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Abstract—The future global Internet is going to have to cater
to users that will be largely mobile. Mobility is one of the main
factors affecting the design and performance of wireless networks.
Mobility modeling has been an active field for the past decade,
mostly focusing on matching a specific mobility or encounter
metric with little focus on matching protocol performance. This
study investigates the adequacy of existing mobility models in
capturing various aspects of human mobility behavior (including
communal behavior), as well as network protocol performance.
This is achieved systematically through the introduction of a
framework that includes a multi-dimensional mobility metric
space. We then introduce COBRA, a new mobility model capable
of spanning the mobility metric space to match realistic traces. A
methodical analysis using a range of protocol (epidemic, spray-
wait, Prophet, and Bubble Rap) dependent and independent
metrics (modularity) of various mobility models (SMOOTH and
TVC) and traces (university campuses, and theme parks) is
done. Our results indicate significant gaps in several metric
dimensions between real traces and existing mobility models.
Our findings show that COBRA matches communal aspect and
realistic protocol performance, reducing the overhead gap (w.r.t
existing models) from 80% to less than 12%, showing the efficacy
of our framework.

I. INTRODUCTION

Mobility modeling, analysis and simulation are essential
to the design and evaluation of mobile networking protocols,
services and applications. What is lacking, however, is a
benchmarking framework for mobility evaluation, which can
systematically assess comprehensive metrics to aid in the
characterization and meaningful comparison of these models.
Furthermore, the main purpose of these models is the realistic
evaluation of protocol performance, which should be an in-
tegral part of the framework. Recently, a new generation of
mobile networking protocols has been introduced based on
communal and structural congruity aspects of mobile users [7],
[9], [4]. Such aspects have not been considered in mobility
modeling conventionally, and it is important for the bench-
marks to include these new aspects and metrics of human
mobility. The main challenges lie in introducing and assessing
mobility models that capture all these metrics simultaneously
in a realistic (matching traces and protocol performance)
and practical manner (amenable to large-scale simulations).
Particularly, we attempt to answer the following questions: i.
Which aspects of behavior do current mobility models capture
(or fail to capture) and to what degree? ii. How can a model
be purposefully designed to capture the various metrics of
mobility at will? iii. How does capturing mobility metrics
reflect in the ability to capture realistic protocol performance?

This study re-visits the area of mobility modeling for the
purpose of mobile network evaluation, and introduces a multi-
dimensional mobility metric space to accurately characterize
and benchmark mobility models. The metrics are classified
into individual (e.g., spatio-temporal preferences), pair-wise
(e.g., encounter based) and collective (e.g., group, community)
metrics. In addition to these protocol-independent metrics,
a systematic method is adopted to evaluate and compare
protocols performance across models and real traces.

Next, a new mobility model is introduced. The salient
feature of the new model is capturing the COllective Behavior
based on Realistic Aspects of human mobility (COBRA).
The construction of this model attempts to explicitly cap-
ture individual, pair-wise, and group mobility metrics, while
maintaining scalability and manageability during simulations.
COBRA is then thoroughly analyzed using framework guide-
lines. Once the benchmarking framework is in place and
the mobility model is defined, the study passes through two
phases. First, a systematic protocol-independent analysis is
performed to characterize the mobility metrics of real traces,
COBRA, and a set of existing mobility models. Extensive
traces from several university campuses, conferences, offices,
and theme parks† are used. In addition, several mobility models
are evaluated including random direction [2], time-variant
community (TVC) [8], and SMOOTH [14]. The latter two
models are based on real traces and have been shown to
capture several important characteristics of mobility. Second,
a protocol-dependent analysis is performed, using several
key opportunistic protocols; including epidemic routing [22],
spray-and-wait [18] and prophet [12], to evaluate the accuracy
by which the models match the protocol performance over
network traces. Furthermore, the support for behavior-aware
protocols; such as profile-cast [7], bubble rap [9] is discussed.
The results of our analyses clearly show the shortcomings of
existing mobility models over several mobility metrics.

