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Flooding-type Denial-of-Service (DoS) and Distributed DoS (DDoS) attacks can cause seri-
ous problems in mobile multi-hop networks due to its limited network/host resources.
Attacker traceback is a promising solution to take a proper countermeasure near attack ori-
gins, for forensics and to discourage attackers from launching the attacks. However,
attacker traceback in mobile multi-hop networks is a challenging problem. Existing IP
traceback schemes developed for the fixed networks cannot be directly applied to mobile
multi-hop networks due to the peculiar characteristics of the mobile multi-hop networks
(e.g., dynamic/autonomous network topology, limited network/host resources such as
memory, bandwidth and battery life). We introduce a protocol framework for attacker
traceback, CATCH, geared towards mobile multi-hop networks utilizing MAC and network
cross-layer approach. We also perform systematic risk analysis on mobile multi-hop net-
works. Based on the risk analysis, we extend CATCH for a mobile attacker traceback
scheme. We show that CATCH successfully tracks down attacker under diverse mobile
multi-hop network environment with low communication, computation, and memory
overhead. We provide comprehensive evaluation of our proposed protocols through exten-
sive simulations.

� 2009 Elsevier B.V. All rights reserved.
1. Introduction

Mobile multi-hop networks include Mobile Ad-hoc
NETworks (MANET), wireless mesh networks, and wireless
sensor networks, among others. Various types of mobile
multi-hop networks have been under active research
recently due to its numerous promising applications and
practical deployment is near. However, in general, security
issues are not properly addressed in the design of such
networks. DoS/DDoS attack can cause serious problems in
mobile multi-hop networks since (1) it is easy to perform
attack using existing tools, and (2) in general, mobile mul-
ti-hop networks are severely limited in network resources
. All rights reserved.
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(e.g., bandwidth) and host resources (e.g., battery, memory,
etc).

Different types of DoS/DDoS attacks can be broadly clas-
sified into software exploits and flooding-type attacks. In
software exploits (e.g., Course of silence attack [8]), attack-
er sends a few packets or even single packet to exercise
specific software bugs within the target’s OS or application
disabling or harming the victim. On the other hand, in
flooding-type attack [7], one or more attackers send inces-
sant streams of packets aimed at overwhelming link band-
width or computing resources at the victim. We focus on
flooding-type DoS/DDoS attack since it cannot be fixed
with software debugging. In flooding-type DoS/DDoS at-
tack, an attacker transmits a large number of packets to-
wards a victim with spoofed source address. For instance,
in SYN Flood [18], at least 200–500 pps (packet per second)
of SYN packets are transmitted to a single victim. DNS
amplification attack [16] also attacks victim using a large
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amount of packets with spoofed DNS server address. In
general, we can say that the following are some character-
istics of flooding-type DoS/DDoS attacks: (I) Traffic volume
is abnormally increased during attack period. (II) Attackers
routinely disguise their location using incorrect/spoofed
addresses. (III) Such attacks may persist for tens of minutes
and in some case for several days.

We define our goal of attacker traceback as the ability to
identify the machines that directly generate attack traffic
and the network path this traffic subsequently follows
[4], or at least identify their neighborhood (e.g., location,
neighboring nodes) if not identity. There are several at-
tacker traceback schemes proposed for the Internet such
as packet marking, logging, and ICMP traceback [4]. Such
traceback schemes were developed for the fixed networks
and are not directly applicable to mobile multi-hop net-
works due to the following particular characteristics of
mobile multi-hop networks. (1) In mobile multi-hop
networks, there is no fixed infrastructure, gateways or fire-
walls. Each node works as an autonomous terminal, acting
as both host and a router. (2) Each node can move in and
out of the network, frequently changing network topology.
(3) In general, network bandwidth and battery power are
severely limited. (4) It may be difficult to physically secure
a mobile node that could be captured, compromised to
later rejoin the networks as a Byzantine node.

To perform efficient DoS/DDoS attacker traceback under
such a harsh environment in mobile multi-hop networks,
we propose an efficient protocol framework, called CATCH.
The building blocks of our framework consist of (I) abnor-
mality detection, (II) abnormality characterization, (III)
abnormality searching, (V) countermeasures. We validate
and evaluate our framework through extensive simula-
tion-based analysis and comparison. We utilize cross-layer
traffic monitoring and filtering to dramatically improve the
success and accuracy of our proposed protocol.

We also systematically analyze mobility-induced risks.
One of the most serious obstacles in attacker traceback un-
der mobile multi-hop networks is dynamic topology. Exist-
ing attacker traceback schemes cannot be directly used
under the presence of node mobility. Node mobility can
be classified into two classes; intentional/malicious attack-
er’s mobility and legitimate mobility of intermediate/vic-
tim nodes. Intentional/malicious attacker’s mobility can
cause numerous problems and illusions in traceback. To
identify various risks caused by attacker’s mobility, we
propose multi-dimensional set-based risk analysis method.
In addition, we analyze how various innocent mobility of
intermediate and victim can affect traceback performance.

In sum, we make the following contributions in this
paper:

� We provide a complete set of attacker traceback proto-
col framework for mobile multi-hop networks. In each
component of the framework (i.e., abnormality detec-
tion, characterization, and searching), we compare vari-
ous possible sets of schemes and identify the most
optimal scheme among those sets.

� We use cross-layer (i.e., network and MAC layer) infor-
mation to increase traceback efficiency and decrease
the associated overhead. We also effectively utilize
overhearing capability of the wireless MAC layer, to
drastically increase robustness against node compro-
mise and mobility and to reduce false positive and neg-
ative rates.

� We propose traceback-assisted countermeasure, which
provides an effective defense strategy.

� We propose systematic risk analysis methodology based
on multi-dimensional set-based approach. The risk anal-
ysis methodology provides an effective way to analyze
how attackers can exploit mobility and associated risks.
We also propose mobile attacker traceback scheme, sys-
tematically analyze how legitimate mobility can affect
the traceback performance, and use various mobility
models to evaluate the traceback performance.

The rest of the paper is organized as follows. In Section
2, we discuss design requirements for robust attacker
traceback in mobile multi-hop networks and provide com-
parison of existing schemes. In Section 3, we provide an
overview of our traceback protocol framework. We de-
scribe abnormality detection, characterization, searching,
and the overall traceback algorithm in Sections 4–7,
respectively. In Section 8, we provide the traceback-as-
sisted countermeasure scheme. In Section 9, we perform
systematic risk analysis of sophisticated mobile attacks.
Then, we describe how legitimate mobility can affect trace-
back performance in Section 10 and provide mobile attack-
er traceback scheme in Section 11. Finally, we conclude our
paper in Section 12.
2. Design requirements

To analyze and identify design requirements for trace-
back protocol in mobile multi-hop networks, we classify
the main building blocks of the attacker traceback protocol
as follows: (I) information searching and gathering, (II)
information storage, and (III) information analysis. Infor-
mation searching and gathering are the processes to put
together or seek clues on the attack traffic. Information
storage is the process to store the gathered clue in some
storage for analysis. Information analysis is the process to
reconstruct the attack path based on the clue obtained
through information storing process or real-time data pro-
vided by information searching and gathering processes.
Based on the classified building blocks, we identify the de-
sign requirements (Table 1) for our traceback protocol in
mobile multi-hop networks.

2.1. Information gathering

For robust and efficient information searching and gath-
ering in mobile multi-hop networks, we need to satisfy the
following protocol requirements: First, the traceback
scheme should be robust against route instability due to
node mobility and topology change. Second, it may be dif-
ficult to physically secure nodes that could be captured,
compromised and later rejoin the networks as Byzantine
node. Hence, we need robustness against node compro-
mise. Third, in general, mobile multi-hop networks are
severely limited in networks resource (i.e., bandwidth). In



Table 1
Design requirements for attacker traceback in mobile multi-hop networks.

Protocol building
block

Design requirement

Information
gathering

� Robustness against topology change and mobility
� Robustness against node collusion
� Low communication overhead and energy

consumption

Information
storage

� Low storage consumption

Information
analysis

� Low computational overhead
� Low delay
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addition, energy conservation is one of major concern.
Hence, we need to reduce communication overhead and
energy consumption.

Existing attacker traceback schemes (e.g., packet mark-
ing [13], iTrace [4]) rely on hop-by-hop traceback. Hence,
when one intermediate node moves out or powered down,
the traceback process fails. In addition, when several nodes
are compromised, the traceback process stops at the com-
promised nodes. Consequently, a majority-based scheme is
required in mobile multi-hop networks, which is robust
against multiple node compromises and failures. Huang
and Lee [11] provides dynamic topology reconstruction
mechanism using TTL and neighbor node information to
traceback attacker. However, it still suffers form informa-
tion storage/analysis problem as will be mentioned in the
following.

2.2. Information storage

Clue information, obtained through information search-
ing and gathering processes, needs to be stored for trace-
back. Information can be stored at the end-host or inside
the network. However, in general, nodes in mobile multi-
hop network have limited storage space. Hence, it is
important to reduce storage requirement.

iTrace [5] or FIT [17] is end-host storage scheme. ICMP
or marked packets are stored at the end-host and used for
path reconstruction. The logging scheme in [11,13] is a
network-storage scheme, where clue information is stored
in inside networks. An obvious drawback of these
schemes is that large amount of data needs to be stored
at either the end-host or inside the network since per-
packet information is required. Sy and Bao [15] tries to
solve the storage problem by gradual refreshing of mem-
ory. Sung et al. [14] also tries to solve storage problem by
storing small percentage of packets and using sophisti-
cated scheme to reconstruct the attack path. However,
those schemes still suffer form information gathering
problem under dynamic topology change. Al-Duwair and
Goyindarasu [1] proposes hybrid scheme between packet
marking and logging to reduce amount of data to be
stored. However, it does not resolve information gather-
ing/analysis issue.

