Fig.9, when CI is very high it reduces to packet 
filtering, since it implies that there is no background traffic. On the 
other hand, when CI is medium, it becomes rate limiting based on 
CI level to reduce negative impact on legitimate traffic.  
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[Figure 9] CI-based Countermeasure 
 
The advantage of using a CI-based countermeasure over applying 
fixed drop rate is multifold: (1) When CI is low, only a small 
amount of packets (either attack or legitimate packets) are dropped. 
Even if we cannot drop more attack packets, it does not cause a 
serious problem, since only a small amount of attack traffic exists. 
On the other hand, the negative impact on legitimate traffic is 
largely reduced. When CI is high, more packets are dropped. Even if 
a higher percentage of legitimate packets are also dropped, its 
negative impact is not significant, since only a small amount of 
legitimate traffic exists. We will compare our CI-based 
countermeasure with fixed rate-limiting scheme in detail in the 
analysis section. To further reduce the QoS degradation of 
legitimate traffic under this countermeasure, we use cross-layer 
information (e.g., MAC, network-layer information). Traffic is 
classified based on fine-grained information (i.e., destination 
address, previous-hop MAC address). When one class of traffic is 
identified as highly matching traffic with an attack signature, we 
apply rate limiting based on CI value for the class of traffic only.  
To measure countermeasure efficiency formally, we define SDP as 
follows:  
 

SDP = (Survived legitimate Traffic)*(Dropped attack traffic) 
 (Eq.27) 

 
We will show the efficiency of our traceback-assisted 
countermeasure using SDP in the analysis section. 

10. SIMULATION-BASED PERFORMANCE 
ANALYSIS 
In this section, we analyze the performance of the proposed 

traceback protocol framework. We analyze each component of the 
framework, namely abnormality characterization, matching, 
searching and countermeasure. In addition, we analyze traceback 
success rate with the overall traceback mechanism. We have 
performed simulations using ns-2 and C code. Transmission range 
of each node is set as 150m. Background traffic is generated from 
random source to random destination. We repeated each simulation 
100 times in random topology and calculated the average value. We 
set NoC (Number of Contacts) = 6, R (vicinity radius) = 3, r (contact 
distance) = 3, d (search depth) =5 for contact selection and DSDV is 
used for underlying routing protocol.  
 
• Abnormality characterization and matching 
Fig.10, and Fig.11 show the impact of time asynchrony on matching 
test. Time asynchrony represents attack signature shift among nodes, 
which is caused by geographically spread nodes that observe 
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traversing attack signature. We compare the impact of time 
asynchrony on matching performance between traffic pattern 
matching-based approach, which is used in SWAT and our scheme. 
In Fig.10, and Fig.11, N represents the percentage of time 
asynchrony in attack signature. For example when N is 0, two 
abnormalities (i.e., attack signature, candidate attack signature) is 
observed exactly at same time slot, which is unrealistic, due to 
propagation/transmission/queueing delay. ST size represents the 
total number of unit monitoring windows. As N becomes bigger, the 
matching level (i.e., correlation coefficient in SWAT, KS fitness test 
in our scheme) becomes lower, which may result in high false 
negatives. Obviously, it is because time asynchrony results in traffic 
pattern distortion between different observing nodes. Our scheme, 
which is based on KS-fitness test in Fig.11, shows less negative 
impact by time asynchrony. All the distances are below threshold 
(threshold is set with significance level of 0.1%), which represents a 
high matching level. This is because the KS-fitness test checks 
abnormality with distribution function instead of the time-series 
traffic pattern, which is used in SWAT. 
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[Figure 10] Impact of time asynchrony on matching test (with pattern 
matching in SWAT) 
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[Figure 11] Impact of time asynchrony on matching test (with our 
scheme). Distance represents Dn in Eq.4 

In Fig.12 and Fig.13, we analyze the impact of unit monitoring 
window size (10 seconds, 20 seconds, 40 seconds and 60 seconds) 
and time asynchrony. It is shown that the negative impact of time 
asynchrony is increased when unit monitoring window is small in 
pattern matching. It is because a small distortion of traffic pattern 
can result in overall pattern mismatching under small unit window 

size. The disadvantage of long unit monitoring window is a delay in 
abnormality characterization. On the other hand, our scheme 
(Fig.13) shows stable performance across different unit window size 
due to the same reason in Fig.11. 
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[Figure 12] Impact of unit monitoring window on matching test (with 
pattern matching in SWAT) 
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[Figure 13] Impact of unit monitoring window on matching test (with 
our scheme) 