Interestingly, the systematic approach to designing COBRA
to account for the various mobility metrics also achieves a
very close match in all the protocol performance metrics (for
all the evaluated protocols), thus closing the significant gap
in mobility and protocol evaluation. Specifically, the results
have shown that COBRA is 90% accurate in demonstrating
the similarity patterns observed in real traces. Also, it closely
matches the protocol performance (85%-95%) on all different
metrics. Contributions of this work are manifold:

1) introducing a systematic mobility benchmarking
method, including a multi-dimensional mobility met-
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Fig. 1. Framework for analysis and modeling of human contact networks.

ric space and a framework for thorough mobility and
protocol performance analysis,

2) introducing a new mobility model to capture multiple
mobility metrics simultaneously. We also plan to
release the model implementation and benchmark
scenarios as part of this study.

3) characterizing and quantifying the metric gaps in
existing mobility models,

4) providing a comprehensive evaluation of performance
of DTN protocols over the various models and traces.

The rest of this paper is outlined as follows. In Section II, we
introduce the mobility framework and multi-dimensional mo-
bility metric space. In Section III, we introduce a new mobility
model, COBRA. In Section IV and V, we extensively perform
protocol-independent analysis and protocol-dependent analysis
respectively, and finally conclude this paper in Section VI.

II. THE MOBILITY FRAMEWORK

Future mobile services, applications, and message dis-
semination paradigms will be influenced by behavior-driven
human mobility. For example, spatio-temporal preferences of
humans (e.g., such as going to sports complex and music
concerts) will provide insight into their likings and diurnal
activities, which can be used for customized services and
advertisements. Also, opportunistic communication techniques
rely on varying human mobility characteristics (such as inter-
contact time and social structures) to efficiently transfer mes-
sages in the network. Since mobility and social dynamics
impact the performance of routing protocols, it is of critical
importance to examine constituent factors that identify such
characteristics and evaluate models that use them. As shown
in Figure 1, the proposed framework consists of four major
components: I. Real measurements, II. Building block for
mobility models, III. Mobility characterization using protocol-
independent analysis, and IV. Mobility characterization using
protocol-dependent analysis. More details will be provided
on each of these blocks throughout this paper. These blocks
constitute systematic guidelines for developing future models,
generic evaluation of protocol-independent metrics such as
similarity and community structures, as well as network proto-
cols analysis. Next we describe components of the framework.

A. Real measurements:

In order to study the accuracy of mobility models it is
imperative to compare them against real measurements [11],
[1]. In the framework, we use real measurements to analyze
the effectiveness of mobility models.
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Fig. 2. Multi-dimension behavioral metric space for human mobility.

B. Building blocks for mobility models:

We propose a multi-dimensional mobility metric space that
expresses various aspects of human mobility. Each of the
dimensions consist of a set of metrics that help to capture
specific features. Next, we discuss this metric space.

Owing to the complexity of understanding the human
behavioral preferences, we represent them through Multi-
dimensional Mobility Metric Spaces as shown in Figure 2. The
design of these dimensions make ways to classify commonly
used quantitative metrics of human behavior that follows
naturally from the understanding of existing mobile services
and protocols. These services and protocols rely on spatio-
temporal mobility, location-based services, individual patterns,
encounters, and communal behavior. The three dimensions are
i. individual mobility, ii. pair-wise mobility, and iii. collective
mobility patterns. Next, we discuss these dimensions in detail.

1) Individual Mobility Patterns: Individual patterns focus
on independent behavior of the mobile users over space and
time. Two related important metrics have been observed by
Hsu et. al in [8]. The first is a spatial metric to capture the
location visiting preferences measured by the percentage of
time a mobile user spends at a given location. The second
is a temporal metric to capture the periodic reappearances
measured by the probability of visiting the same location after
a time gap. Other metrics include speed and pause time. We
evaluate these patterns in Section IV-C.

2) Pairwise Mobility Patterns: Pairwise patterns are ob-
served between two encountering mobile users and reflect var-
ious statistical aspects of encounter patterns. They provide an
insight into opportunities to exchange messages in encounter-
based protocols [3]. Encounter metrics include number and
duration distribution of encounters, and inter-contact time.

3) Collective Mobility Behavior Patterns: To capture the
community dynamics, metrics that assess the similarity of
users are introduced, in addition to clustering mechanisms
based on modularity [16]. Metrics include similarity and
cluster size distributions. We evaluate the accuracy of several
mobility models in replicating these metrics in Section IV-F.

