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Abstract—Future vehicular networks shall enable new classes
of services and applications for car-to-car and car-to-roadside
communication. The underlying vehicular mobility patterns sig-
nificantly impact the operation and effectiveness of these services,
and hence it is essential to model and characterize such patterns.
In this paper, we examine the mobility of vehicles as a function
of traffic density of more than 800 locations from six major
metropolitan regions around the world. The traffic densities are
generated from more than 25 million images and processed
using background subtraction algorithm. The resulting vehicular
density time series and distributions are then analyzed. It is found
using the goodness-of-fit test that the vehicular density distribu-
tion follows heavy-tail distributions such as Log-gamma, Log-
logistic, and Weibull in over 90% of these locations. Moreover, a
heavy-tail gives rise to long-range dependence and self-similarity,
which we studied by estimating the Hurst exponent (H). Our
analysis based on seven different Hurst estimators signifies that
the traffic patterns are stochastically self-similar (0.5 ≤ H ≤ 1.0).
We believe this is an important finding, which will influence the
design and deployment of the next generation vehicular network
and also aid in the development of opportunistic communication
services and applications for the vehicles. In addition, it shall
provide a much needed input for the development of smart cities.

I. INTRODUCTION

Research in the area of vehicular networks has increased
dramatically in recent years. With the proliferation of mobile
networking technologies and their integration with the automo-
bile industry, various forms of vehicular networks are being
realized. These networks include vehicle-to-vehicle, vehicle-
to-roadside, and vehicle-to-roadside-to-vehicle architectures.
Realistic modeling, simulation and informed design of such
networks face several challenges, mainly due to the lack of
large-scale community-wide libraries of vehicular data mea-
surement, and representative models of vehicular mobility.

Earlier studies in this area have clearly established a
direct link between vehicular macro-mobility based on den-
sity distribution and the performance of vehicular network
primitives and mechanisms [1], [2], including broadcast and
geocast protocols [3]. Although good initial efforts have been
exerted to capture realistic vehicular density distributions, such
efforts were limited by availability of sensed vehicular data.
Hence, there is a real need to conduct vehicular modeling and
characterization using larger scale and more comprehensive
data sets. Furthermore, commonly used assumptions, such as
exponential distribution [4] have been used to derive many
theories and conduct several analyses, the validity of which
bears further investigation.

In this study, we systematically examine the modeling and
characterization of vehicular mobility using a family of heavy-
tail and memoryless theoretical distributions. To avoid the
limitations of sensed vehicular data, we instead utilize the
existing global infrastructure of tens of thousands of video
cameras providing a continuous stream of street images from
half a dozen regions around the world [5], [6]. We processed
millions of images, captured from publicly available traffic
web cameras, using a novel density estimation algorithm to
help investigate and understand the traffic patterns of cities
and major highways. Our algorithm employs simple, scalable,
and effective background subtraction techniques to process
the images and build an extensive library of spatio-temporal
vehicular density data [7]. The resultant dataset of 25 million
records used, has traffic density time series from 819 locations
belonging to six major metropolitan regions around the world.

As the first step towards realistic vehicular network mod-
eling, we aim to provide a comprehensive view of the funda-
mental statistical characteristics of the vehicular traffic density
exhibited by the data. We conducted two main sets of statistical
analyses: the first includes an investigation of the best-fit
distribution and goodness-of-fit test using a family of heavy-
tail and memoryless models, while the second is a study of
the long range dependence (LRD) and self-similarity observed
in that data. Our analysis shows two main results: i) the
empirical data of vehicular densities in most of the locations
follow heavy-tail distributions such as ‘Log-gamma’, ‘Log-
logistic’, and ‘Weibull’. ii) the data consistently showed a
high degree of self-similarity. This may suggest a long-range-
dependent process governing the vehicular arrival process in
many realistic scenarios. Such result is in sharp contrast to
the assumptions of memoryless processes commonly used for
modeling the vehicular mobility.

The rest of the paper is organized as follows: In section II,
we detail our vehicular dataset, its pre-processing method to
extract traffic density, and density validation using ground
truths. Statistical analysis of measurements and modeling is
illustrated in section III. Vehicular time series following self-
similar processes is discussed in section IV. Finally, we
conclude our paper in section V.

