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Abstract—We propose profile-cast, a novel behavior-oriented
service representing a new paradigm of communication in mobile
networks. Our study is motivated by the tight user-network
coupling in future mobile societies. In such a paradigm, messages
are sent to sender-specified behavioral profiles, instead of explicit
IDs. Our paper provides a systematic framework in providing
such services in two phases.

First, user behavioral profiles are constructed based on traces
collected from two large wireless networks, and their spatio-
temporal stability is analyzed. Our analysis shows that user
behavioral profiles are surprisingly stable. The similarity of the
behavioral profile of a user to its future behavioral profile is
above 0.75 for one week, remaining above 0.6 for five weeks,
while the correlation coefficient of the similarity metrics between
a user pair at different time instants is above 0.62 for a
week, remaining above 0.5 for two weeks. This stable implicit
relationship discovered between mobile users based on their
behavioral profiles can be further utilized to provide a service
for message delivery and resource discovery in various network
environments.

Second, we provide a detailed protocol design for the profile-
cast service, named CSI, in the challenged opportunistic network
architecture. We provide a fully distributed solution utilizing
behavioral profile space gradients and small world structures to
selectively diffuse the information across the network towards the
intended target recipients. Leveraging stability in user behaviors,
the two modes of CSI protocol both achieve good performance
comparing with the optimal protocols. For CSI:Target mode, the
delivery ratio is more than 94% comparing with delay-optimal
1-path protocol, with less than 47% more delay. Comparing
with the overhead-optimal protocol, CSI:T shows more than 94%
delivery ratio, less than 5% more overhead, and less than 11%
more delay. For CSI:Dissemination mode, comparing with the
delay-optimal protocol, is has more than 98.5% delivery ratio
under less than 32% more delay. CSI:D shows less than 7% more
transmission overhead but at least 60% less delay comparing with
the transmission overhead-optimal protocol. It also significantly
outperforms variants of epidemic and random walk schemes.

We believe that our new profile-cast paradigm will act as an
enabler of multiple new services in mobile societies, and is poten-
tially applicable in server-based, heterogeneous or infrastructure-
less wireless environments.

I. INTRODUCTION

We envision future networks that consist of numerous ultra
portable devices delivering highly personalized, context-aware
services to mobile users and societies. Such scenarios elicit
strong, tight-coupling between user behavior and the network.
Users’ mobility and on-line activities significantly impact
wireless link characteristics and network performance, and
at the same time, the network performance can potentially
influence user activities and behavior. Such a tight user-
network coupling provides a rich set of opportunities and poses
several challenges. On one hand, fundamental understanding

of the mobile user behavior becomes crucial to the design and
analysis of future mobile networks. On the other hand, novel
services can now be introduced and utilize such a coupling
to effectively navigate mobile societies, providing efficient
information dissemination, search and resource discovery.

In this paper, we propose a novel behavior-driven commu-
nication paradigm, that we call profile-cast, to enable a new
class of services in mobile societies. In addition, we design a
protocol, called CSI, with a set of schemes to realize profile-
cast in intermittently connected mobile networks. Current
communication paradigms, including unicast and multicast,
require explicit identification of destination nodes (through
node IDs or group membership protocols), while directory
services map logical, interest-specific queries (e.g., reaching
people who visit libraries often) into destination IDs where
parties are then connected using behavior-oblivious protocols.
The power and scalability of such conventional paradigms
might be quite limited in the context of future, highly dynamic
mobile networks, where it is desirable in many scenarios
to support implicit membership based on user behavior or
interest. In such scenarios, membership in interest groups is
not explicitly expressed by users, it is rather implicitly and
autonomously inferred by network protocols based on the past
behavioral profiles of users. This removes the dependence on
third parties (e.g. directory lookup), maintenance of group
membership (e.g., in multicast) or the need to flood user inter-
ests to the whole network, and minimizes delivery overhead
to uninterested users.

Applying such a behavior-driven paradigm in mobile net-
works poses several research challenges. First, how can user
behavior be captured and represented adequately? Second, is
user behavior stable enough to enable meaningful prediction
of future behavior with a short history? How can such services
be provided when the interest or behavior cannot be centrally
monitored and processed? And finally, can we design privacy-
preserving services in this context?

To address these questions we propose a systematic frame-
work with two phases 1) behavioral profile extraction by
analyzing large-scale empirical data sets and investigating the
stability of user behavior, and 2) leverage the behavioral
profiles for service design – We use the implicit structure
in user behaviors to guide message and query dissemination
given a target profile.

Specifically, we first analyze network activity traces and
design a summary of user behavioral profiles based on the
mobility preferences. This is captured using the eigen vectors
of the association matrix representation of users’ mobility
history. We find that the similarity of the behavioral profile for
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a given user to its future profile is high, above 0.75 for eight
days and remains above 0.6 for five weeks. The surprising
observation is that, the similarity metric between a pair of users
predicts their future similarity reasonably well. The correlation
coefficient between their current and future similarity metrics
is above 0.7 for four days, and remains above 0.5 for fifteen
days.