Fig.14 shows the impact of various background traffic on matching 
test. Unlike our initial expectation, larger ST size incurs low 
matching level. That is, when high bursty traffic exists and larger ST 
size is used, traffic matching level drastically goes down. It is 
because as ST size is increased, there exists more chance that the 
burstiness can affect the traffic pattern. Fig.15 shows the impact of 
background traffic on our scheme. We observe high matching level 
(low distance) regardless of ST size. This is because abnormality 
distribution of candidate attack signature is not affected by a small 
deviation from the reference profile (i.e., attack signature) in KS-
fitness test. Fig.16 shows an abnormality matching level between an 
attack signature and random bursty background traffic, where M is 
the number of unit monitoring windows. High matching level (low 
distance) leads to a false positive. Originally, we were expecting that 
KS-fitness test would show a high false positive rate. However, KS-
fitness shows a low false positive rate with high distance across 
most ST sizes. 
Consequently, we can conclude that our scheme far outperforms 
traffic pattern-based traceback in terms of false positives and 
negatives under diverse parameter settings. There can be one 
exceptional case where a KS-test shows low performance. That is, 
when both traffic attack signature and candidate attack signature 
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shows the same statistical characteristics (i.e., same average, 
variance, etc.) with different time-series traffic patterns, the KS test 
can cause false positives. However, this is considered a very rare 
case.  In addition, there is no reason for an attacker to launch this 
kind of attack, since it can cause traceback success anyway. 
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[Figure 14] Impact of background traffic on matching test (with pattern 
matching in SWAT) 
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[Figure 15] Impact of background traffic on matching test (with our 
scheme) 
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[Figure 16] False positive by background traffic (with our scheme) 

• Abnormality Searching 
We compared communication overhead (the number of 
transmitted/received packets) of our protocol framework in Fig.17 

and Fig.18.  We varied the number of nodes 480 (area of 1680m x 
1680m), 1089 (area of 2560m x 2560m), 1936 (area of 3440m x 
3440m), and 3025 (area of 4320m x 4320m). A victim is located at 
the center of a network and an attacker is located at a random 
position (17 hops away in DoS and 10 hops away in DDoS) on the 
edge of a network. In flooding, a query message with an attack 
signature is flooded to the entire network. Consequently, 
communication overhead shows fast growth as the network size 
increases. Our scheme shows very low communication overhead 
(24% in case network size is 3025 nodes) compared to flooding, 
since it deploys directional search and query suppression to reduce 
communication overhead.  Note that the energy saving becomes 
significant, especially when network size increases. Our scheme 
shows slightly higher communication overhead compared with 
SWAT since overhearing nodes around attack route report the 
candidate attack signature. However, the overhead increase is not 
significant. (less than 8%).  
Similar to DoS case, our protocol incurs low communication 
overhead in DDoS attacker traceback. As the number of attackers 
increases, communication overhead to search distributed attackers is 
also increased. However, compared with flooding mechanism, our 
scheme incurs very low communication overhead, as shown in Fig. 
18. The improvement (40% reduction in 4-attacker case) becomes 
significant as the network size increases. Similar to DoS case, 
overhead is slightly increased in our scheme compared with SWAT. 
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[Figure 17] Communication overhead in DoS attacker traceback 
comparison 
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[Figure 18] Communication overhead comparison in DDoS attacker 
traceback 
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Fig.19 compares robustness against node compromise between 
SWAT (relay node-based scheme) and our scheme. A represents the 
number of distributed attackers. To disable traceback, an attacker 
needs to compromise nodes that observe abnormality and prevent 
them from reporting candidate attack signature. Our proposal shows 
much higher robustness compared with SWAT, which relies only on 
relay node for traceback. This is because we utilize overhearing 
witness node around the attack route. 
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[Figure 19] Robustness against node compromise 