II. MEASUREMENTS AND VEHICULAR DENSITY

ESTIMATION

Table I details the six regions used in this study and
the extent of the data and time span of the sample. The
traffic snapshots in form of images taken at few seconds apart
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TABLE I. GLOBAL WEBCAM DATASET

Region # of Cameras Duration Interval Records Database Size

Connecticut 120 21/Nov/10- 20/Jan/11 20 sec. 7.2 million 435 GB
London 182 11/Oct/10 - 22/Nov/10 60 sec. 1 million 201 GB

Seattle 121 30/Nov/10 - 01/Mar/11 60 sec. 8.2 million 600 GB

Sydney 67 11/Oct/10 - 05/Dec/10 30 sec. 2.0 million 350 GB
Toronto 89 21/Nov/10 - 20/Jan/11 30 sec. 1.8 million 325 GB

Washington 240 30/Nov/10 - 01/Mar/11 60 sec. 5 million 400 GB
Total 819 - - 25.2 million 2311 GB

from every camera (at intervals ranging from 20-60 seconds),
first pass a background estimation and subtraction phase.
These are then used to estimate the traffic density arriving
per unit time as opposed to a car count. While a car count
might seem preferable to a traffic density measure, there are
several practical challenges. A car count requires a far greater
computational cost due to the effort required to isolate each
object. Traffic congestion further complicates matters when
cars occlude each other, making it difficult to segregate cars
based on edge structures. In addition, vehicles at the far end of
the road are small in the image and cannot be detected by these
algorithms.1 Since these cameras do not have night vision,
we limit our study to 7am-6pm. On average, we download
15 gigabytes of imagery data per day from over 2,700 traffic
cameras, with an overall dataset of 7.5 terabytes containing
around 125 million images. In this paper, for a fair comparison,
we have selected only six regions with nearly similar time
granularity of traffic snap shot, as shown in Table I.

A. Background Subtraction

Background subtraction is a standard method for object
localization in image sequences with fixed cameras, where
the frame rate is lower than the velocity of the objects to be
tracked (i.e. cars move out of the scene typically at a rate
exceeding 1 minute). The basis for models of background are
based on the observation that background does not change
significantly (in comparison to foreground/objects) across time.
Any part of an image that does fit with that model is deemed as
foreground/object. These foreground regions are then further
processed for the detection of desired objects.

The background model used here assumes that the distribu-
tion of background pixel values may be modeled as a weighted
sum of Gaussian distributions. Our approach follows closely
to those proposed by [8], [9], [10] because of their reliability
and robustness to sensitive changes in the lighting conditions.
In our approach, the observed pixel value is modeled by a
weighted sum of Gaussian kernels. Let xt represent a pixel
value in the tth frame, then the probability of observing this
value is assumed to be:

p(xt) =

K∑

i=1

wt
i ∗ N (µi,t,Σi,t) (1)

where N (µi,t,Σi,t) is the ith kernel with mean µi,t and
covariance matrix Σi,t, and wt

i is the weight applied to that

1Another solution could be to only count cars that are close to the camera;
while this is definitely an option for video data, for snapshot data it would
result in those distant cars having left the scene before the next snapshot;
the net effect being that the maximum observed car count at a junction is
truncated causing problems in the multivariate analysis later on.

TABLE II. SUMMARY OF REGRESSION ANALYSIS

Camera df β0(α = 0.95) β1(α = 0.95) R2 p ρ

1 100 -1.19±0.046 0.03±0.003 0.7922 0 0.91
2 100 -3.25±0.130 0.09±0.007 0.8579 0 0.92
3 100 8.16±0.045 0.10±0.005 0.9308 0 1.00
4 100 8.16±0.045 0.10±0.005 0.9308 0 1.00
5 100 8.16±0.045 0.10±0.005 0.9308 0 1.00
6 100 -2.13±0.112 0.07±0.008 0.7499 0 0.88

Fig. 1. A comparison of empirical traffic densities with number of cars.

kernel such that
∑

iw
t
i = 1. We assume that RGB channels

are uncorrelated thus the covariance matrix for each kernel
is diagonal.2 When a new frame arrives, the pixel values
are compared to the kernels to determine if it is likely that
this value was drawn from a distribution with N (µi,t,Σi,t)
(using for example a 95% confidence interval). If so, µi,t, Σi,t

and wi are updated using exponential filters; if not, a new
kernel is created and the existing kernel with the lowest wi

is eliminated (see [8] for specifics). Short lived kernels and
their associated pixels are deemed to be possibly foreground
producing a binary map. Morphological operations are then
applied to this map to remove noise and any blobs with area
smaller than a certain threshold.