The above observations demonstrate that the behavioral
profile we design is an intrinsic property of a given user
and a valid representation of the user for a good period of
time into the future. We refer to this phenomenon as the
stability of user behavioral profiles, which can be used to
map the users into a high dimensional behavioral space. The
behavioral space is defined as a space where each dimension
reflects a particular interest. For example, when we consider
mobility preferences, each dimension represents the fraction
of time a user spends at a given location (or, in other words,
the interest of a user towards this location). The position of
a user in such a space reflects its characteristics in terms of
the dimensions we select to construct the behavioral space,
and the distances between users in this space quantify how
similar they are with respect to the behavioral profile we
construct. We then design a new protocol, in which a target
profile is used to replace network IDs to indicate the intended
receiver(s) of a message (i.e., those with matching behavioral
profiles to the target profile chosen by the sender are the
intended receivers.). It is a Communication protocol in mobile
networks based on the Stability of the user behavioral profile
to discover the receivers Implicitly, abbreviated as CSI. We
present the details of the CSI protocol with two modes of
operation under the over-arching profile-cast paradigm: the
target mode (CSI:T) and the dissemination mode (CSI:D). The
target mode is used when the target profile is specified in the
same context as the behavioral profile (i.e., the target profile is
in terms of mobility preferences). The dissemination mode, on
the other hand, is used when the target profile is de-coupled
from mobility preferences.

We show that our CSI protocols perform very close to
the oracle-based optimal schemes assuming global knowledge
of the future and improve significantly over the baseline
and existing dissemination protocols. For the CSI:T mode,
comparing with the optimal 1-path protocol, our protocol
achieves more than 94% delivery ratio with less overhead (less
than 84% to the optimal 1-path), and less than 47% more delay.
Comparing with the overhead-optimal protocol, our protocol
has less than 5% more overhead and comparable (no more
than 11% more) delay. For the CSI:D mode, our protocol
features delivery ratio more than 98% while the delay of
CSI:D is about 32% more than the delay-optimal. Comparing
with the transmission overhead-optimal protocol, CSI:D can
be adjusted to have similar (less than 7% more) transmission
overhead, but much lower (up to 150% less) delay.
Our Contributions
(1) We introduce the notion of multi-dimensional behavioral
space, and devise a representation of user behavioral profiles
to map users into the behavioral space. Our study is the first
to establish conditions for stability of the relationship between
mobile network users on university campuses in this space.
(2) We propose profile-cast, a new communication paradigm
delivering messages based on user profiles. The target profile

can even be independent of the context of the behavioral
profile we use to construct the behavioral space, while still
leveraging the stability of the behavioral profile to deliver the
messages efficiently.
(3) We design CSI, an efficient dissemination protocol utilizing
the stability of behavioral profiles and SmallWorld in mobile
societies, then empirically evaluate and validate the efficacy
of our proposal using large-scale traces from university cam-
puses.

The outline of the rest of the paper is as follows. We discuss
the related work in section II and important background in
section III. This is followed by an analysis to understand the
stability of user behavioral profile in section IV. We further
discuss the potential usages of this understanding in section V
and design our CSI protocols in section VI as an example.
We evaluate the performance of CSI protocols in section VII.
Finally, we discuss some finer points in section VIII and
conclude in section IX.

II. RELATED WORK

We conduct the first detailed systematic study on the spatio-
temporal stability of user behaviors in mobile societies, a new
dimension that has not been considered before. We lay the
foundation of this work on a solid analysis of empirical user
behaviors, enabled by extensive collections of user behavioral
traces. Many of them can be found in the archives at [1],
[2]. Our effort on the extraction of behavioral profiles and
behavior-based user classification is related to the reality min-
ing project [16] and the work by Hsu et al. [4] and Ghosh et
al. [20]. We leverage the representation of mobility preference
matrix defined by us in [4], which reveals more detailed user
behavior than the five categories representation used in the
reality mining [16] and the presence/absence encoding vector
used by Ghosh et al. [20].

Applications of user traces analysis can be classified into
two different environments – in a centralized environment
where a global view of the information about all users is
available, or in a decentralized environment where each user
has limited knowledge about other users. In centralized trace
analysis, the capability of classifying users based on their
mobility preferences [4] or periodicity [19] could potentially
lead to applications such as behavior-aware advertisements
or better network management. While understanding user
behavior for these applications has its own merit, applications
in centralized scenario (where user behaviors are collected,
processed and mined at an aggregation point) are not our major
focus in the paper.

The major application considered in this paper is to design a
message dissemination scheme in decentralized environments.
While several previous works exist in the delay tolerant
network field, most of them (e.g. [3], [5], [17], [6], [10])
consider one-to-one communication pattern based on network
identities. The objective considered is to deliver messages
efficiently and promptly, given a destination node ID. In this
paper, we consider a different communication paradigm to use
the intrinsic behavioral profiles of users, instead of extrinsic,
user-behavior independent network IDs, as the destination for
messages. Our paradigm is motivated by the tight coupling
between users and their mobile devices in future mobile
networks, and the possibility of leveraging existing patterns
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in user behavior to improve decentralized communication, as
we will show later.