C. Protocol-independent mobility analysis:

In the context of communicating across wireless networks,
recent services, protocols, and models have started to exploit
the structural dynamics of human social connectivity [4], [8].
These macroscopic structures (such as communities, etc.) have
been found favorable for the design of efficient opportunistic
protocols [7], [9]. They go beyond the simple one-to-one
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Fig. 3. Probability distribution of location visitation and time

interaction (inter-contact patterns) to showcase the complex
longitudinal patterns of how people meet, how often and
for how long [17]. Thus, desirable models should accurately
replicate such structures (via synthetic traces). To this end, we
propose protocol-independent analysis of mobility models that
involve examining dynamic properties such as spatio-temporal
similarity, clustering, and community structures. They are
evaluated through metrics such as modularity [16], similarity
scores [20], and clustering coefficient.

D. Protocol dependent mobility analysis

The main purpose of mobility models is to simulate real-
istically identical performance of protocols and services. We
identify two types of routing protocols i) Encounter based
ii) Community based forwarding protocols. Encounter based
forwarding protocols such as epidemic routing [22] utilizes
human encounters as an opportunity to transfer messages.
While, community based forwarding protocols such as Bubble
Rap [9] benefit from structural dynamics (communities, etc.)
of human mobility to perform message dissemination. The
framework recommends to evaluate such protocols through
performance metrics such as delivery ratio, latency, etc. [10].

The discussed mobility analysis framework focuses on
multi-dimensional aspect of human mobility that a earlier
model should demonstrate. In the subsequent sections, we will
use this framework for evaluating current mobility models and
routing protocol analysis.

III. COBRA

Today, mobility models have ventured from replicating
features of pure stochastic systems such as random walk to
more sophisticated ones, which involve demonstrating realistic
human behavior and mobility patterns. It’s preferable for
them to be data-driven and be able to generate synthetic
traces that are comparable to real measurements. Also, models
should demonstrate identical protocol performance likewise
the reality. Protocols such as Profile-cast [7] and Bubble-
rap [9] harness the underlying structural dynamics of human
communal behavior to transmit messages. For that purpose,
models’ generated traces should reflect such dynamics that we
evaluate using community detection. [16]. However, previous
studies show that vast majority of mobility models are inad-
equate to depict realistic patterns [6], [20], [21], [19]. These
findings strongly motivates the need to re-visit mobility mod-
eling to depict accurate human behavioral characteristics and
network performance. We design COllective Behavior based
on Realistic Aspects of human mobility (COBRA) keeping in
mind the limitation imposed by the predisposition of modeling
a specific type of stochastic distribution. Instead, we take a
natural approach by attempting to encapsulate realistic human
behavioral mobility features through explicit spatio-temporal
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Fig. 4. COBRA architecture

synchronization of finite set of key activities. That include
orderly distribution of location visitation, structure in time
(pause time, weekday and weekend behavior, and offline/online
patterns), movements speeds, and social ties. In general, human
mobility can be pictured through a set of locations visited
during a particular time. The idea fundamental to COBRA is to
explicitly synchronize the events (not done in earlier models)
leading up to the visit to these locations at a particular time
interval for respective mobile users. For example, COBRA
attempts to model the periodic visitation patterns of mobile
users attending lectures in a classroom (location). As a result,
this approach naturally helps to model human mobility and
test discussed metrics. More details are available here [5].

Design Details

In this section, we describe the design of COBRA in
more details. The block diagram of COBRA is shown in
Figure 4. The model components involve time structure and
pause time, visitation location, epoch length distribution, event
and mobility generator, and a trace generator. The model
provides flexibility to independently configure each node’s
spatio-temporal patterns, thereby capturing the heterogenous
behavioral pattern and mobility at will. This makes COBRA
distinct from other models and helps to capture the richness
otherwise evident only in real measurements. We start with
location visitation patterns of nodes that is the probability
distribution of frequencies of their visits to a set of locations.
This approach helps to capture skewed (heavily visited) as
well infrequently visited locations, shown in Figure 3(a). For
example, a mobile user regularly goes to office, but once in a
while (say weekend) goes to grocery store. In that sense the
probability to visit office is much higher than stores. In the
simulation setting, each location is a square geographical area
(cell) with constant edge length. Next, the duration of time
a node spends in moving to a location is defined by epoch
length. It starts from the end point of the previous location’s
epoch and is generated from an exponential distribution equal
to the size of location. The offline behavior of the node is thus
defined as the travel time from one epoch to another, measured
through a speed and a direction (angle) movement for the
chosen location. A roaming epoch is also defined when node
roams around the whole simulation area during some epoch, by
assigning an additional location that corresponds to the whole
simulation. Basically, a node chooses a new location probabil-
ity and epoch, and continues to move in that direction with a
chosen speed. After each epoch, the node remains stationary in
that location for the pause time drawn from the distribution,
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TABLE I. DETAILS OF WIRELESS MEASUREMENTS