The view of most cameras used in this study is along the
direction of the road and this perspective skews the size of
objects on an image [11]. To counter this effect, we weigh
each foreground pixel with the exponent of it’s distance from
the bottom of the image. Thus a pixel in the bottom of the
image will be weighted less (object appear larger at the bottom
than on the top) than a pixel at the top. While this weighting
is not exact and does produce some warping as we shall see
in the next section, it is not excessive but is simple and does
not require manually tuning each camera.

2Thus reducing the number of unknown parameters.
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B. Ground Truth for Validation

To test the performance of the car density capture, six
cameras were selected at random and 102 images from each
were examined by hand to produce a ground truth count for the
number of cars. This ground truth was then regressed against
the measured car density to check that the relationship is linear.
The regression from one of the cameras is shown in Figure 1
and has a reasonable fit. There are some outliers, especially
at low levels of traffic and there also appears to be a slight
non-linear relationship between the ground truth and measured
car density due to the warping effect of perspective (discussed
above). Table II shows the summary statistics for the regression
analysis including Spearman’s correlation coefficient, ρ, which
seems to imply that there is a perfect non-linear correlation
for camera’s 3 to 5.3 Overall, the analysis shows that while
there are some errors, the relationship between the actual and
measured number of cars is sufficiently clear to allow analysis
at a network level. For more information, we suggest interested
readers to refer to our technical report [7].

III. TRAFFIC MODELING

In this section, we perform modeling and characterization
of vehicular traffic densities. We show that memoryless models
such as exponential distribution do not capture the traffic
trends, instead heavy-tail distributions such as Weibull are
better at estimating the parameters of empirical traffic data.
We use goodness-of-fit test to support our analysis of using
such distributions for traffic modeling purposes.

Evaluation Approach: Earlier, we have shown that traffic
at each location is linearly correlated to number of vehicles
at that location. The next step is to study the underlying
statistical patterns through a sequence of observations. We
achieve this by modeling the empirical vehicle traffic densities
using a family of heavy-tail and memoryless distributions.
A heavy-tail distribution such as Pareto, is characterized by
a density function that converges less rapidly than an ex-
ponential function. For a random variable exhibiting heavy-
tail waiting time, the larger its already passed waiting time
value, the lower it’s likelihood of future arrival in given time
interval. In case of memoryless processes such as exponential,
models’ subsequent events are completely independent from
the previous events. The distribution models we consider are
Exponential, Log-gamma, Log-logistic, Normal, Poisson, and
Weibull distribution. For the analysis purposes, we follow
the approach suggested by Clauset et. al. to ensure that the
parameters of the theoretical models are not estimated from the
observed data [12]. First, we measure the distribution param-
eters by using the Maximum Likelihood Estimation (MLE).
Second, we validate the significance level of estimated model
parameters using the graphical properties and goodness-of-fit
measures based on statistical theory. We use Kolmogorov-
Smirnov test (KS-test) and evaluate its D-statistics (estimate
maximum absolute difference between the empirical and theo-
retical distribution) on the CDFs of estimated parameters and
of empirical vehicle densities. We rank models based on their
significance and accuracy in modeling empirical data. We also
report models at 3% and 5% of conservative deviation in order

3The other notation in Table II is standard regression notation: df denotes
the degrees of freedom. α and β are the regression coefficients as y = αx+β,
R2 is the % of variance explained, see Equation eqn:r2, p is the p-value.
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Fig. 2. Histogram of empirical traffic densities of a location.