The one-to-many communication targeted at a behavioral
group presented in this paper is a new paradigm in decen-
tralized environments. Some of the previous work assume
existing infrastructure: PeopleNet [18] uses specialized geo-
graphic zones for queries to meet. The queries are delivered
to randomly chosen nodes in the corresponding zone through
the infrastructure. Others (e.g., [17], [10]) rely on persistent
control message exchanges (e.g., the delivery probability) for
each node to learn the structure of the network, even when
there is no on-going traffic. From the design point of view,
our approach differs from them by avoiding such persistent
control message exchanges to achieve better power efficiency,
an important requirement in decentralized networks.

The spirit of our design is somewhat similar to the work
by Daly et al. [6], in which each node learns the structure
of the network locally and uses the information for message
forwarding decisions. They use the SmallWorld network struc-
ture [7] which often exists in mobile network users (as has
been investigated in [14], [9]) and push the message toward
nodes with high centrality to improve the chance of delivery.
However, the learning process still involves control message
exchanges about past encounters, even in the absence of actual
data traffic. Our work, on the other hand, relies on the intrinsic
behavioral profile of individual nodes to “position” themselves
in the behavioral space in a localized and fully distributed
manner, without exchanging encounter history between nodes.
The use of user behavioral profiles to understand the structure
of the space is similar to the mobility space routing by Leguay
et al. [3] and the utility-based routing by Costa et al. [8].
The major differences between this work and [3], [8] are two
fold: First, we design the CSI:D mode, in which the target
profile does not have to be related to the behavioral profile
based on which the message dissemination decisions are made.
Second, we also provide a non-revealing option, via a privacy-
preserving mechanism in our protocol, thus no node has to
explicitly reveal its behavioral profile or interests to others, as
opposed to [3], [8].

The work presented in this paper significantly enhances the
capability of our preliminary profile-cast protocol presented
in [15], where the focus is on sending messages to users with
similar behavioral profile to the sender. In this paper we allow
the sender to specify a target profile to decouple the behavioral
profile of the sender from the destination profile in the message
in the CSI:T mode. We further enhance the capability of the
message dissemination scheme, allowing a target profile to
be specified in contexts orthogonal to the behavioral profile
based on which we measure the similarity between users (in
the CSI:D mode).

III. BACKGROUND

A. Mobility-based User Behavior Representation

We represent mobile user behavior of a given user using
the association matrix as illustrated in Fig. 1. In the matrix,
each row vector describes the percentage of time the user
spends at each location on a day, reflecting the importance
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Fig. 1. Illustration of the association matrix to describe a given user’s location
visiting preference.

of the locations to the user1. In [4] it has been shown that the
location visiting preferences can be leveraged to classify users
of wireless networks on university campuses. For a given user,
the singular value decomposition (SVD) [21] is applied to its
association matrix M , such that

M = U · Σ · V T , (1)

where a set of eigen-behavior vectors summarizing the impor-
tant trends in the original matrix M , v1, v2, ..., vrank(M), can
be obtained from rows of matrix V T , with their corresponding
singular values, σ1, σ2, ..., σrank(M) on the diagonal of
matrix Σ. The weight, or the relative importance of how much
power from the original matrix M each eigen-behavior vector
captures, is calculated by

wi =
σ2

i∑Rank(M)
j=1 σ2

j

. (2)

This set of vectors is referred to as the behavioral profile of
the particular user, denoted as BP (M). We have shown that,
based on realistic mobile user behaviors collected from large-
scale university traces [12], [13], a small set of behavioral
profile vectors is adequate to capture the major trend in the
association matrix for a long period2 [4]. Thus, the behavioral
profiles form a succinct, effective representation of user’s
behavioral pattern.

Furthermore, we have shown that the behavioral profile rep-
resentation provides a computational efficient way to compare
the mobility trend of two users [4]. The behavioral similarity
metric between two users’ association matrices A and B is
defined based on their behavioral profiles, vectors ai’s and
bj’s and the corresponding weights, as

Sim(BP (A), BP (B)) =

rank(A)∑
i=1

rank(B)∑
j=1

waiwbj |ai · bj |, (3)

which is essentially the weighted cosine similarity between
the two sets of eigen-behavior vectors.

B. Traces
In this paper, we seek a realistic, deep understanding of user

behavioral patterns by analyzing semester/quarter-long user

1While there may be numerous other representations of user behavior, we
shall show that this representation possesses desirable characteristics for the
purposes of this study. Further investigation of other representations is a
subject of future work.

2Specifically, for more than 99% of users, seven vectors or less are adequate
to capture 90% or more power in their association matrices.



4

TABLE I
FACTS ABOUT STUDIED TRACES

Trace source USC [12] Dartmouth [13]
Time/duration 2006 spring 2004 spring

of trace semester quarter
Start/End 01/25/06- 04/05/04-

time 04/28/06 06/04/04
Unique 137 buildings 545 APs/

locations 162 buildings
Unique MACs analyzed 5,000 6,582

7LPH7

G G

7� 7�

Fig. 2. Illustration: consider the trailing d days of behavioral profile at time
points that are T days apart.

behavioral logs collected from operational campus networks
from public trace archives [1], [2]. We present results based
on two data sets from the University of Southern California
(USC) [12] and the Dartmouth College (Dartmouth) [13]. The
details of the data sets are listed in Table I.