• Overall Traceback Success Rate 
We performed a simulation and measured the overall traceback 
success rate with the proposed architecture. The number of nodes is 
set at 1089 in the network size of 2560m x 2560m. DoS attacker is 
performed 17 hops away from victim, and DDoS attacker is 
performed 10 hops away from victim. Background traffic is 
generated with the volume of 7.5% of attack traffic (i.e., if attack 
traffic=500pps, then, background traffic=(7.5*500pps)/100≈38pps) 
from random nodes to random destinations. Note that the 
background traffic is generated at the same time slots as the attack 
traffic. Consequently, it represents high (i.e., bursty) background 
traffic within short time slots. Attacker(s) and victim are randomly 
selected for every simulation. Fig.20 shows DoS attacker traceback 
success rate with MAC layer monitoring, network-layer monitoring 
and cross-layer monitoring. Cross-layer monitoring shows perfect 
traceback success even under a high volume of background traffic.  
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[Figure 20] Comparison of DoS attacker traceback success rate 

Fig.21 shows DDoS attacker traceback success rate with various 
destination diversity. In this simulation, we set the number of one-
hop neighbors at 6. Percentage of nodes that generate background 

traffic is set to 50%. When destination diversity is low (<20), 
traceback success rate is low with network-layer information. 
However, traceback with cross-layer information shows high 
success rate (>80%) across different diversity levels. This is because 
MAC layer information complements network layer information, 
which further reduces noise traffic. Fig. 22 shows the success rate 
with a various number of one-hop neighbors. Traceback with cross-
layer information shows greater improvement compared with 
traceback with MAC layer information only. 
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[Figure 21] DDoS attacker traceback success rate comparison between 
cross-layer information and network-layer information 
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[Figure 22] DDoS attacker traceback success rate comparison between 
cross-layer information and MAC-layer information 

• Countermeasure 
In this section, we perform analysis to verify the efficiency of our 
traceback-assisted countermeasure and compare it with existing 
countermeasure (i.e., Fixed rate limiting). We measure dropped 
attack packet count (Fig.23), survived legitimate packet count 
(Fig.24), and SDP (Fig.25). In Fig.23, attack packet dropping 
efficiency is increased as attack percentage is increased (Attack 
packet percentage represents the percentage of attack traffic in total 
traffic). It is because abnormality matching level is increased as 
attack percentage is increased. Fig.24 shows survived legitimate 
packet count. When attack percentage is low, more legitimate packet 
is survived with our scheme because matching level is low and 
consequently, only a small amount of packets are dropped. On the 
other hand, when attack percentage is high, less legitimate packets 
survived due to high abnormality matching level. However, the 
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negative impact is not significant, since there is only small amount 
of legitimate traffic when attack percentage is high.  
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[Figure 23] Attack traffic dropping efficiency 

 
In Fig.25 we measured SDP (Eq.27) with fine-grained cross-layer 
information. SDP shows drastic increase when cross-layer 
information is considered. We compared SDP with fixed rate 
limiting, where no fine-grained information is considered. When the 
number of neighbors is increased to 10 nodes, SDP rate shows a 
400% of increase. This is because we can reduce more noise traffic 
when there exist more one-hop neighbors. 
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[Figure 24] Legitimate traffic survival rate 

11. CONCLUSION AND FUTURE WORK 
In this paper, we proposed an efficient attacker traceback 

scheme geared towards wireless multi-hop networks. We paid 
special attention to cross-layer information (i.e., network layer and 
MAC layer) to increase traceback accuracy and overhearing 
capability of MAC layer to increases robustness against node 
compromise, high background traffic, mobility, and DDoS attack. In 
addition, we proposed a traceback-assisted countermeasure, which 
increases dropping efficiency against attack traffic and decreases 
negative impact on legitimate traffic. The efficacy of our traceback 
architecture is verified through extensive simulation. 
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[Figure 25] SDP improvement with cross-layer information 

 
As a future work, we plan to analyze the risk and threat of mobility 
on traceback. Mobility of nodes can pose significant challenges on 
traceback, and no existing scheme considers the mobility issue in 
traceback. We will first systematically analyze mobility-induced risk 
and propose novel traceback scheme robustness under mobile 
scenarios. 
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