0

0.1

0.2

0.3

0.4

0.5

0.6

Time (in min)

N
or

m
al

iz
ed

 D
en

si
tie

s

(a) Sydney (Nov’ 10)

0

0.1

0.2

0.3

0.4

0.5

Time (in min)

N
or

m
al

iz
ed

 D
en

si
tie

s

(b) Sydney (Dec’ 10)

Fig. 3. Traffic densities during two different time periods.

to show the efficacy of more than one distribution in modeling
the empirical data. Finally, we compute an aggregate statistic
for all 819 locations that shows widespread applicability of
heavy-tail distributions in modeling empirical data.

Data Preparation: We prepare traffic density data of each
location as an individual time series. As shown in Table-I, we
model 819 time series from six regions for several months.
Specifically, we define yi(t) as the time series of vehicular
traffic densities associated with ith location at time t. Note that
yi(t) is a time series of traffic density at each traffic location
and is linearly related to the number of vehicles at that traffic
location as described in the previous section. For each yi(t),
we systematically calculate distribution parameters by using
maximum likelihood estimation and estimate goodness-of-fit
in the empirical data of each location against all the theoretical
models using the Kolmogorov-Smirnov (KS) test [13].

Skewed Distribution: We start our observation by looking
at the histogram of traffic densities of two different location as
shown in Figure 2. A fairly smooth histogram is skewed-right
with a possibility of large frequency of traffic occurring in
the first half (average density value of 0.45) of the density
distribution. For both the locations, the frequency mean is
centered around 30 and the median bin is at 0.50. The
spread of the empirical values shows that a wide range of
traffic is present at these locations. We have recorded similar
observations for other traffic locations as well. Previous studies
have shown that skewed-right data are better modeled using
Weibull-like distribution that have two parameters (shape and
scale), unlike the exponential distribution, which has only one
parameter (rate) [14]. Next, we use the methods proposed
in [15] to check the stationarity, where the mean, variance,
and autocorrelation of density distribution are all constant over
time. In Figure 3, we have shown the distribution of traffic
for two months for a location that despite few spikes looks
stationary. This is an important step, as examination of fractal
behavior in traffic requires stationarity criterion to be fulfilled.

Curve Fitting: Next, we consider the univariate distribution
fitting using our theoretical models to the empirical traffic
densities. In Figure 4, we show the empirical probability
density function (PDF) plot for the fitted distribution of three
different locations’ traffic densities together with five other
theoretical models. In Figure 4(a), Weibull distribution has
estimated the parameters for empirical data quite well and the
fitting agrees with the empirical PDF. In Figure 4(b), Log-
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Fig. 4. Curve fitting for three different location time-series. In (a) Weibull, (b) Log-gamma, and (c) Log-logistic better models the empirical data.

gamma distribution has the least deviation and is able to model
the empirical data quite well, the fitting shows that Log-gamma
distribution is able to agree with the empirical PDF of traffic
densities for that location. The last Figure 4(c) shows that the
fitted log-logistic distribution very well models the empirical
densities of the final location. Although, one may reason
that the three samples corroborates efficacy of the heavy-tail,
the analysis is trying to focus that memoryless distribution
such as exponential deviate largely in accurately modeling
empirical data. It can very well be said that model parameters
of exponential distribution have underestimated the empirical
data in all three cases, while the normal distribution has
overestimated the skewed-right section of the empirical data.
Thus, regression analysis indicates that heavy-tailed models
such as Log-gamma, Log-logistic, and Weibull are better in
estimating the parameters of empirical data.

Goodness-of-Fit Test: We extend our study of modeling to
all the locations and perform a goodness-of-fit test as explained
previously. The result of goodness-fit-test ranks various distri-
butions based on the deviation of curves found and the values
of estimators. We have observed that the traffic at individual
locations can vary a lot, but in general Log-gamma, Log-
logistic, and Weibull distribution can capture the key trends. In
Table III, we have ranked the top three distributions that very
well estimate the parameters of empirical data. Log-logistic
distribution yields a much better fit for four out of six regions,
while most of the traffic locations in London and Seattle
are best described using Log-gamma and Weibull distribution
respectively. The results of goodness-of-fit test also show that
91% of Connecticut, 70% of Sydney, and 80% of Washington
D.C locations’ empirical traffic data are better modeled using
Log-logistic distribution. In Table III, we show dominant
distributions at 3% and 5% deviation from the empirical data
distribution, with most of the cases showing heavy-tail models
are better suited for characterizing the empirical data. For
example, at 3% deviation, 50% of locations’ traffic can be
modeled using Log-logistic distribution while at 5% deviation
93% locations’ traffic can be modeled. These results strongly
indicate that traffic at several locations in those six regions
lasts for a long time that leads to congestion-like situation.