We choose to use WLAN traces as they are the largest
user behavioral data sets available. The information available
from these anonymized traces contains many aspects of the
network usage (e.g., time-location information of the users
by tracking the association and disassociation events with
the access points, amount of traffic sent/received, etc.). The
richness in user behavioral data poses a challenge in repre-
senting the user behavior in a meaningful way, such that the
representation not only reveals an intrinsic, stable behavioral
profile of a user, but the identified behavioral profile also
leads to practical applications. We show in this paper that the
location visiting preferences (which is only a subset of the user
behavioral data) is a stable attribute for both individual users
and the relationship between users. This property will prove
quite valuable to the design of efficient message dissemination
schemes, which we empirically validate using the above traces.

IV. UNDERSTANDING SPATIO-TEMPORAL
CHARACTERISTICS OF USER BEHAVIORAL PROFILES

In this section we introduce our analysis of user behavioral
patterns and its significance on the service design. While
previous works on user classification based on long-term
behavioral trend [4], [20], [19] are useful and in line with
our goal, the stability of such classification over time has
not been studied systematically. In particular, the short-term
behavior of a user may deviate significantly from the norm,
and the stability of user behavioral profiles is a decisive
factor for whether it can be leveraged to represent the user’s
future behavior. In this section we investigate the following
questions: (1) How long of behavioral history do we need to
classify a user? and (2) How much does the behavior of a
given user and its relationship with other users change with
respect to time?

We consider the effect of the amount of past history (of user
behavior) on the obtained behavioral profiles. Each user uses
the location visiting preference vectors in the past d days to
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Fig. 3. Similarity metrics for the same user at time gap T apart.
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Fig. 4. Correlation coefficient of the similarity metrics between the same
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summarize the behavior in the most recent history – the user
retains d location visiting preference vectors for these days, or-
ganize them in a matrix, and use singular value decomposition
to obtain the behavioral profile, as described in section III-A.
We seek to understand how d influences the representation
and similarity calculations. More specifically, we look into two
important aspects: (1) Whether the representation of a given
user is stable across time, and (2) whether the relationships
between user pairs remain stable as time evolves.

We first consider the stability of the representation of a given
user. Considering two points in time that are T days apart,
we obtain the behavioral profiles for the same user at both
end points, using the logs of the trailing d days ending at
those end points, as illustrated in Fig. 2. Then we use the
similarity metric defined in Eq. (3) to compare how stable a
user’s behavioral profile is to one’s former self after T days
elapse. The average results with various values of the time
gap, T , and considered behavioral history, d, are shown in
Fig. 3. We notice that, even if we collect a short history of
user behavior (say d = 3), the representation is similar to the
behavior of the user for a long time into the future. When
we consider T = 35 days (five weeks) apart, the behavioral
profiles from the same user still show high similarity, at about
0.6. The amount of history used does not influence the result
too much when the considered T is large enough to avoid
overlaps in the used behavioral history (i.e., when T > d). We
conclude that on university campuses, the behavioral profile
as defined in Section III-A for a given user is stable, i.e., it
remains highly similar for the same user across time. One
interesting note is that, when the behavioral profile includes
only part of a week (d < 7), the similarity of the user to
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its former self shows a weekly pattern (i.e., when T is an
integer multiple of seven, the similarity peaks). This trend is
particularly pronounced in the USC trace.

Second, we try to quantify how the behavioral similarity
between the same pair of users varies with time. For this part,
we use Eq. (3) to calculate the similarity between two users, A
and B, at two points in time, SimT1(A,B) and SimT2(A,B),
where T1 and T2 are T days apart. We perform this calculation
to all user pairs, and then calculate the correlation coefficient
of the similarity metrics obtained after a T -day interval, as

r =

∑
∀A,B(X −X)(Y − Y )

NSXSY
, (4)

where X = SimT1(A,B) and Y = SimT2(A, B), and the
notations X and SX denote the average of X obtained from all
user pairs and its standard deviation, respectively. N is the total
number of user pairs. The correlation coefficient quantifies
how stable the relationship between user pairs is. We repeat
the calculation for all pairs of users with various d and T
values to arrive at Fig. 4. We observe that the similarity metrics
between user pairs correlate reasonably well if the considered
time periods are not far apart. For T smaller than one week,
the correlation coefficient is above 0.62. This indicates, once
the similarity between a pair of user is obtained, it remains
a reasonable predictor for their mutual relationship for some
time period into the future. Although the reliability of the
stale similarity data decreases with respect to time, the current
similarity of a user pair remains moderately correlated to their
future similarity, in the time range up to several weeks. The
correlation is above 0.4 for up to five weeks.

The investigation establishes that the user behavioral
profile is a stable feature of the users – the representation
of an individual user and the relationship between users
are well correlated with the past history for the near future.
Thus we map the behavioral profile to a virtual behavioral
space [3], in which each user’s behavior is quantified as a
high dimensional point3. The mutual similarity metric between
users is a function of their respective positions in this space.
In this paper, when we say two users are similar, it means they
are close in the behavioral space (i.e., the distance between
the two users is small). We also use the term neighborhood
of a node to refer to the other nodes that are similar to this
particular node in the behavioral space.