On the other hand, controlled flooding [6] does not re-
quire information storage. However, it consumes network
bandwidth, which is highly undesirable in resource con-
strained mobile multi-hop networks.
2.3. Information analysis

Information analysis in existing schemes (e.g., iTrace [5],
FIT [17], logging [13]) incurs high processing overhead and
delay since it takes per-packet analysis approach. For
instance, in iTrace, end host first searches the database,
which stores packet information. Then, based on the packet
information, end-host should reconstruct the attack path.
3. Overview of the CATCH protocol framework

Our CATCH traceback protocol consists of the following
four components: (1) abnormality detection, (2) abnormal-
ity characterization, (3) abnormality searching, and (4)
countermeasures.

Abnormality is monitored by all nodes in the network.
Each node monitors network and MAC layer activity (e.g.,
number of packet, busy time in MAC layer). Once abnormal-
ity is detected, the information is captured and logged. We
introduce several classes of detection technique to accu-
rately detect attack with low overhead. We classify abnor-
mality into two classes: coarse-grained abnormality and
fine-grained abnormality. Basically, with coarse-grained
abnormality, we trace-back attackers using only packet
counters, without using payload-level details. Coarse-
grained abnormality monitoring is further divided into
the following two classes: Coarse-grained Network Layer
Monitoring (C-NLM) and Coarse-grained MAC Layer Moni-
toring (C-MLM). On the other hand, with fine-grained trace-
back, we trace-back attackers by analyzing payload-level
details. Fine-grained abnormality monitoring is further di-
vided into the following three classes: Fine-grained Net-
work Layer Monitoring (F-NLM), Fine-grained MAC Layer
Monitoring (F-MLM) and Fine-grained Cross-layer Moni-
toring (F-CM) that includes both network layer and MAC
layer monitoring. There exists a clear tradeoff between
the two above mechanisms. In coarse-grained abnormal-
ity-based traceback, computational/storage overhead is
minimized by sacrificing payload level analysis for trace-
back. It is an effective way of traceback in many cases when
attack traffic shows obvious abnormality and background
traffic is low or moderate, as we shall show. In fine-grained
abnormality-based traceback, payload-level information is
considered and analyzed to trace back attackers. It requires
more computation/storage overhead because we need to
store and analyze more detailed information, but it can
more accurately trace back attackers. Fine-grained abnor-
mality-based traceback becomes essential in the following
cases: (1) In DDoS attacks only reduced abnormality is ob-
served near the edges of the attack route. Hence, we need to
differentiate between attack traffic and background traffic
accurately. (2) Under high background traffic, abnormality
becomes less obvious. We show that we can increase
traceback accuracy even under low abnormality and high
background traffic by using fine-grained abnormality
monitoring by filtering much of the noise traffic (i.e., back-
ground traffic). The fine-grained cross-layer information
can further filter out background traffic. With the various
classes of abnormalities defined above, we perform the fol-
lowing traceback process.
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Once abnormality is detected, the abnormality needs to
be characterized for traceback. Characterized abnormality
at the victim is called the ‘attack signature’ and abnormal-
ity characterized at an intermediate node is called ‘candi-
date attack signature’.

We need to find nodes that observe candidate attack sig-
nature which is sufficiently similar to attack signature. By
progressively finding nodes that observe similar attack sig-
nature from nodes near victim to attack origin, we can find
attack route. To provide energy efficiency and robustness
against false reports, we use majority voting. Majority vot-
ing is performed by multiple nodes that observe or over-
hear abnormality in a certain region. We also utilize the
small world model [9,10] to increase the search efficiency.

After we identify the attack origin(s), we carry out
countermeasures (Section 9) to ameliorate the intensity
of (or stop) the attack. Existing countermeasures (e.g.,
packet filtering, rate limiting) suffer from several draw-
backs. A packet filtering scheme drops a large volume of
legitimate packets. While in a rate limiting scheme it is
hard to find the optimal limiting rate. We take a hybrid ap-
proach of packet filtering and rate limiting. We use match-
ing level – that we call ‘confidence index’ – to find a
reasonable limiting rate.

We also analyze how mobility affects traceback perfor-
mance (Sections 10 and 11) and propose a scheme to track
down mobile attackers (Section 12). We first systematically
analyze how mobility can be exploited by attacker(s). Legit-
imate mobility of intermediate/victim can also bring about
negative impact on traceback performance and is also ana-
lyzed. To track down mobile attackers effectively, we utilize
spatio-temporal relation of attack signature. In addition, we
systematically evaluate how various parameters of the
mobility pattern can affect the traceback performance.
4. Abnormality detection

The first component of our framework is the abnormal-
ity or attack detection by the victim node and intermediate
nodes. Based on this scheme the victim node may trigger a
traceback search, and intermediate nodes log information
to be used during the search as needed.

4.1. Definition of abnormality

Once flooding-type DoS/DDoS attack is launched, a
large volume of traffic is generated towards a victim. The
flooding-type attack causes protocol layer (i.e., network
layer and MAC layer) abnormality. MAC layer abnormality
is observed by neighboring nodes around the attack route
by the overhearing capability of MAC layer activity. In this
paper, we use 802.11 MAC mechanism, which is widely
used as MAC layer for wireless devices. However, note that
our scheme can be generally applied to other MAC proto-
cols. We analyze how the flooding-type attack traffic
causes abnormality in network and MAC layer as follows:

4.1.1. Increased packets at network layer
Flooding-type DoS/DDoS attack causes abnormally in-

creased packets both in relay nodes of attack traffic and
the victim. The increase can be statistically detected and
identified as abnormality.

4.1.2. Increased collisions at MAC layer
Increased collision can be inferred by several symp-

toms. (I) Increased retry count due to lack of ACK or CTS:
frame or fragment has a single retry counter associated
with it. Frames that are shorter than the RTS threshold
have short retry count. Frames that are longer than the
threshold are considered long frames and have long retry
count. Frame retry counts begin at 0 and are incremented
when a frame transmission fails. (II) Large contention win-
dow (CW). After each unsuccessful transmission, CW is
doubled up to a maximum value CWmax ¼ 2m � CWmin,
where m is the number of attempt. (III) Long lifetime:
when the first fragment is transmitted, the lifetime counter
is started. When the lifetime limit is reached, the frame is
discarded and no attempt is made to transmit any remain-
ing fragments.

4.1.3. Increased busy time at MAC layer
A node monitors the channel to check whether it is idle

or not. If it is busy for a certain time interval, it cannot go
into backoff stage and should defer. Frequent busy time
and consequent transition from backoff state to defer stage
are considered as symptom of abnormal traffic.

4.1.4. Increased frames at MAC layer
As attack packets are increased, the number of corre-

sponding data frames and ACK frames are increased. In
addition, to access channel, the number of RTS and CTS
frames are also increased.

We perform simulations to investigate the abnormal
behavior of network and MAC layer under DoS attack,
and to address the following question: what is the best
information to use as indicator of the attack signature? We
use ns-2 for simulation with 50 nodes. The network size
is 670 m � 670 m and DSDV is used for underlying routing
protocol. Average distance between attacker and victim is
four hops. In Figs. 1 and 2, we varied the number of nodes
that generate background traffic from 1 to 25 and mea-
sured increased rate. Increased rate is defined as the ratio
between abnormal behavior and normal behavior. For in-
stance, when collision count under attack is g and collision
count under normal background traffic is g0, the increased
rate is calculated as g=g0. In the simulation, attack traffic is
generated as ten times of normal traffic size. As shown in
the Fig. 2, frame count, packet counts and busy time show
high increased rate when background traffic is low, and the
increased rate decrease as background traffic increases. It
is because as background traffic increases the attack traffic
does not show drastic abnormality. On the other hand, in-
creased rate in collision is low even when background traf-
fic is low. It is because collision rarely occurs when there
exists only attack traffic. The increased rate of collision
gradually goes up as background traffic increases and de-
creases after certain point.

Fig. 3 show relative variance of abnormality informa-
tion. Relative variance is defined as (variance of abnormality
information)/(mean of abnormality information). Collision
rate shows the highest variance. It is because collision
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occurrence varies depending on temporal and spatial traf-
fic distribution, which is not desirable as our abnormality
information.

We use a two-way contingency table to evaluate the
dependency of protocol layer activity on attack traffic. In
two-way contingency table, data is classified according to
the directions (row and column) of classification, based
on two qualitative variables. In our test, the row is the nor-
mal/abnormal and the column is attack region/non-attack
region. Attack region is the area around the attack path
where nodes can observe attack traffic activity. In the con-
tents of table, the number of nodes that observes corre-
sponding protocol layer abnormality is used. Here, we
define abnormality as traffic with increased rate greater
than 2. More formal definition of abnormality follows in
the next section. Then, we set the following null and alter-
native hypotheses to test the dependency of the two
classifications.