In Figure 5, we show the aggregate results of goodness-
of-fit criterion for all 819 locations. Our results show that
the distributions with heavy-tail properties are prominent in
modeling the empirical data. In general, our results show that
memoryless distributions such as exponential are insufficient
to explain empirical distribution of traffic densities. We find
that empirical values are better modeled using distribution with
heavy-tails such as Log-gamma, Log-logistic, and Weibull. The
Log-logistic distribution, particularly yields better fit for 57%
of all aggregated locations in comparison to Log-gamma and
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Fig. 5. The percentage for the distributions that cover all 819 locations from
six regions. The values in the box show average percentage estimates deviation
from empirical data.

Weibull, which are both around 20% mark. The Log-logistic
also has less deviation at both 3% and 5% error level compared
to all other models. These results imply that most of the urban
traffic patterns are bursty in nature and traditional memoryless
distributions are inadequate in realistically capturing the traffic
patterns. Previous studies have shown the presence of heavy-
tail indicate a self-similar behavior with noticeable bursts at
a wide range of time scale [16], [17]. Next, we examine this
conjecture by estimating the value of Hurst exponent.

IV. ANALYSIS OF SELF-SIMILARITY

In the previous section, we saw that theoretical distributions
with heavy-tail properties are better at modeling the empirical
traffic densities. Such distributions exhibit extreme variability
in sampling. For example, sampling such distributions result
in large quantities of very small values and few samples with
extremely large values. Such type of behavior is known to
cause long-range dependence and self-similarity of the network
traffic [16], [17]. Here, we examine this self-similar nature in
a vehicular setting and estimate the Hurst exponent. In [18],
authors have studied dynamic behavior of a single vehicle
moving through a sequence of traffic lights on a single-lane
highway that has demonstrated the self-similar behavior. In
[19], Meng et. al. examined the quantitative characteristics
of the self similar vehicle arrival pattern on highways and
headway distribution in traffic data provided by the Texas
Department of Transportation. Using cellular automata model,
Campari et. al. showed that highway traffic exhibits self-
similarity in both car density and flow. They also concluded
the fractal dimension increases from free flow to congested
flow [20]. Although these studies strongly indicate that model-
ing arrival patterns is a challenging task, they have several short
comings. First the dataset used were limited to few regions,
second they were sampled from same type of traffic conditions
(either highways or urban streets), and third they have been
focusing on the arrival patterns of individual vehicles without
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TABLE III. DOMINANT DISTRIBUTION AS BEST FITS[RANKED AND % DEVIATION]

Region 1st Best Fit 2nd Best Fit 3rd Best Fit 63% 65%

Connecticut L[91%] G[5%] W[4%] L[50%], W[2%], G[1%] L[93%], W[13%], G[10%], E[5%]

London G[38%] L[29%] W[26%] G[20%], L[15%], W[10%], N[8%] G[55%], L[51%], W[44%], N[23%]
Sydney L [70%] G[17%] W[14%] L[65%], G[22%], W[8%], G[49%], W[37%], N[6%]

Toronto L[40%] G[27%] W[26%] G[18%], W[17%], L[9%], E[3%] W[72%], L[69%], G[63%], E[24%], N[1%]

Washington D.C. L[80%] W[11%] G[7%] L[60%], W[8%], G[6.54%], E[4%] L[91%], W[35%], G[30%], E[14%]
Seattle W[36%] L[34%] G[29%] W[16%], G[14%], L[4%] G[55%], W[47%], L[35%]

E = Exponential, G = Log-gamma, L = Log-logistic, N = Normal, W = Weibull
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Fig. 6. Scaling of stochastic self similar vehicular traffic.

considering lane capacities and traffic densities that are im-
portant to study the vehicular congestion and future aspects of
vehicular networking. In this paper, we specifically focus on
examining the distribution of traffic densities on a planet scale
level that help study road capacity and investigate the causes
of widespread congestion in major metropolitan areas.