V. THE PROFILE-CAST COMMUNICATION PARADIGM

Profiling users based on stable behaviors is a fundamental
step to understand human behavior. Motivated by the stability
of user behavioral profiles, we introduce a profile-cast com-
munication paradigm where we use user behavioral profiles,
instead of network IDs, to represent the destination(s) for
messages in this new paradigm. We envision that such a novel
approach has several benefits.

First, it enables behavior-aware message delivery in the
network without mapping attributes to network IDs. As each
user maintains its behavioral profile, it is now possible to
deliver announcements about sports events on campus towards

3The dimension of the behavioral space is the same as the mobility
preference vector representation, typically in the order of a hundred for these
two campuses.

sports enthusiasts (e.g., people who visit the gym often)
or advertise a performance at the school auditorium to the
regular attendees of such events. The key advantage here is
to avoid the need to maintain a directory service mapping
user behaviors to their IDs, which provides design and privacy
challenges in highly dynamic mobile networks.

Second, it facilitates the discovery of nodes with certain
behavior patterns. Consider, for example, in the message
ferry [11] architecture where nodes with high mobility move
messages across the network to facilitate the communication
between otherwise disconnected nodes. One can choose a
target profile that reflects a mobility profile and thus eliminate
the need for knowing the identity of the ferry beforehand or
enforcing this mobility pattern on a controlled node. Alterna-
tively, users that possess the desired mobility pattern can be
discovered dynamically and serve as ferries.

Our profile-cast communication paradigm is applicable in
several architectures. In the centralized server-based archi-
tecture, user profiles could be collected and stored at a data
repository, and mined for user classification (e.g., [4], [19]),
abnormality detection, or targeted advertisements. In the cel-
lular networks, the low-bandwidth channel between the users
and the infrastructure can be leveraged to exchange behavioral
profiles and match users (e.g., [18]). In this paper, however,
we consider decentralized infrastructure-less networks, and
focus on how stable behavioral profiles are used for better
message dissemination. We name the protocols designed for
this scenario as CSI, since it is a Communication scheme based
on the Stable, Implicit structure in mobile networks.

VI. PROTOCOL DESIGN

In this section, we first present our assumptions and design
requirements for the CSI protocols. We then discuss the design
of the CSI protocols based on in-depth understanding of the
relationship between similar behavioral profiles and encounter
events.

A. Assumptions and Design Requirements
We assume that each node profiles its own behavioral

pattern by keeping track of the visiting durations at different
locations and summarizing the behavioral profile using the
technique discussed in III-A. This is an individual effort by
each node involving no inter-node interactions. This can be
done by the nodes over-hearing the beacon signals from the
fixed access points in the environment to find out its current
location. Note that, the use of these beacon signals is only
for the node to profile its own behavior – they are not used
to help the communication in our protocols (we will re-visit
detailed points of this assumption in section VIII). Also, for
ease of understanding, we assume in this section that nodes are
willing to send their behavioral profiles to other nodes when
needed. A privacy-preserving mechanism that eliminates this
operation is introduced and discussed in section VIII.

The goal of our CSI protocol is to reach a group of nodes
matching with the target profile specified by the sender, under
the following performance requirements: (1) The protocol
should be scalable, in particular not being dependent on a
centralized directory to map target profiles to user identities.
(2) It should work in an efficient manner and avoid transmis-
sion and storage overhead when possible. Also, it should avoid
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control message exchanges in the absence of data traffic. (3)
The syntax of the target profile should be flexible, allowing
the target profile in a different context from the behavioral
profiles we use to represent the users. (4) The operation of the
protocol should be flexible to allow tradeoff between various
performance metrics. And finally, (5) the design should be
robust and help in protecting user privacy.

We design two modes of operation for the CSI protocol
under the above requirements. (a) When the target profile is
in the same context as the behavioral profile (in our example,
since the behavioral profile is a summary of user mobility, this
corresponds to the scenario when the target profile describes
users that move in a particular way), the CSI:Target mode
(CSI:T) should be used. We note that for CSI:T the behavioral
profile (in terms mobility) can sometimes be used to infer
other social aspects of the users, such as affiliations or even
interests (e.g., people who visit the gym often should like
sports in general). Such inferences expand the scenarios in
which CSI:T can be used. (b) When making such inferences
of target user behavioral profiles is not possible (hence CSI:T
is not applicable), CSI:D provides a more generic option.
When the target profile is irrelevant to the context of the
behavioral profile (e.g., when I want to send to everyone
interested in movies on campus), the CSI:Dissemination mode
(CSI:D) should be used.