Campus # Users Duration Settings

Dartmouth 300 Fall 2007 WiFi, Campus

Infocom 41 3 days Bluetooth, Conference
IBM Watson 1300 Fall 2006 WiFi, Office

Theme Park1 825 5 days GPS, Attractions
Univ. of Florida 700 Fall 2008 WiFi, Campus

USC 300 Fall 2007 WiFi, Campus

an example is shown in Figure 3(b). As evident from both
the figures, there are few locations that are frequently visited
with large pause times. In addition to that, we also gather
periodicity, which provides flexibility to create multiple time
periods with different locations and variable settings. The time
periods are essentially the periodicities that are present in the
human mobility. For example, a weekly periodicity can be
going to work during the weekdays and spending weekend at
home, or attending classroom lectures three times a week, etc.
The epoch lengths and pause time therefore depend on the time
periodicity. The model is data-driven and generates synthetic
traces that can be compared against real measurements using
metrics discussed in the framework section. We model time
dependent location selection process through Markov chains
that maintain the spatio-temporal heterogeneity of individual
nodes in the simulation area.

IV. PROTOCOL INDEPENDENT ANALYSIS

In this section, we perform protocol independent analysis
on several mobility models, including COBRA and on real
world measurements. The purpose of this study is to compare
the accuracy of models against reality in capturing human
structural dynamics and; to validate COBRA and test it’s
superiority over other models. While several metrics are men-
tioned in the framework, we focus our study on i) Similarity
in mobile societies, ii Encounter Statistics, iii) Clustering
based on Modularity. We start with discussing real world
measurements and existing mobility models.

A. Measurements

We have used six different types of measurements from
varied sources that include university campuses, offices, con-
ferences, and theme parks. These measurements are shown in
Table I and are publicly available at [11], [1] except theme
parks measurements. These measurements are categorized as:

• Spatio-Temporal Measurements: These are WiFi usage
measurements that are collected from several univer-
sity campuses and offices and exceeded in size and
number by many orders compared to others.

• Encounter Measurements: These measurements are
collected using devices with bluetooth scanning func-
tionality. They capture explicit user-user encounters
and its duration.

• GPS Measurements: These measurements log geo-
coordinate footprints of guests in theme parks and the
GPS locations accuracy was taken every two minutes
on average, when the satellite signals were available.
More details are available in [23].
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Fig. 5. (a) Location visitation patterns. (ii) Periodic re-appearance.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

U
se

rs
 P

ai
rs

 (
C

D
F

)

Similarity Score

 

 

Dartmouth Trace
COBRA
SMOOTH
TVC
RDP
RDP−Pause

(a) Dartmouth-Similarity

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

U
se

rs
 P

ai
rs

 (
C

D
F

)

Similarity Score

 

 

USC Trace
COBRA
SMOOTH
TVC
RDP
RDP−Pause

(b) USC-Similarity

Fig. 6. Distribution of Similarity

B. Mobility Models Studied

We use available mobility models and evaluate them
through the metrics proposed in the framework. These mobility
models have shown to capture human behavioral dynamics
such as spatial and temporal preferences. For baseline com-
parison, we have used a variant of random mobility model.
The models include: i) Time-Variant Community Model, ii)
SMOOTH, iii) Random Direction model. While there are
several models, we did our best to select ones that showed
an edge over others [4], [13], [15].