H0: The two classifications are independent.
Ha: The two classifications are dependent.
Test statistic : v2 ¼
Xc

j�1

Xr

i�1

½nij � ÊðnijÞ�2

ÊðnijÞ
; ð1Þ

where ÊðnijÞ ¼
ni:n:j

n ;ni is total for row i and nj is total for col-
umn j. The rejection region where we can conclude that
two classifications are dependent is as follow.

v2 > v2
a ð2Þ

where v2 is chi-square probability distribution with
(r � 1)(c � 1) degree of freedom and a is the probability
of a type I error (a type I error is made if H0 is rejected
when H0 is true). Intuitively, v2 is high when more the per-
centage of nodes observe abnormality.

In Fig. 4, we show v2 value of each abnormality compo-
nent. The threshold v2

a is 5.02 with 97.5% confidence inter-
val. We can infer that if the v2 value is above the threshold,
there exists dependency (reject the null hypothesis H0Þ. As
shown in the Fig. 4, We can constantly observe high v2

value ðv2 > v2
aÞ with frame count and busy time informa-

tion, which means that attack traffic have clear impact
(dependency) on the overhearing nodes around the attack
route. On the other hand, packet count shows low depen-
dency. It is because packet count is based on network layer
information that cannot use overhearing capability. Conse-
quently, we can say that frame count and busy time are
better candidates as abnormality information to be robust
against node collusion.

Based on all the observation above, we can conclude that
the frame count information is the best candidate as attack
signature. We will use the frame count as our main abnor-
mality indicator. In addition, we will utilize network layer
information (i.e., packet-header information) to comple-
ment MAC layer information.

Each node monitors protocol layer activity. Once abnor-
mality is detected, the node logs the abnormality informa-
tion as candidate attack signature. Later, during the search
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phase the candidate attack signature is compared with the
attack signature which is characterized by a victim. To de-
tect abnormality, we need to define a threshold. If the ob-
served value exceeds the threshold, it is defined as
abnormality. Threshold can be set either as fixed value or
adaptive value. For fixed threshold, we use the Fractional
Deviation from the Mean (FDM), and we use the Pivot
method for the adaptive threshold. Both methods will be
considered and compared in our study.

4.2. FDM-based detection

Let AS be the number of frames in a given time slot and
AR be the average number of frames in the long-term refer-
ence model. Then the distance of the Fractional Deviation
from the Mean (FDM) statistic is given as follows:

Dist ¼ AS � AR

AR
: ð3Þ

The distance, Dist, is defined as the abnormality level. If
the abnormality level is over the threshold (e.g., 0.5), it is
considered suspicious and the (candidate) attack signature
is characterized and logged. The obvious advantage of FDM
is its simplicity in defining the threshold. However, it does
not consider the variance of background traffic to detect
abnormality.

4.3. Pivot-based detection

To consider the background traffic variance, we use the
pivotal method. We calculate the normal interval with the
confidence interval of 100(1 � aÞ% as follows:

�xn � za=2
rffiffiffi
n
p
� �

� �xn � za=2
snffiffiffi

n
p
� �

; ð4Þ

where �xn is the sample mean of xi and r is the standard
deviation of xi. Since the value of r is unknown, the sample
standard deviation sn is used.

When the new value of xi is outside the normal range,
we define it as abnormality. The abnormal values are ex-
cluded from calculating normal range. The advantage of
using the Pivotal method is accurate abnormality detec-
tion. The computational complexity of Pivot-based method
is O(1) in each detection.

In both FDM-based and Pivot-based detection, we can
either use simple average or leverage Exponentially
Weighted Moving Average (EWMA) to calculate normal
profile (i.e., AR. or �xnÞ. In EWMA, normal profile at time
nþ 1 (i.e., �xnþ1Þ is calculated as follows:

�xnþ1 ¼ b � �xn þ ð1� bÞ � xnþ1; ð5Þ

where xnþ1 is abnormality observed at time nþ 1 and �xn is
normal abnormality profile up to time n. Based on the
value of b, we can put more weight on short-term observa-
tion or long-term observation. In performance analysis
section, we compare performance difference based on
selection of b. In addition, to accommodate spatial traffic
variation in mobile network, we recommend obtaining
new normal profile whenever movement is detected (e.g.,
using GPS or routing table change). In addition, to accom-
modate temporal traffic variance, we recommend updating
normal profile every hour.

4.4. Coarse-grained vs. fine-grained detection

In coarse-grained detection, abnormality is detected by
the aggregate traffic level using total counts, without keep-
ing track of individual flow statistics. The advantage of
coarse-grained detection is its computational efficiency.
However, the problem of aggregate (or coarse-grained)
traffic-based abnormality detection is that it is hard to de-
tect small abnormalities accurately under the presence of
large/bursty background traffic, which will prove neces-
sary, especially for DDoS attacks. To address this problem,
we define fine-grained abnormality detection, which uses
minimal fine-grained cross-layer information (i.e., destina-
tion address, previous-hop MAC address).

Fine-grained cross-layer information provides the fol-
lowing advantages: First, we can reduce noise traffic using
minimal network-layer (i.e., destination address) informa-
tion. We call this Fine-grained Network layer Monitoring
(F-NLM) scheme compared to Coarse-grained NLM
(C-NLM) where only aggregate network layer information
is used. In F-NLM, the attack signature is captured based
on the traffic destined to each destination (i.e., we make
an abnormality table indexed by destination address).
We can rely on the destination address since attackers do
not spoof destination address to achieve their goal. As
shown in Fig. 5, a monitoring node (inside the dotted cir-
cle) can remove noise traffic that is destined to non-victim
nodes. We call the noise traffic as forward noise.

Secondly, by using minimal information from MAC layer
(i.e., previous hop MAC address), we can also drastically
reduce noise traffic. As shown in Fig. 5, a monitoring node
(inside dotted circle) can remove noise traffic that is not
coming from the same previous-hop MAC address as attack
traffic. We call the noise traffic as backward noise. We also
call it Fine-grained MAC Layer Monitoring (F-MLM) scheme
compared to Coarse-grained MLM (C-MLM) where only
aggregate MAC layer information is used.

By using fine-grained information of both network and
MAC layer (i.e., destination address, previous hop MAC
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address), we can drastically reduce noise. We call this Fine-
grained Cross-layer Monitoring (F-CM) scheme.

4.5. Performance analysis

In this section, we evaluate the performance of the pro-
posed abnormality detection schemes. We use the follow-
ing simulation environment. This simulation setting is
used throughout this paper, unless otherwise noted. We
have performed simulations using ns-2 and C code. Trans-
mission range of each node is set at 150 m. We repeated
each simulation 10 times using various random topologies
and calculated the average value. We set NoC (Number of
Contacts) = 6, R (vicinity radius) = 3, r (contact distance) =
3, d (search depth) = 5 for contact selection (refer to
Section 7). DSDV is used as underlying routing protocol.
Network size is 2750 m � 2750 m. The number of nodes
is 1500 and the nodes are static (except in the mobility
simulation section). Average node degree is 	14. Attack
traffic is generated from random positions (in some cases
clustered or spread as noted).

The performance of abnormality detection depends on
the following several factors: (1) Underlying background
traffic. (2) Normal profile calculation method. (3) Threshold
value to detect abnormality. We varied each of the above
factors and investigated its impact on the performance.

We say that the background traffic is ‘‘stable” if the var-
iance of the background traffic is between 0% and 10% of
the average background traffic. The attack percentage rep-
resents the ratio of average attack traffic to the average
normal traffic. FDM and MFDM use fixed normal profile cal-
culation and fixed threshold of 0.5. MPivot varies the
threshold based on the standard deviation of the normal
traffic. Fig. 6 shows the detection success rate under stable
background traffic, with the use of the F-MLM as abnormal-
ity monitoring method. The Pivot and MPivot schemes
show 100% success rate consistently. On the other hand,
FDM, and MFDM show low detection success rate when at-
tack percentage is low. It is because of the use of fixed
thresholds. More specifically, when the attack traffic vol-
ume is small, it fails to capture the abnormality because
the abnormality goes below the fixed threshold. There is
not much performance difference between using average
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Fig. 6. Detection success rate under stable background traffic with F-
MLM.
and moving average (i.e., EWMA) when the background
traffic is stable.

Fig. 7 shows detection success rate under highly fluctu-
ating background traffic. In fluctuating background traffic,
the variance of background traffic is between 0% and
100% of average background traffic. Pivot and MPivot show
better performance than FDM and MFDM. The result is
similar to Fig. 6. However, EWMA ðb ¼ 0:8Þ causes approx-
imately 10% lower performance, which is counterintuitive.
It means that putting more weight on the recent data re-
duces detection success rate. After careful investigation,
we found that it is because recent short-term bursty traffic
leads to high average normal profile, which leads to detec-
tion failure with small abnormality.

Fig. 8 shows the detection success rate with F-CM under
fluctuating background traffic. As expected, the detection
success rate is largely improved by using F-CM since it fil-
ters out a lot of noise traffic. More detailed evaluation of F-
CM is given in the next section where the results consis-
tently show the superiority of the cross-layer monitoring
with fine-grained information.

5. Abnormality characterization

Once abnormality is detected, the abnormality needs to
be characterized. We characterize the abnormality as time



Table 2
Abnormality table using cross-layer information.