The major challenge involved in the design process is
that each node is only aware of the behavioral profile of
itself. Furthermore, we require no persistent control message
exchanges for the nodes to “learn” the structure of the network
proactively when they have no message to send. Nodes only
compare their behavioral profiles when they are involved in
message dissemination. Based on this very limited knowledge
about the behavioral space, a node should predict how useful a
given encounter opportunity is in terms of achieving the fore-
mentioned requirements. Since encounter events may occur
sporadically in sparse, opportunistic networks, nodes must
make this decision for each encounter event independent of
other encounter events (that may occur long before or after
the current one under consideration). Such a heuristic must
rely on the understanding of the relationship between nodal
behavioral profiles and encounters, which we discuss next.

B. Relationship between Behavioral Profiles and Encounters
We now analyze the relationship between user behavioral

profiles and a key event for user-to-user communication in
an infrastructure-less network – encounters. Encounters in
mobile networks refer to events when users move within the
radio range of each other and direct communication between
the involved devices is possible. In this paper, based on the
WLAN traces, we assume that when two users visit the same
location (i.e., access point) during overlapped time intervals,
they encounter with each other.

While it seems intuitive that users visiting similar locations
should encounter with each other with higher probability, this
is not obvious on university campuses. Students and faculty
have their own schedules, and they may rarely encounter due
to the difference in their schedules (i.e., they might be in the
same building at different times). Hence we investigate the
relationship between behavioral profiles and encounter events,
first as a sanity check of our intuition, and more importantly,

to understand the relationship between the behavioral profiles
and various aspects of the encounter events (e.g., the encounter
probabilities, encounter durations, etc.). This helps to reveal
the implicit structure existing in mobile network users, which
is the key to the design of the CSI protocols presented later.

We classify all node pairs into different bins based on their
behavioral similarity metric (as defined in Eq. (3)), and obtain
various characteristics of encounter events as a function of
the pair-wise behavioral similarity. In Fig. 5 (a), we show the
aggregate encounter time duration between an average pair of
nodes given the behavioral similarity. In Fig. 5 (b), we show
the probability for a given node pair to encounter with each
other, given their similarity. Combining these two graphs, we
see that if two users are similar in behavioral profiles, they
are much more likely to encounter, and the total time they
encounter with each other is much longer – an indication
that nodes with similar behavioral profiles indeed are more
likely to have better opportunities to communicate. When
two users are similar enough (with behavioral similarity larger
than 0.3), they are almost guaranteed to encounter at some
point (with probability above 0.9). However, we note that
some “random” encounter events happen between dissimilar
users. For users with very low (almost zero) similarity, the
probability for them to encounter is not zero, although such
encounter events are much less reliable (i.e., they occur with
much shorter durations, see Fig. 5 (a)).

In Fig. 5 (c) we further compare the behavioral similarity
of node A and B versus the sets of nodes A and B encounter.
We denote the set of nodes A encounters with as E(A). The
similarity of the two sets of nodes is quantified by |E(A) ∩
E(B)|/|E(A)∪E(B)|, where | · | is the cardinality of the set.
This graph shows, as two nodes are increasingly similar,
there is a larger intersection of nodes they encounter. On
the flip side of the coin, when an unlikely encounter event
between dissimilar nodes occurs, it helps both nodes to
gain access to a very different set of nodes, which they are
unlikely to encounter directly.

The above findings relate to the SmallWorld encounter
patterns between mobile users [14]. The key features of
SmallWorld networks [7] are high clustering coefficient and
low average path length. In the mobile user behavior we
analyze in this section, people with similar behavior form
“cliques”. The “random” encounter events between dissimilar
nodes build short-cuts between these cliques to shorten the
distances between any two nodes. We leverage these properties
in our protocol design, discussed next.

C. CSI:Target Mode
In the CSI:Target mode (CSI:T), the sender specifies the

target profile (TP) for the recipients using the same format and
semantics as that of the user behavioral profile, i.e., in our case
the TP is a summarized mobility preference vector (i.e., the
percentage of times the target node(s) visit various locations).
The sender also specifies a threshold value, thsim, as the
similarity threshold for a node to be an intended receiver (i.e.,
if a given user A has Sim(BP (A), TP ) > thsim, node A
belongs to the group of intended receivers.). This threshold is
set by the sender according to the desired degree of similarity
to the TP . The TP and the threshold, thsim, are included in
the message header of the message.
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(c) Similarity of encountered node sets.

Fig. 5. Relationship between the similarity in behavioral profiles and other quantities.

For example, we could reach people who like sports by
sending messages to those who visit the gym regularly. This
criteria could be set up by specifying the TP as a vector with
only one 1 corresponding to the gym location (hence only
time spent at this location is considered), and a threshold
for the percentage of time a user spends at the gym to be
considered as a “frequent visitor”. Note that this value could
be set according to the needs of the message sender. If one
wants to consider time spent at multiple locations (e.g., several
libraries) in aggregation, one can also specify a TP with
multiple 1’s (refer to Eq. (3), the inner product operation in the
similarity calculation naturally combines these corresponding
entries).

We first discuss the intuition behind the design of the
CSI:T mode using Fig. 6 as an illustration. As per section
VI-B, to deliver messages to receivers defined by a given
TP in the behavioral space, one way is to gradually move
the message towards nodes with increasing similarity to the
TP via encounters, in the hope that such transmissions will
improve the probability of encountering the intended receivers
and shorten the delay before such encounters occur. Finally,
when the message reaches a node close to the TP (in the
behavioral space), most nodes that encounter frequently with
this node are also similar to TP. Hence, the message should be
spread to other nodes in the neighborhood (in the behavioral
space) of the node.