C. Analysis of Spatio-Temporal Preferences

In reality, there exists a non-homogenous behavior of
mobile users in both space and time. In general two im-
portant metrics: i) Location visiting preferences, ii) periodic-
reappearances are important in capturing such behavior [8].
In Figure 5, we show the plots for metrics exhibited in real
measurements as well as in the synthetic measurements of both
TVC and COBRA model. We see that TVC and COBRA were
able to accurately capture the above metrics. In addition to that
COBRA was able to capture average node degree, the hitting
time and the meeting time (not shown for page limits). Since
other models are not designed to replicate these characteristics,
we are unable to study them at this point of time.

D. Similarity in Mobile Societies

We examine the distribution of similarity values among
node pairs as proposed in [7], [20]. We show the results of
similarity distribution for Dartmouth and USC in Figure 6.
We find a range of scores exists that capture the heterogenous
behavior among user pairs in real measurements. For example,
in Dartmouth, 90% of pairs have scores less than 0.6 and for
USC 85% have a score less than 0.5. The analysis of user
pairs generated from the models show that COBRA is very
accurate in demonstrating the distribution of similarity scores
akin to the reality. While TVC and variants of random models
show that 90% users have a similarity score of 0.85 and 0.8
respectively for Dartmouth and USC, which largely deviate
from the reality. Since SMOOTH is designed to demonstrate
power-law distribution of encounters, we find this is the main
reason that it is able to distribute the similarity patterns
somewhere in the middle, alas deviating from the reality.

1Analysis is done while working at Disney Research, Zürich, 2012.
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E. Analysis of Human Encounter Statistics

In [3], authors proposed an important set of encounter
statistic metrics that include inter-contact times (ICT), en-
counter frequencies, and encounter durations, which are critical
in analyzing transfer opportunities between wireless devices
carried by humans. They have also established these statistics
exhibit power-law and exponential decay dichotomy that helps
in studying the impact of human mobility on forwarding
protocol performance in opportunistic networks. We have
extensively analyzed these metrics in real world and synthetic
measurements (from mobility models) to study the accuracy of
later in demonstrating real human mobility patterns. In view of
page limit, we show the ICT results only for Infocom and IBM
Watson measurements in Figure 7. In case of Infocom mea-
surements, SMOOTH, TVC, and COBRA accurately demon-
strate ICT patterns as evident in real measurements. This make
sense for SMOOTH and TVC, which previously had shown to
capture power-law and exponential decay dichotomy [8], [14].
However, in case of IBM measurements (where the distribution
of ICT is not power-law and exponential decayed dichotomy),
only COBRA demonstrates the accuracy. This analysis indi-
cates the scalability and benefit of adopting COBRA where
the underlying human encounter statistics do not necessarily
follow a power-law and exponential decay dichotomy (e.g
[23]).

F. Community Detection through Modularity Optimization

In order for models to imitate reality, it is important
that they should reproduce real world social and structural
dynamics of human behavior mobility. We use modularity
optimization [16] to detect structural dynamics of mobile
societies (communities) in real world and synthetic measure-
ments (from mobility models). The divisive algorithm has
detected eight communities in IBM Watson measurements
and nine in COBRA and SMOOTH generated measurements.
Furthermore, we find that cluster sizes and membership follow
a power-law distribution that is also captured by COBRA.
However, in case of SMOOTH the community memberships
are evenly distributed within clusters and largely deviate from
the reality. In case of TVC and RDP, we detect only one
community.

In this section, we have examined protocol independent
metrics that capture human behavioral patterns. Our results
indicate that current models largely deviate from the reality
and are inadequate in synthesizing human mobile societies.
However, COBRA has accurately replicated all the examined
statistics indicating it’s easy adoption and scaling to any kind
of scenario. Next, we investigate protocol dependent metrics
and compare the performance of routing protocols.

V. PROTOCOL DEPENDENT ANALYSIS

Here, we compare the network protocol performance of
mobility models (including COBRA) to the performance
achieved with the real measurements. We divide this analysis
into two parts. First we examine the performance of encounter
based forwarding protocols (e.g., epidemic routing) and then
of community based forwarding protocols (e.g., Bubble rap).
For a fair analysis, we use the same set of traces that we have
generated for protocol independent analysis. We benchmark
protocol performance on the following three criteria: i) Deliv-
ery probability, ii) Latency, and iii) Overhead ratio. We use
ONE simulator [10] to run this protocol performance analysis.