Destination_addr Sourse_MAC_addr Abnormality

1 2 nð1;2Þ
1 3 nð1;3Þ
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series data. That is, attack signature is defined by the
sequence of number of frames in n. time slots, ða1; a2; . . . ;

anÞ, where aið1 6 i 6 nÞ is the number of frames at time slot
i. Sampling window, D, is expressed as:

D ¼ n 
 d; ð6Þ

where d is the time slot length.
For fine-grained characterization, destination address,

and previous hop MAC address are used (Table 2). There
is obvious tradeoff between coarse-grained and fine-
grained characterization. When coarse-grained character-
ization is used, space complexity for abnormality logging
becomes O(1). However, abnormality matching and subse-
quent traceback result becomes less accurate. On the other
hand, when fine-grained characterization is used, space
complexity becomes ðON �MÞ, where N is the number of
destination network addresses and M is the number of
previous hop source MAC addresses. N can grow to the
number of nodes in the network, and M is the average node
degree (number of direct neighbors). However, traceback
accuracy is improved since we can reduce noise traffic, as
we shall show later in this section.

6. Abnormality searching

Once abnormality is characterized, abnormality match-
ing is done between candidate attack signature and attack
signature. If the two signatures are closely matching, we
can infer the attack route. Following, we examine and
compare two techniques for signature matching: 1. traffic
pattern matching and 2. KS-fitness test.

6.1. Traffic pattern matching

Traffic Pattern Matching (TPM) is defined in [12]. It uses
the correlation coefficient between two signatures at node
A and B. When a signature observed at node A is given as
ða1; a2; . . . ; anÞ, and a signature observed at node B is given
as ðb1; b2; . . . ; bnÞ, the correlation coefficient is obtained as
follows:

rðA;BÞ ¼ 1
nSASB

Xn

i¼1

ðai � AÞðbi � BÞ; ð7Þ

where

SA ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn

i¼1

ðai � AÞ2
vuut ; ð8Þ

SB ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn

i¼1

ðbi � BÞ2
vuut ð9Þ
and A and B are the averages of ða1; a2; . . . ; anÞ, and
ðb1; b2; . . . ; bnÞ, respectively. In case the correlation coeffi-
cient rðA;BÞ is high (greater than 0.7), the signature at node
A is said to match the signature at node B. Computational
complexity of TPM is O(n), where n is the number of obser-
vation time slots.

6.2. KS-fitness test

We use the Kolmogorov–Smirnov (KS) statistic Dn to
test the hypothesis that the two attack signature, FnðxÞ,
and F0ðxÞ are matching. F0ðxÞ corresponds to the attack sig-
nature, which is characterized by a victim and FnðxÞ is the
candidate attack signature, which is characterized by the
intermediate nodes.

Dn ¼ sup
x
½jFnðxÞ � F0ðxÞj�; ð10Þ

H0 : FnðxÞ ¼ F0ðxÞ;
Ha : FnðxÞ–F0ðxÞ:

ð11Þ

We accept H0 if the distribution function FnðxÞ is suffi-
ciently close to F0ðxÞ, i.e., if the value of Dn is sufficiently
small. The hypothesis H0 is rejected if the observed value
of Dn is greater than the selected critical value that de-
pends on the desired significance level and sample size.
When the H0 is accepted (sufficiently similar), we can infer
that the abnormality is matching, meaning that the attack
traffic has traversed the region, where candidate attack sig-
nature is observed. Computational complexity of KS-fitness
test is O(nlogn) and it is not considered significant since we
can achieve good matching performance with reasonable
small n (observation time slots). We will verify this in
the analysis section. In addition, traceback is initiated on-
demand only when a device detects attack. Hence, the
short-term matching process should not affect scalability.

In case of DDoS attack, there is a subtle problem in
using KS-fitness test or TPM. DDoS attack is performed
from multiple nodes. Partial attack traffic is merged at
the victim or intermediate nodes. Consequently, combina-
tion of partial candidate attack signature from multiple
incoming interfaces should be compared with the attack
signature to find the distributed attack routes. There can
be S number of combinations from K candidate ðL 6 KÞ par-
tial attack signatures as follows:

S ¼
X
i¼1

K
K Ci: ð12Þ

In our scheme, the combination that shows the highest
matching level is selected as the branch paths of distrib-
uted DDoS attack traffic.

Similar to abnormality detection and characterization,
we use coarse-grained and fine-grained matching. By
reducing the noise with fine-grained information, we can
increase the matching accuracy. The noise can be reduced
with MAC address (previous-hop MAC address) and net-
work address (destination) information.

For efficient and robust attacker searching, we use the
small world model. Helmy [9] found that path length in
wireless networks is drastically reduced by adding a few
random links (resembling a small world). These random
links need not be totally random, but in fact may be
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Fig. 9. Small world construction with multi-level contacts. Victim, v,
selects level-1 contacts. Level-1 contacts select its level-2 contacts, and so
on.
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confined to small fraction of the network diameter, thus
reducing the overhead of creating such network. The
random links can be established using contacts [10]. We
extend the contact architecture to build a small world in
wireless networks, to increase attacker searching effi-
ciency, and to increase robustness against node compro-
mise. Contact nodes are a set of nodes outside the
vicinity, which are used as short-cut (random links) to
build small world. Following, we describe small world
construction scheme.

Each node in the networks keeps track of a number of
nodes in its ‘vicinity’ within R hops away. This defines
the vicinity of a node. The vicinity information is obtained
through underlying routing protocol. Each node chooses its
vicinity independently, and hence no major re-configura-
tion is needed when a node moves or fails. There is no
notion of cluster head, and no elections that require con-
sensus among nodes.

On-demand, a victim node selects a set of contacts out-
side its vicinity. The main purpose of contact nodes is to act
as a short cut. Hence, it is important for contacts to have
vicinity that does not overlap significantly with that of
the victim node, V, or the other contacts of V. The vicinity
overlap occurs between the contact’s vicinity and the vic-
tim’s vicinity. To reduce this overlap, victim node attempts
to push the request as far out from the victim’s vicinity as
possible. Let the borders of victim V be B (Fig. 9). V sends a
query to the number of contacts (NoC) through its border
nodes (denoted by B in Fig. 9). B constructs a topology view
up to R hops away using its own vicinity information, and
chooses a border in its vicinity that has maximum distance
to V. V also selects NoC borders with maximum separation
to reduce route overlap. This is done using vicinity infor-
mation [10].

The above contact selection scheme provides a mecha-
nism to select NoC contacts that have distances up to
Rþ r hops away from V. We call these contacts level-1
contacts. To select farther contacts (contact of contact), this
process is further repeated as needed at the level-1 con-
tacts, level-2 contacts and so on, up to a number of levels
called maxDepth, D. Detailed evaluation of this general
architecture is given in [10].

Our contact selection and search policy have the follow-
ing important distinctions from [10]: (1) Contacts are ran-
domly selected every time it launches search to prevent
the divulgence of contact information to attackers. That
is, if contact nodes for a victim are fixed, an attacker may
attempt to compromise the fixed contact nodes to disable
traceback. To reduce this risk, we select the contacts
randomly. (2) The contacts in our protocol perform in-net-
work processing to check whether attack traffic is
traversed through vicinity nodes or not. (3) We perform
directional search in which the searching process is direc-
ted towards only the attacker(s) to reduce communication
overhead. Directional search becomes possible through
query suppression, in which contacts that do not observe
matching abnormality in their vicinity suppress further
queries. (4) Our contact selection is independent of any
specific routing protocols.

The attack traffic may not have traversed the contacts
themselves but may have traversed nodes in their vicinity.
To find region through which attack traffic has traversed,
we define attack signature energy. Attack signature energy
incorporates abnormality matching level, geographic
closeness, and majority voting factor, as we shall show in
our evaluation section. Use of attack signature energy pro-
vides robustness against node compromise, accurate attack
route selection, and robustness against bursty background
traffic. Basically, we choose the region that shows high at-
tack signature energy as attack path. Attack signature en-
ergy is divided into three classes: individual signature
energy, local signature energy, and global signature energy.

6.2.1. Individual attack signature energy
Each contact gathers individual attack signature energy

from nodes in its vicinity. The individual attack signature
energy is defined as follows.

EiðDtÞ ¼ 1
DiðDtÞ ; ð13Þ

where DiðDtÞ is the inverse of abnormality matching level
between candidate attack signature and attack signature.
Hence, DnðDtÞ becomes small when there is high abnor-
mality matching between attack signature and candidate
attack signature during timeframe Dt. Individual signature
energy is affected by noise traffic (i.e., background traffic).

The individual attack signature energy concept can be
directly applied to DoS attacker traceback. However, in
case of DDoS attack, the individual attack signature energy
can not be directly applied since multiple partial attack
signatures are merged at either victim or intermediate
nodes. Hence, the protocol first identifies branch attack
signature and applies the individual attack signature en-
ergy concept. As was mentioned in Section 6.2, branch at-
tack signature is identified by finding a combination of
candidate attack signatures which shows the highest
matching level with the attack signature or branch attack
signature. For instance, when there are multiple candidate
attack signatures, ðw1;w2;w3; . . . ;wNÞ in multiple contact
regions, we select k out of N candidate attack signature
which shows the highest matching level with v. Then those
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Fig. 10. Impact of time asynchronization on abnormality matching test
(with TPM).
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k candidate attack signature become a branch attack signa-
ture. Then, traceback process proceeds like DoS attacker
traceback case with each branch attack signature.