There are two phases in the operation, as shown in the
pseudo-code in Algorithm 1, the gradient ascend phase and
the group spread phase. (1) Starting from the sender, if node A
currently holding the message is not an intended receiver (i.e.,
Sim(BP (A), TP ) < thsim), it works in the gradient ascend
phase, otherwise it works in the group spread phase. (2) In the
gradient ascend phase, for each encountered node, the current
message holder asks for the behavioral profile of the other
node, and if the other node is more similar to the TP in the
behavioral space, the responsibility of forwarding the message
is passed to this node. One can imagine that these similarities
form an inherent gradient for the message to follow and reach
the close neighborhood of the TP in the behavioral space,
hence the name gradient ascend phase. Note that, up to this
point, there is only one copy of the message in the network –
these intermediate nodes who are not similar to the TP only
forward the message once. (3) When the message reaches a
node with similarity larger than thsim to the TP, the group
spread phase starts. This intended receiver holds on to the
message, and requests the behavioral profiles from nodes it
encounters. If they are also intended receivers, copies of the
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Fig. 6. Illustration of the CSI:T protocol: 1. Gradient-ascend: One copy of
the message follows increasing similarity gradient to reach the neighborhood
of the target profile, then triggers 2. Group spread.

messages will be delivered to them. All intended receivers,
after getting the message, continue to work in the group
spread phase. Although multiple copies of the message are
generated in the group spread phase, it is triggered only when
the message is close to the TP, thus most of the encounter
events and inquiries will occur among the intended receivers,
reducing unnecessary overhead.

D. CSI: Dissemination Mode

In the CSI:Dissemination mode (CSI:D), there does not
exist a direct relationship between the target profiles of the
recipients and their measured behavioral profiles. One example
is to reach people who like movies on campus. If there are no
movie theaters on campus, the measured behavioral profiles
(i.e., mobility preference) cannot be used to infer such interest.
This situation is illustrated in Fig. 7. There appears to be
little insight provided by the similarities between the nodal
behavioral profiles to guide message propagation, as the in-
tended receivers in this case may be scattered in the behavioral
space, and the relationship between the target profile and the
behavioral profile cannot be quantified. Although it is always
possible to reach most users through epidemic routing[5], this
leads to high overhead, and requires all nodes in the network
to keep a copy of the message. The objective of CSI:D mode
is to reduce the numbers of message copies transmitted and
stored in the network, yet make it possible for most nodes to
get a copy quickly, if they are the intended receivers.

We first discuss the intuition behind the design of the CSI:D
mode, using Fig. 8 as an illustration. From section VI-B, since
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/* BP (A): Behavioral profile of node A */
/* T : Maximum life time of the message */
if node A has the message then

if Sim(BP (A), TP ) > thsim then
Initiate Group spread();

else
Initiate Gradient ascend();

Gradient ascend(){
while the message is not sent do

foreach node E encountered do
Get BP (E) from E;
if Sim(BP (E), TP ) > Sim(BP (A), TP ) then

Send message to E;
Delete message;

if message is in network longer than T then
Delete message;

}
Group spread(){
foreach node E encountered do

Get BP (E) from E;
if Sim(BP (E), TP ) > thsim then

Send message to E;
if message is in network longer than T then

Delete message;

}
Algorithm 1: Algorithm for the CSI:T mode

66 66
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Fig. 7. Illustration of the CSI:D protocol. Left chart: The goal is to send a
message to a group of nodes with a similar characteristic in the interest space
(white nodes in the circle). Right chart: However, they may not be similar
to each other in the behavioral space (nodes with the same legend represent
similar nodes in the behavioral space).

the nodes with high similarity in their behavioral profiles
are almost guaranteed to encounter, there is really no
need for each of them to keep a copy and disseminate the
message. Electing a few message holders within a group of
similar nodes would suffice. This intuition leads to the con-
struction of our message dissemination strategy for CSI:D. We
aim to have only one message holder among the nodes who are
similar in their behavioral profiles (or equivalently, pick only
one message holder within a neighborhood in the behavioral
space. In Fig. 7, this corresponds to having only one message
holder from each group of nodes with the same legend). We
add the message holders carefully to avoid overlaps in the
encountered nodes among message holders. This is achieved
as follows. As suggested by Fig. 5 (c), we should select nodes
that are very dissimilar in their behavioral profiles to achieve
low overlaps. Recall that dissimilar node pairs still encounter
with non-zero probability, our design philosophy is to leverage
these “random” encounter events as short-cuts to navigate
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Fig. 8. Illustration of the CSI:D protocol. The idea is to select the message
holders in a non-overlapping fashion to cover the entire behavioral space.

through the behavioral space efficiently, hopping across the
space to reach dissimilar nodes with relatively few message
transmissions. Such a design philosophy is also related to the
SmallWorld human network structure – a message will reach
an intended receiver shortly once it has reached someone in
the receiver’s “clique”.