A. Encounter based Forwarding Protocol Analysis

We evaluate three different encounter based forwarding
protocols: i) Epidemic Routing, ii) Spray and Wait, and iii)
Prophet for real and model generated measurements of IBM
Watson and Dartmouth in Figure 9. In broad terms, COBRA
is found to perform better than other models on all three
metrics. Overall, COBRA’s delivery ratio performance deviates
less than 5% to reality, while other models on an average
deviate more than 40%. Similarly, COBRA’s latency differ
less than 6% and overhead ratio less than 10% to the reality.
Surprisingly, other models’ latency and overhead on an average
deviate more 66% and 80% respectively to the reality.

B. Community based Forwarding Protocol Analysis

We study the performance of Bubble Rap routing protocol
to examine the usefulness of mobility models in utilizing
human community dynamics to transfer the messages in oppor-
tunistic settings [9]. We show the results of community based
forwarding protocol for real and model generated measure-
ments of IBM Watson in Figure 10. The protocol performance
of COBRA in case of delivery probability differ by less than
6%, latency by less than 2%, and overhead by less than 10%
to the real measurements. On the other hand other models’
delivery probability on average deviate more than 10%, latency
more than 60%, and overhead by more than 45% to the reality.
These results indicate that COBRA is superior at demonstrat-
ing heterogeneous interactions among individuals and their
communities for social message forwarding purposes.

VI. CONCLUSION

In this paper, we proposed a new framework for the
analysis of data-driven human mobility models that included
a multi-dimensional mobility metric space to measure indi-
vidual, pair-wise, and community metrics. In addition, it has
systematic guidelines for protocol dependent and independent
analysis of mobility models. We also proposed COBRA, a
new mobility model that captures the COllective Behavior
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Fig. 9. Results for encounter based forwarding protocol analysis
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Fig. 10. Results for community based forwarding protocol analysis

based on Realistic Aspects of human mobility. Later on, we
demonstrated the ability of COBRA in replicating several pro-
tocol independent metrics such as spatio-temporal preferences
akin to the real measurements. Also, COBRA performance is
closer to the reality than other models of its class for several
networking protocols. Particularly, COBRA’s encounter based
protocol performance fared well by more than 80% to other
models. It was also superior to other models at demonstrating
community based protocols (less than 10% deviation). In
summary, our work showed a need for a systematic mobility
testing framework, which we achieved in this work. With
COBRA, we were able to bridge the gap between current
models and human behavioral mobility modeling. Finally, we
hope this work will set standards of mobility evaluation.

REFERENCES

[1] Ahmed Helmy. MobiLib: Community-wide Library of Mobility and
Wireless Networks Measurements, 2008.

[2] Tracy Camp, Jeff Boleng, and Vanessa Davies. A survey of mobility
models for ad hoc network research. WCMC, 2002.

[3] A. Chaintreau, P. Hui, J. Crowcroft, C. Diot, R. Gass, and J. Scott.
Impact of human mobility on the design of opportunistic forwarding
algorithms. In INFOCOM, 2006.

[4] Elizabeth M. Daly and Mads Haahr. Social network analysis for routing
in disconnected delay-tolerant manets. In MobiHoc, 2007.

[5] Gautam S. Thakur, Ahmed Helmy. COBRA: A Framework for the
Analysis of Realistic Mobility Models, 2012.

[6] T. Hossmann, T. Spyropoulos, and F. Legendre. Putting contacts into
context: mobility modeling beyond inter-contact times. In MobiHoc,
2011.

[7] W. Hsu, D. Dutta, and A. Helmy. CSI: A paradigm for behavior-oriented
profile-cast services in networks. Ad Hoc Networks, 2011.

[8] Wei-Jen Hsu, T. Spyropoulos, K. Psounis, and A. Helmy. Modeling
spatial and temporal dependencies of user mobility in wireless mobile
networks. Networking, IEEE/ACM Transactions on, 2009.

[9] Pan Hui, Jon Crowcroft, and Eiko Yoneki. Bubble rap: social-based
forwarding in delay tolerant networks. In MobiHoc, 2008.

[10] Ari Keränen, Jörg Ott, and Teemu Kärkkäinen. The ONE Simulator for
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