6.2.2. Local attack signature energy
Given individual attack signature energy, a contact cal-

culates the local attack signature energy as follows:

LEðDtÞ ¼
Eu

1=2ðDtÞ
l1=2

; ð14Þ

where Eu
i ðDtÞ is the median of the individual attack signa-

ture energy observed by the vicinity nodes of contact u.
l1=2 is the median distance (in hops) between contact
and the nodes that observe similar abnormality. The rea-
son that we use median value instead of average is to pre-
vent negative impact of false report from malicious or
compromised node on LEðtDtÞ. In addition, LEðtDtÞ should
satisfy the following condition.

a ¼ n
N
> d; ð15Þ

where a is the voting factor, N is the total number of vicin-
ity nodes of the contact, and n. is the number of nodes that
observe abnormality. When a is extremely low, we can in-
fer that there is high chance of false reporting. The regions
around the victim and relay nodes of the attack traffic
should show high LEðtDtÞ. The local signature energy is af-
fected by the percentage of nodes observing the signature
energy, median distance from contact, and median individ-
ual signature energy in the contact region. Intuitively, we
can infer the attacker origin or attack traffic route where
high local attack signature energy is observed.

If we use only network layer information, a becomes
low. It is because only intermediate nodes that relay attack
traffic observe abnormality. Consequently, it has weakness
against node compromise and mobility. On the other hand,
if we use MAC layer information or cross layer information,
a becomes high since neighbor of relay nodes can also
overhear the abnormality, which drastically increases
robustness against node compromise and mobility.

Attacker may try to maliciously use the searching pro-
cess to launch DoS attack which we are aiming to protect.
However, since we are taking directional searching, query
suppression, and majority voting, attacker’s malicious
searching query will be confined in local area. To further
protect searching query/response messages, we can con-
sider authentication of the messages. However, the
authentication process is out of the scope of this paper.

6.2.3. Global attack signature energy
To systematically analyze how mobility affects trace-

back performance, we define the global attack signature
energy. Global attack signature Energy (GE) is defined as
follows:

GEðDtÞ ¼
Xn

i¼1

EiðDtÞ; ð16Þ

where n is the total number of nodes that observe high
abnormality matching around the attack route(s). This
metric provides useful information to analyze mobility
effects on traceback performance, but is not used in our
protocol per se because it is centralized.

6.3. Performance analysis

We evaluate the previous two schemes for signature
matching to assess their abnormality detection ability.
Abnormality characterization has the following two
parameters: (1) unit monitoring window: this is the atom-
ic time window during which abnormality is monitored,
and (2) total monitoring time window. This is the aggrega-
tion of unit monitoring windows. We use Signature Time-
frame (ST) size to denote total number of unit monitoring
windows.

Fig. 10 shows the impact of time asynchronization be-
tween attack signature and candidate attack signature on
matching test with TPM. Asynchronization occurs since at-
tack signatures are monitored from geographically spread
locations on the attack route. N represents the degree of
time asynchronization. For instance with N = 0.5%, 50% of
attack signatures are asynchronized. As time asynchroni-
zation degree becomes larger, the matching level becomes
lower in TPM (in general, it is considered ‘‘closely match-
ing” if correlation coefficient (i.e., matching level) is at or
above 0.7).

Unlike TPM-based matching test, KS-fitness test does
not show negative impact by time asynchronization as
shown in Fig. 11. That is, the distance in KS-fitness test is
always below threshold. It is because KS-fitness test uses
statistical abnormality distribution instead of time-series
abnormality data.

Fig. 12 shows correlation between unit monitoring
window and time asynchronization. We used N ¼ 0:5 to
represent the worst time asynchronization case. L repre-
sents the size of unit monitoring window. The negative
impact of time asynchronization is reduced when the unit
monitoring window is larger. It is because short-term
abnormality outlier can be smoothed out with larger unit
monitoring window. However, the obvious disadvantage
of larger unit monitoring window is its delay in abnormal-
ity characterization.
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TPM).
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Under the same situation as Fig. 12, KS fitness test in
Fig. 13 constantly shows good performance (i.e., below
threshold of 0.1), regardless of unit monitoring window
size. It is because K–S test uses statistical abnormality
distribution instead of time-series data. Hence, delay in
abnormality characterization can be avoided.

Fig. 14 shows the impact of various background traffic
on the TPM level. Unlike our initial expectation, larger ST
size showed lower performance. More specifically, when
high bursty traffic exists under large ST size, traffic match-
ing level drastically goes down (0.32 with ST size of 190). It
is because there is more chance that the short-term bursti-
ness is included in the attack signature as ST size is
increased.

Fig. 15 shows the impact of various background traffic
on KS fitness test. We observed high matching level (i.e.,
below threshold of 0.1) regardless of ST size. It is because
abnormality distribution statistics is not affected by small
amount of deviation from the reference profile.

Fig. 16 shows the false positive in abnormality match-
ing test with KS test. We compare the distance between
(1) attack signature and candidate attack signature with
MLM, (2) attack signature and normal traffic with MLM,
(3) attack signature and normal traffic with F-MLM, (4)
attack signature and normal traffic with F-NLM, and (5)
attack signature and normal traffic with F-CM. Originally,
we expected that KS-fitness test would show high false
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positive rate since it shows low false negative rate. How-
ever, KS-fitness shows low false positive rate, i.e., most of
bursty normal traffic is far above threshold.

Based on the analysis, we can conclude that KS fitness
test far outperforms TPM for abnormality matching test.
There is one exceptional case where KS fitness test can
show low performance. It when both signatures (i.e., attack
signature, and candidate attack signature) show the same
statistical characteristics (i.e., same average, variance,
etc.) even if its time-series characteristics is different. Un-
der such scenario, we cannot differentiate between attack
traffic and normal bursty traffic, which may lead to false
positive. However, this is extremely rare case as we can in-
fer from Fig. 16.

We estimates communication overhead (the number of
transmitted/received packets) to trace back an attacker in
Fig. 17. A victim is located at the center of network and
an attacker is located at random positions (17 hops away)
on the edge of the network. In flooding, query message
with attack signature is flooded to the entire network. Con-
sequently, communication overhead drastically increases
as network size increases. On the other hand, our scheme
shows very low communication overhead (22% with net-
work size of 3025 nodes) compared to flooding since it de-
ploys directional search and query suppression to reduce
communication overhead. Note that the energy saving
becomes more significant as the network size increases.
Similar to the DoS case, our scheme incurs low commu-
nication overhead in DDoS traceback. In the simulations, a
victim is located at the center of the network and attackers
are located at random positions at the edges of the network
(average of 10 hops away). As the number of attackers
increase, communication overhead to search distributed
attackers also increases. However, compared with flood-
ing-type query, our scheme incurs lower communication
overhead (52% reduction with 4 attackers and 3025 nodes)
than flooding as shown in Fig. 18. Note that the number of
attacker does not affect flooding-type query overhead
since it is flooded to the entire network anyway. The
improvement becomes significant as the network size
increases.

Fig. 19 shows the number of nodes around the attack
route(s) that observes attack signature. To avoid traceback,
attacker needs to compromise the observers. General
traceback schemes (e.g., PPM, iTrace, logging, etc) rely only
on the intermediate nodes that relay the attack traffic for
traceback. On the other hand, our scheme (e.g., MLM,
F-CM) tracks down attackers by utilizing the information
from overhearing nodes around the attack route(s). When
node density (D: average number of nodes within trans-
mission range) increases, more nodes (approximately
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700% increase with D = 8 and 5 hop distance) are able to
overhear the attack signature, which drastically increases
the robustness against node compromise.

7. Overall attacker traceback

We compare traceback success rate for DoS and DDoS
attacker traceback. Traceback success is defined as the
event of identifying all the attack origins that generated
the attack traffic. We use the Kolmogorov–Smirnov (K–S)
fitness test for abnormality matching.

We set up a simulation network size of 2750 m �
2750 m with transmission range of each node set to
150 m and about 20 hops network diameter. We repeat
each simulation 10 times in random topology with 1000–
3000 static nodes and calculate the average value. We also
set NoC (Number of Contacts) = 6, R (vicinity radius) = 3, r
(contact distance) = 3, d (search depth) = 5 for contact
selection. DSDV is used as underlying routing protocol.
DoS attacker is 17 hops away from a victim, and DDoS
attackers are 10 hops away from a victim.

Fig. 20 shows success rate for DoS attacker traceback
with C-MLM and F-MLM. F-MLM shows higher success rate
(Average 20% higher than C-MLM). The improvement be-
comes significant as background traffic is increased. It is
because F-MLM uses fine-grained information (i.e., previ-
ous-hop MAC address). Fig. 21. shows further improve-
ment (100% success rate) when we use F-CM since we
use network layer information to filter out more back-
ground noise traffic. Figs. 22 and 23 show success rate
for DDoS attacker traceback with 25% of background traf-
fic. C-MLM shows low performance since branch attack
traffic has low abnormality. F-MLM shows high success
rate when average number of one-hop neighbor is large.
However, when average number of one-hop neighbor is
small (<4), traceback success goes down in even F-MLM.
It is because more noise (i.e., background traffic) is carried
over the link where the attack traffic passes.