We benchmark the estimation of Hurst exponent using
seven different estimators to study whether the observed traffic
density time series of all 819 locations is self-similar in
nature. The estimators we have used are: (i) Absolute Value
Method, (ii) Aggregate Variance Method, (iii) Variance of
Residuals Method, (iv) R/S Method, (v) Periodogram, (vi)
Whittle Method, and (vii) Abry-Veitch Method. In general, the
Hurst exponent is asymptotically estimated, which is prone to
statistical uncertainty and errors. By applying many estimators
we take a comprehensive approach in analyzing the self-similar
behavior. A detailed information about these estimators is
given in [16], [17], [21].

The first indication that traffic time series have a stochastic
self-similar process is visually depicted in a series of plots in
Figure 6. In Figure 6 (a) the traffic trace is plotted against a
time granularity of 1 minute. Figure 6 (b) is the same traffic
time series aggregated by a factor of 10 (i.e. the time scale
is compressed at 10 minutes). Subsequent plots of Figure 6
(c) and (d) are aggregated by increasing the granularity by
two more orders. These plots look very similar to long range
dependence and are invariant to the chosen time granularity.

We use the Selfis tool [21] to investigate the value of Hurst
exponent using seven different estimators at 95% confidence

Connecticut London Sydney Toronto Washington DC Seattle
0

20

40

60

80

100

City

%
 L

oc
at

io
ns

 (
0.

5 
< 

H
 <

 1
) 

 

 

Fig. 8. The percentage of locations from every region that have self-similarity
in their traffic patterns.

interval for all 819 time series. A Hurst exponent at (or very
close to) 0.5 indicates lack (or weakness of) the long range
dependence and suggests a short range memory process, while
an exponent higher than 0.5 and closer to 1 indicates a strong
long-range dependence and suggests a self-similar process.

In Figure 7, we show the bar-plots of the distributions of
estimated Hurst exponent by all the seven estimators for all
six regions. As evident from these plots, the Hurst estimators
consistently produce results well-exceeding 0.5. These trends
support the adequacy of self-similar processes in modeling the
vehicular traffic time series over various time scales. This result
is also in-line with our previous findings that Log-gamma,
Log-logistic, and Weibull (considered in the family of heavy-
tail distributions) provide a better distribution fit for observed
traffic densities, and also supports the failure of memoryless
distributions. As evident, average Hurst exponent is greater
than 0.5 with low deviation at 95% confidence interval. Finally,
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Fig. 7. Histograms showing the distributions of Hurst exponent, which is estimated from seven different estimators for the locations of six regions.

we show the aggregate statistics for all self-similar time series
in Figure 8. This result indicates that the traffic on more than
70% locations of London, Connecticut and Toronto is self-
similar, while less than 50% of Sydney and Washington D. C.
traffic is self-similar.

Overall, our analysis from section III and IV shows that
the current traffic trends are better modeled using heavy-tail
distributions. In general Log-gamma, Log-logistic and Weibull
distribution are better in modeling empirical data of traffic
densities, as showed by the goodness-of-fit test. Also, the
traffic time series exhibit self-similar process.

V. CONCLUSION AND FUTURE WORK

In this paper, we have shown that the observed values of
vehicular traffic densities are better modeled using heavy-tail
distributions. Since a heavy-tail distribution also indicates a
self-similar process, an investigation into that direction showed
self-similarity in the time series of traffic densities. In all,
we examined 819 locations’ vehicular traffic density data,
containing more than 25 million records. Our first analysis
on modeling and characterization indicates that heavy-tail
distributions such as Log-gamma, Log-logistic, and Weibull
better model these observed traffic densities. In the second
analysis, we found that time series of traffic densities are
self-similar, as estimated by seven different estimators for the
Hurst exponent (0.5 ≤ H ≤ 1.0). These results suggest that
the traditional notion of using memoryless models for traffic
modeling purposes should be revisited. We believe that our
study will provide new insight into the development of future
vehicular networks and infrastructure design.
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