In Fig. 23, the success rate drastically increases (Average
51%) by using fine-grained network-layer information (i.e.,
destination address) in addition to fine-grained MAC-layer
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Fig. 20. DoS attacker traceback success rate comparison between C-MLM
and F-MLM.
information. It is because network layer information can
filter out most of the noise traffic.

8. Traceback-aided countermeasures

Existing countermeasures against DoS/DDoS attack can
be broadly classified into two classes: packet filtering, and
rate limiting. Current techniques against DoS/DDoS attack
have the following drawbacks: (1) The countermeasure is
taken at the nodes where the attack is detected. For in-
stance, it is taken at the ingress points of the victim net-
work. However, it is inefficient since the attack traffic
exhausts valuable network/host resources of intermediate
nodes. (2) Packet filtering is challenging since it is hard
to distinguish between bad and good traffic. Legitimate
traffic can experience sudden QoS degradation due to
packet filtering. (3) In rate limiting, it is hard to know
how much the applied rate limit should be to strike a bal-
ance between dropping attack traffic and saving legitimate
traffic.

We propose a countermeasure which effectively makes
use of traceback information. Basically, our countermea-
sure finds the closest node where the attack occurred
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and takes countermeasure based on abnormality matching
level. We also use cross-layer information (i.e., destination
address, previous MAC address), to increase countermea-
sure efficiency. More specifically, using cross-layer infor-
mation, we reduce negative impact on legitimate traffic
and increase packet-dropping efficiency on attack traffic.
Basically, our scheme can be considered as a hybrid
scheme between packet filtering and rate limiting. That
is, when abnormality matching level is high, we apply
packet filtering. On the other hand, when abnormality
matching is medium/low level, we apply rate limiting. To
determine a reasonable rate limiting level under med-
ium/low matching level, we use a Confidence Index (CI).
CI is the inverse of normalized matching level as follows:

CI ¼ 1
normðDnÞ

: ð17Þ

The rate limiting level (P is determined through the follow-
ing equation:

P ¼ MaxP 
 CI �MinCIThresh
MaxCIThresh�MinCIThresh

ð18Þ

MaxP, MinCIThresh, and MinCIThresh are parameters se-
lected based on the design policy (see Fig. 24). For instance,
high MaxP(>0.7) shall be selected to sharply increase the
rate limiting effect between MinCIThresh and MaxCIThresh.
When CI is very high it reduces to packet filtering since it
implies that there is no background traffic. On the other
hand, when CI is medium/low, it becomes rate limiting
based on CI level to reduce negative impact on the legiti-
mate traffic. The advantage of using CI-based rate limiting
over fixed rate limiting is multifold: (1) When CI is low,
only small amount of traffic (both attack and legitimate
packet) are dropped. Even if we cannot drop much attack
traffic in such case, it does not decrease countermeasure
efficiency since there exist only small amounts of attack
traffic (perhaps part of DDoS attack). On the other hand,
when CI is high, many packets are dropped. Even if more
legitimate packets are also dropped, its negative impact
is not significant since, there exists only small amount of
legitimate traffic. We shall investigate our insight further
through simulations later in this section.
To further alleviate QoS degradation of legitimate traffic
under the countermeasure, we use cross-layer information.
That is, traffic is classified into several classes based on the
fine-grained information. When one class (e.g., previous
MAC address X, and destination network address Y) of traf-
fic is identified as highly matching candidate attack traffic,
we apply rate limiting to the class based on the CI value.

To measure countermeasure efficiency, we define the
LPP as follows.

LPP ¼ ðSurvived legitimate trafficÞ
� ðDropped attack trafficÞ: ð19Þ

A high LPP value indicates that a large amount of attack
packets are blocked and small amount of legitimate pack-
ets are dropped. On the other hand, a low LPP value indi-
cates that a large amount of legitimate packets are
dropped and small amount of attack packets are blocked.

We evaluate the performance of our traceback-assisted
countermeasure scheme. We measure the dropped packet
count (Fig. 25), survived legitimate packet count (Fig. 26),
and LPP (Eq. (19)). We compare our scheme with fixed-rate
(i.e.,0.5) packet filtering countermeasure scheme, in which
packets are dropped with a given rate under DoS/DDoS
attack. As shown in Fig. 25, our scheme shows drastic
increase in the attack packet dropping as attack percentage
increases (400% higher than fixed scheme). It is because
abnormality matching level (i.e., confidence index, CI)
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increases as attack percentage increases. Consequently,
more attack packets can be dropped. Fig. 26 shows the
number of survived legitimate packets. When attack per-
centage is low, more legitimate packets survive because
matching level is low. On the other hand, only a small
number of legitimate packets survive when attack percent-
age is high, since more packets are dropped due to high
abnormality matching level. However, the negative impact
is not significant (1.4% less survival rate than fixed scheme
at 90% attack percentage) because there is only small
amount of legitimate traffic when abnormality matching
level is high. Overall, we can say that the positive impact
far exceeds the negative impact with our scheme.

In Fig. 27, we measured LPP with fine-grained informa-
tion (i.e., F-CM) with varying number of one-hop
neighbors. LPP shows drastic increase with CI-based coun-
termeasure scheme. More specifically, LPP increases
approximately 110% with CI-based countermeasure com-
pared to the scheme without using CI information (i.e., fixed
scheme). It is because we can drop attack traffic more
aggressively when there is more attack traffic.

9. Systematic RISK analysis of mobile attacks

Mobility poses several challenges for attacker trace-
back. First, the attacker(s) can maliciously exploit mobility
to avoid traceback, and increase attack efficiency. Second,
mobility of intermediate and victim nodes can degrade
traceback performance even without malicious intention.
To systematically analyze how mobility can affect trace-
back performance, we take a multi-dimensional approach.
In this approach, mobile multi-hop network domains are
classified into multiple dimensions: (1) temporal transition
domain, (2) spatial transition domain, (3) address domain,
(4) area domain, and (5) the node coordination domain.
These domains were selected after a careful process. We
show that the combination of each domain attributes can
identify a class of attack scenarios with a unique risk in
mobile multi-hop networks.

9.1. Mobile multi-hop network domains

9.1.1. Temporal transition domain (T-domain)
The T domain defines the temporal relation among at-

tack traffic observed at different location. T domain con-
sists of three attributes: temporal continuity ðTcÞ,
temporal discontinuity ðTdÞ, and temporal randomness
ðTrÞ as described in Fig. 28. T0, T1, and T2 are the time slots
during which the attack is observed. In Fig. 28a, attack sig-
natures n1; n2, and n3 are observed at T0; T1, and T2 time
slots continuously (Temporal continuity). On the other
hand, temporal discontinuity is observed in Fig. 29b. The
attack signatures (n1, and n2) are observed at discontinu-
ous time slots at T0 and T2.

9.1.2. Spatial transition domain (S-domain)
S-domain defines spatial relation among attack occur-

rence. S-domain has three attributes: (1) spatial continuity
ðScÞ (2) spatial discontinuity ðSdÞ (3) spatial randomness
ðSrÞ. For instance, in mobile DoS attack, the attack signature
is observed in a spatially continuous manner (Fig. 29a). In
general, spatial discontinuity is observed in DDoS attack as
in Fig. 29b. Note that DDoS attack can also show spatial
continuity. In that case, we can distinguish between DDoS
attack and mobile DoS attack using temporal relation (i.e.,
T-domain).

9.1.3. Address domain (AD-domain)
An attacker can perform malicious attack by spoofing,

sometimes using multiple addresses. Some possible attack
scenarios include (1) single random address ðADsrÞ (2) mul-
tiple random addresses ðADmrÞ (3) targeted single address



Fig. 29. (a) Spatial continuity of mobile DoS attack. Attacker, A, is moving
from right to left attacking victim V. (b) Spatial discontinuity of DDoS
attack. Attackers, A1, A2, and A3 are launching attacks towards victim V.
Each cell logically corresponds to a contact vicinity.
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ðADstÞ, and (4) targeted multiple addresses ðADmtÞ. Unlike
fixed networks, the address is not fixed in mobile multi-
hop networks. An attacker can easily use false, changing
addresses.

9.1.4. Area domain (A-domain)
In mobile multi-hop networks, an attacker can choose

its location freely, where an attacker can choose: (1) single
random area ðAsrÞ (2) multiple random area ðAmrÞ (3) tar-
geted single area ðAstÞ (4) targeted multiple areas ðAmtÞ.

9.1.5. Node coordination domain (N-domain)
Coordination of multiple nodes can lead to serious con-

fusion to a victim. Coordination maybe: (1) temporal coor-
dination of compromised nodes ðNtÞ, or (2) spatial
coordination of compromised nodes ðNsÞ.

9.2. Mobile attack identification

Using various combinations of domain assignments we
can identify numerous attack scenarios and assess their
risks. We define the combinational set as the set of minimal
necessary entities in mobile network domains/attributes to
perform certain attack. We identify some of the attack sce-
narios in this section. Note that these are five example at-
tacks to show the usefulness of the combinational-set
based approach and not exhaustive set of all attack
scenarios.

9.2.1. Mobility misuse (MM) attack
MM is the simplest form of attack exploiting mobility.

In the MM attack, attacker sends attack traffic continu-
ously to a victim. To avoid traceback, the attacker con-
stantly changes its location. The MM attack has the
following domain setting:

MM Domain Setting ¼ fTc; Sc;Amrg:

As a result of the MM attack, a victim can be confused be-
tween DDoS attack and mobile attack. Without considering
attacker’s mobility, existing traceback schemes will infer
that attack traffic is coming from distributed locations,
which leads to false positive in distributed nodes.

9.2.2. Mobility and address misuse (MAM) attack
In MAM attack, an attacker sends attack traffic continu-

ously to a victim. To avoid traceback, attacker changes not
only its location but also it address.
MAM Domain Setting ¼ fTc; Sc;ADmr;Amrg:

Similar to MM attack, a victim will be confused between
DDoS attack and mobile attack. In addition, since the at-
tacker changes its address, some preventive techniques
such as firewalls or filtering become useless.

9.2.3. False mobility generation (FMG) attack
In FMG attack, the attackers intentionally generate false

mobility. That is, the attack is performed from multiple
nodes with spatial and temporal continuity.

FMG Domain Setting ¼ fTd; Sc;Ns;Ntg

A traceback mechanism capable of detecting mobile attack
(e.g., MM attack) may be misled by FMG attack. That is,
even if the attack is launched from distributed nodes, a vic-
tim might conclude that attacker is moving and perform-
ing MM attack.

9.2.4. Distributed blinking (DB) attack
The drawback of FMG attack is that the continuity of the

attack is detectable. To overcome this, DB attack can be
performed by an attacker. In DB attack, the attacker
compromises multiple nodes and performs the attack from
distributed random nodes at random times. Attack is
launched with spatial/temporal transition randomness.

DB Domain Setting ¼ fTr; Sr;Ns;Ntg:

From victim’s point of view, attack traffic comes from ran-
dom location for short period of time. However, bulk attack
traffic comes continuously to a victim since multiple nodes
are compromised.

9.2.5. Disabling targeted area (DTA) attack
In DTA attack, the attacker is aware of the countermea-

sure after traceback process. The attacker intentionally
generates attack traffic near targeted area where attacker
wants to disable or harm networking through expected
countermeasure (e.g., packet filtering, or rate limiting).
Attacker launches attack at targeted area.

DTA Domain Setting ¼ fTc;Astg:

Once the traceback mechanism identifies the attack ori-
gin(s), countermeasures are taken near those origin(s).
However, since the attacker may intentionally choose the
attack origin, legitimate traffic may also be dropped by
the countermeasure.
10. Impact of legitimate mobility on traceback

Legitimate mobility of nodes can affect traceback per-
formance. The negative impact of legitimate node mobility
occurs due to the following factors:

� Reduction of witness nodesIntermediate nodes that
observe abnormality (i.e., witness nodes) can move
away from the attack route(s). The problem can become
worse when we rely only on intermediate nodes that
relayed the attack traffic. Once the relay nodes move
away from the attack route, the traceback cannot
proceed after that point. By using MAC or cross-layer
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monitoring, we can reduce the negative impact by inter-
mediate node mobility since we can use multiple nodes
around the attack route that stay and overhear the
abnormality.

� Abnormality mismatchingFor traceback, we need to find
intermediate nodes that observe similar attack signature
(i.e., high signature matching level). However, during
attack period, new nodes can move into the attack route,
which can reduce signature matching level due to insuf-
ficient abnormality monitoring.

To systematically analyze how mobility affects trace-
back performance, we use the Global signature Energy
(GE). GE is defined in Eq. (16), and provides useful informa-
tion in analyzing how mobility affects traceback perfor-
mance. We further define Relative attack signature
Energy (RE) as follows:

REðDtÞ ¼ GEdynamicðDtÞ
GEstaticðDtÞ

: ð20Þ

GEstaticðDtÞ represents GEðDtÞ without mobility, and
GEdynamicðDtÞ represents GEðDtÞ with mobility during given
time duration, Dt. REðDtÞ is affected by the mobility model.
When REðDtÞ is low, attacker traceback becomes difficult
since attack signature energy around attack route is re-
duced due to high node mobility.

In the following sections, we define mobility metrics to
systematically analyze how mobility affects traceback per-
formance. Some of metrics are borrowed from our group’s
earlier work [2].

10.1. Mobility metrics
10.1.1. Directional correlation (DC)

DC is defined as follows:

DCði; j; tÞ ¼
~v iðtÞ 
~v jðtÞ
j~v ij � j~v jj

; ð21Þ

where ~v iðtÞ and ~v jðtÞ are the velocity vectors of nodes i and
j at time t. High DC implies, two nodes i and j are moving in
the same direction. One the contrary, low DC implies two
nodes i and j are moving in opposite directions.

10.1.2. Speed correlation (SC)
SC is defined as follows:

SCði; j; tÞ ¼ minðj~v iðtÞj; j~v jðtÞjÞ
maxðj~v iðtÞj; j~v jðtÞjÞ

: ð22Þ

High SC implies that two nodes i and j are moving with
similar speed. One the contrary, low DC implies two nodes
i and j are moving at different speed.

10.1.3. Geographic restriction (GR)
Geographic restriction represents the degree of freedom

of node movement on a map. More specifically, the degree of
freedom represents the number of directions a node can go.

10.1.4. Reference restriction (RR)
Reference restriction represents the degree of freedom

of reference point nodes. When all the nodes are going to
the same reference point, high RR is observed.
10.2. Mobility dependence

By using the mobility metrics defined above, we can
further define mobility dependence among nodes or
among groups of nodes as follows:

10.2.1. Mobility dependence between attacker and victim
We define mobility dependence between attacker and

victim as follows:

MDða; v; tÞ ¼ DCða;v ; tÞ � SCða;v ; tÞ: ð23Þ

When attacker ðaÞ and victim ðvÞ have high directional cor-
relation and speed correlation, mobility dependence be-
comes high.

10.2.2. Mobility dependence among intermediate nodes
Mobility dependence between intermediate nodes is

defined as follows:

MDði; i0; tÞ ¼ DCði; i0; tÞ � SCði; i0; tÞ: ð24Þ

When intermediate nodes (i and i0Þmove in a similar direc-
tion with similar speed, the mobility dependence becomes
high. Mean mobility dependence among nodes N during
time duration T is also defined as follows:

MDðiÞ ¼
PN

i¼1

PT
t¼1

PT
t0¼1MDði; i0; tÞ
P

: ð25Þ
10.2.3. Mobility dependence among attacker, intermediate,
and victim

MDða; v; i; tÞ ¼ MDða;v ; tÞ �MDðiÞ: ð26Þ

When attacker, victim and intermediate nodes are moving
in a similar direction with similar speed, the dependence
becomes high.

We note that mobility can affect traceback performance.
Different mobility models have different characteristics
(i.e., high/low DC, SC, GR, RR). To analyze the impact of
mobility on traceback performance, we perform numerous
simulations with the group and freeway mobility models
[2] that encompass various mobility characteristics of DC,
SC, GR and RR. To focus on the mobility related effects, we
do not generate background traffic in these simulations.

10.2.4. Reference point group mobility (RPGM) model
The RPGM model is defined in [2,3]. Each group has a

logical center (group leader) that determines the group’s
motion behavior. Initially, each member of the group is
uniformly distributed in the neighborhood of the group
leader. Subsequently, at each instant, every node has a
speed and direction (angle) that is derived by randomly
deviating from that of the group leader. RPGM model can
be used in military battlefield communications where the
commander and soldiers form a logical group.

Fig. 30 shows REðDtÞ (Eq. (20)) of RPGM model with sin-
gle group (angle deviation of 20). It shows high REðDtÞ
(0.99 with 10 ST), which implies that high attack signature
energy is observed on the attack route even under high
mobility. Consequently, negative impact of mobility is neg-
ligible in RPGM with single group. It is because RPGM
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model with single group has high mobility dependency
(i.e., high MD(a,v,i,t)) among attacker, victim and interme-
diate nodes. As Signature Timeframe (ST) increases, REðDtÞ
is slightly decreased. It is because there is a higher chance
that some nodes move out/in from attack route during a
longer timeframe. In addition, it shows lower REðDtÞ when
speed is high. It is because a few intermediate nodes can
move out from overhearing range deviating from the refer-
ence points (group leader).

Fig. 31 shows RPGM model with single and multiple
(i.e., 4) groups with 10 ST. RPGM with 4 group shows lower
REðDtÞ (Avg. 32% reduction) than single group case. It is be-
cause DC and SC among groups are low and RR is loose
among groups. In RPGM model, there is no geographic
restriction (GR). RPGM model with 4 groups also shows
lower relative energy rate when speed is high due to the
same reason as single group case.

10.2.5. Freeway model
The freeway model is introduced in [2]. Fig. 32 shows

REðDtÞ in freeway model when attacker and victim are on
the same lane. Relative energy rate shows medium value
(�Average 0.5) and consequently traceback performance
is relatively good in freeway model when attacker and
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(attacker and victim on the opposite lane).
victim exist on the same lane. It is because of high mobility
dependency (MD) among attacker, intermediate and vic-
tim on the same lane. However, the relative energy rate
is not as high as RPGM model since high DC and SC are ob-
served only in the intermediate nodes on the same lane. On
the other hand, traceback performance is drastically de-
graded (�Average 0.18 of REðDtÞ when attacker and victim
are on the opposite direction (i.e., low MD) as shown in
Fig. 33. High GR in freeway model leads to constant
REðDtÞ across diverse ST size.

11. Mobile attacker traceback

In this section, we propose a mobile attacker traceback
scheme. Our scheme consists of: (1) information gathering,
and (2) information fusion processes.

11.1. Information gathering

Information gathering in mobile attacker traceback has
the following features: (1) In addition to traceback infor-
mation used in static attacker traceback, age information
is gathered by contact nodes. More specifically, spatio-
temporal attack signatures ðn; tS; tL;SÞ are gathered. n is
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candidate attack signature, S is the relative position of at-
tacker (e.g., 2 hops away from level-1 contact i), tS is the
start time of (or time since) abnormality and tL is the last
(or most recent) time when abnormality is observed. This
spatio-temporal attack signature is effectively used to clas-
sify attack type (e.g., DDoS attack, mobile attack, etc). (2)
All the attack signature information (i.e., spatio-temporal
attack signature) from every level of contact needs to be
returned to the victim for network-wide analysis.

11.2. Information fusion

Information fusion is the process to correlate and ana-
lyze the spatio-temporal signature information obtained
through the information gathering process.

To quantitatively represent spatial relation among can-
didate attack signatures, we define Spatial Relation Factor
(SRF) as follows:

SRF ¼ a 
 PPNC 1
gC 1¼1

PNC 2
gC 2¼1DSðgC 1;gC 2; nC 1; nC 2Þ

; ð27Þ

where

a ¼ nS

NC 1 þ NC 2
: ð28Þ

Nc�1 is the total number of vicinity nodes of contact c_1
and Nc�2 is the total number of vicinity nodes of contact
c_2. nS is the number of nodes that observe attack signa-
ture, nc�1 and nc�2 in the vicinity of contacts c_1 and c_2I,
respectively. gc�1 is a vicinity node of contact c_1and gc�2

is a vicinity node of contact c 2:DSðgc�1;gc�2; nc�1; nc�2Þ is
the hop count between node gc�1 and gc�2 that observe
the attack signature nc�1, and nc�2, respectively. The hop
count information can be obtained using underlying rout-
ing table or through explicit query. DSðgc�1;gc�2; ;nc�1;

nc�2Þ ¼ 0 if node gc�1 and gc�2 do not observe any candi-
date attack signature. P is the total number of pairs of
ðgc�1;gc�2Þ, where DSðgc�1;gc�2; nc�1; nc�2Þ > 0. a is majority
voting factor. For a high value of a, we can infer that attack
is occurring near the central region of c_1’s vicinity and
c_2’s vicinity. It is because more vicinity nodes can over-
hear the abnormality when attack traffic passes through
the central region of the contact’s vicinity. When a is small,
we can infer that the attack traffic is not passing through
the central region of the contact’s vicinity or the candidate
attack signature report is not reliable (false reporting).
When attacker moves from vicinity of c_1 to vicinity of
c_2, we can observe small DSðgc�1;gc�2; nc�1; nc�2Þ and high
SRF. When c_1 and c_2 is not adjacent contacts and gc�1

and gc�2 are far away, large DSðgc�1;gc�2; nÞ is obtained,
which leads to low SRF.

We also quantitatively formulate temporal relation of
candidate attack signatures as Temporal Relation Factor
(TRF).

TRF ¼ a 
 PPNC 1
gC 1¼1

PNC 2
gC 2¼1DTðtLðgC 1Þ; tSðgC 2Þ; nC 1; nC 2Þ

; ð29Þ

where DTðtLðgc�1Þ; tSðgc�2Þ; nc�1; nc�2Þ is the time difference
between the start time (i.e., tSðgc�2Þ) when attack signa-
tures nc�2 is observed by node gc�2 and the last (or most
recent) time (i.e., tLðgc�1Þ) when the attack signature
nc�1is observed by gc�1 where tSðgc�2ÞP tSðgc�1Þ. Under
mobile attack, temporal continuity is observed and TRF be-
comes large since DTðtLðgc�1Þ; tSðgc�2Þ; nc�1; nc�2Þ becomes
small.

We use SRF and TRF metrics to infer attack type as fol-
lows: (I) When high SRF and high TRF is observed, we can
infer that mobile attack has occurred. (II) When high SRF
and low TRF are observed, we can infer that attack traffic
has been intermittently generated from geographically
clustered attackers. (III) When high SRF and negative TRF
are observed, we can infer that DDoS attack has occurred
from clustered attackers (clustered DDoS attack) (IV)
When low SRF and high TRF are observed, we can infer that
attack has occurred from geographically spread attackers
with temporal continuity. (V) When low SRF and low TRF
are observed, we can infer that attack traffic has been gen-
erated from geographically spread attackers. (VI) When
low SRF and negative TRF are observed, we can infer that
DDoS attack from geographically spread attackers has been
generated (spread DDoS attack). These results have been
validated via extensive simulations.

11.3. Examples for mobile attacker traceback

11.3.1. Mobile DoS attacker traceback
Fig. 34a shows the example of mobile DoS attacker

traceback using the TRF and SRF metrics. In the figure, at-
tacker moved from region 10! 9! 8! 7. Attack paths
from each attack origin are as follows: 10! 6! 4!
2! 1! v, ð9! 6! 3! 2! 1! vÞ, ð8! 5! 3! 2!
1! vÞ, ð7! 5! 3! 2! 1! vÞ. A victim will find the
first level temporal/spatial relation in regions 3 and 4. In
region 3 and region 4, high TRF and high SRF are observed.
At this point, we can infer that mobile attack is occurring.
Similarly, in region 5 and 6, high TRF and high SRF are
observed. Lastly, in region 7, 8, 9, 10, high TRF and SRF
are observed, which leads us to conclude that attacker is
moving and currently located in the region 7. Vertical or
diagonal movement of attacker can be detected similarly.

11.3.2. Mobile DDoS attacker traceback
Basically, mobile DDoS attacker can be detected and

tracked down using the same mechanism mentioned
above with separate threads for each branch attack route.
A difficult problem in mobile DDoS attack occurs when
multiple attackers are crossing each other as in Fig. 34b.
The crossing mobile DDoS attack can be detected by using
TRF and SRF metrics plus attack signature surge detection.
For instance, in Fig. 34b, the first attacker is moving 7! 8
! 9 and the second attacker is moving 11! 10!9. Attack
traffic is merged on the path 9! 6! 3! 2! 1. Region 4,
and 5 observe high SRF and high TRF. In addition, region 5,
and 6 also observe high SRF and high TRF. The relations en-
able us to infer mobile attack has occurred in (4,5) regions
and (5, 6) regions. In addition, region 5 observes attack
traffic surge, which allows us to infer the crossing of mo-
bile attack traffic. Similarly, region 7, 8 and 9 observe high
SRF and high TRF. In addition, region 11, 10, and 9 observe
high SRF and high TRF. Region 9 will also observe attack
signature surge. Consequently, relative location of an
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Fig. 34. Illustration of mobile attacks.

Fig. 35. Algorithm for mobile DDoS attack trace-back.

Table 3
Attack classification using SRF and TRF metrics.

SRF ðm�1Þ TRF ðs�1Þ

Mobile DoS 0.17 28.1
Clustered DDoS 0.18 5.12 � 10�3

Spread DDoS 0.032 5.38 � 10�3
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attacker can be inferred from gathered information at
contact region 9. The overall algorithm to detect and trace
mobile DDoS attack is outlined in Fig. 35.

11.4. Performance analysis for mobile attacks

To evaluate and show the effectiveness of our mobile
attacker traceback scheme, we compare the SRF and TRF
values in DDoS attacks and mobile DoS attacks. DDoS at-
tacks are performed from six randomly selected nodes. In
mobile DoS attacks, the attacker and 5% of intermediate
nodes move with random waypoint mobility model
(Vmax ¼ 2 m=s, pause time = 2.5 s). Average SRF and TRF
values are calculated where mobility is detected. We ex-
clude the regions where a (Eq. (28)) is small (<0.1) since
it implies that the nodes that report the attack signature
moved out from original attack path. As shown in Table
3, SRF is high (>0.1) in both in mobile attack and clustered
DDoS the attack since attack is observed in a close region.
SRF shows low value (<0.1) when DDoS attacks are per-
formed from geographically spread locations. TRF can dif-
ferentiate between mobile attacks and clustered DDoS
attacks since DDoS attacks are launched at around the
same time regardless of the observation region. Conse-
quently, we can effectively differentiate between DDoS at-
tacks and mobile attacks using combination SRF and TRF
metrics.

12. Conclusions

In this paper, we propose the CATCH framework with a
comprehensive set of attacker traceback protocols for mo-
bile multi-hop networks. We use cross-layer (i.e., network
and MAC layer) information to increase traceback effi-
ciency and decrease associated overhead. We also effec-
tively utilize overhearing capability of MAC layer, which
drastically increases robustness against node compromise
and mobility. In addition, it reduces false positive and neg-
ative rates. We also proposed traceback-assisted counter-
measure, which provides an effective defense strategy
utilizing cross-layer information.

We propose a systematic attack risk analysis using a
multi-dimensional approach. This risk analysis provides
insight to how mobility can be exploited for wireless at-
tacks. We also propose a mobile attacker traceback
scheme. We further analyze how mobility, legitimate or
otherwise, can affect the traceback performance.

Through extensive simulation-based performance anal-
ysis, we showed that our proposed scheme satisfy all the
design requirements (Table 1) for attacker traceback in
mobile multi-hop networks.
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