The pseudo-code for CSI:D is given in Algorithm 2. (1)
The sender itself starts as the first message holder in the
network. (2) Each message holder attempts to strategically add
additional message holders in the network. When it encounters
with other nodes, it asks for the behavioral profile of the
other node to be considered as a potential additional message
holder. Each message holder keeps a list of the behavioral
profiles of all known message holders4, and the new node has
to be dissimilar to all known holders (with the similarity metric
lower than a forwarding threshold, thfwd) to be added as a new
message holder. (3) If, on the other hand, this node is similar
to the message holder (i.e., within a neighbor threshold thnbr),
it uses a single bit to remember that there is a message holder
in its neighborhood and propagates this information to other
nodes within the thnbr-neighborhood, defined as all nodes
with similarity value higher than thnbr to the message holder.
This bit is used to prevent excessive message holders in the
same neighborhood, even if some nodes have not encountered
with the message holders directly. (4) When holders encounter,
they update each other with the behavioral profiles of the
known holders list, to gain a better view of the existing
message holders in the network. (5) If two similar holders
encounter, one of them should cease to be a holder to reduce
duplicates.

Each message holder is responsible for disseminating the
actual message to the intended receivers. The message holders
sends the TP specified by the sender in the message to the
encountered nodes. If the encountered node is an intended
receiver, the full message will be transferred.

VII. EVALUATION RESULTS

In this section, we perform extensive evaluation of the CSI
protocols, based on the derived encounters between users from
the two empirical traces. We compare the performance of
our proposal with two flavors of oracle-based protocols with
the objectives of optimizing delay or overhead, to understand
where the CSI protocols stand with respect to the optimum.

4Note this list does not necessarily contain all holders in the network.
Message holders that are added by a particular message holder are not known
to other holders until they meet and sync the lists.



9

/* BP (A): Behavioral profile of node A */
/* Hi(A): The i-th known holder of node A */
/* holder in group(A): If A knows there is a

message holder in its neighborhood */
/* T : Maximum life time of the message */
if node A is a message holder then

foreach node E encountered do
Get BP (E);
if E is not a holder then

if Sim(BP (E), BP (Hi(A))) < thfwd∀i and
holder in group(E) = false then

Elect E as an holder;
Add BP (E) to holder list;
Send the message;
Send BP (Hi(A)), ∀i;

else if Sim(BP (E), BP (Hi(A))) > thnbr

for any i then
Let E set holder in group(E) = true;

else
if Sim(BP (E), BP (A)) > thnbr then

A ceases to be a holder;
else

Sync holder lists between node A and E;

if message is in network longer than T then
Delete message and related data structure;

else if holder in group(A) = true then
foreach node E encountered do

Get BP (E);
if Sim(BP (A), BP (E)) > thnbr then

Let E set holder in group(E) = true;

if message is in network longer than T then
Delete related data structure;

Algorithm 2: Algorithm for CSI:D mode.

We also compare CSI to epidemic routing [5] and variants of
random walk5. In all the simulation cases, we split the traces
into two halves, use the first half to obtain the behavioral
profiles for all users, and then use the second half of the trace
to evaluate the protocols.

A. CSI: Target Mode (CSI:T)

1) Evaluation setup: In the scenario of CSI:T mode, the
sender specifies the TP and a threshold of similarity thsim. If
a node shows a similarity metric higher than thsim to the TP,
it is an intended receiver. In our evaluation, we use the top-
10 dominant behavioral profiles6 (i.e., the behavioral profiles
exhibited by the most number of users, typically in the order
of hundreds) in our traces as the TPs, and for each TP we
randomly pick 100 users as the senders generating messages
targeting at the TP. We use the threshold thsim = 0.8 as the

5The CSI could not be directly compared with existing routing schemes
(e.g., [17], [3], [6], [10]) in DTN as most of them have a different routing
objective: reaching a particular network ID.

6We have also experimented with other target profiles, such as rarely
visited locations on campuses or profiles that contain a combination of several
locations, and the results are similar to those presented in this section.

transition point between the gradient ascend phase and the
group spread phase7.

We compare our CSI:T protocol with several other protocols
discussed below.
(1) The epidemic routing [5] is a message dissemination
scheme with simplistic message-forwarding rules: all nodes
that have received the message send copies further to all other
nodes who have not received the message yet.
(2) The random walk (RW) protocol generates several copies of
the message from the sender, and each copy is passed around
among all nodes in a random fashion, until the hop count
reaches a pre-set TTL value.
(3) The group spread only is a simplified version of our CSI:T
protocol. It uses only the group spread phase, i.e., the original
sender holds on to the message until it encounters a node that
is more similar than thsim to the TP, when it skips the gradient
ascend phase and enters the group spread phase directly.
(4) We also consider three theoretical protocols that require
global knowledge of the future. (4.1) The delay-optimal pro-
tocol sends copies of the message only to the nodes which
lead to the fastest delivery to the targeted receivers, and no
one else. This is the oracle-based optimal protocol achievable
if one has perfect knowledge of the future, and serves as
the upper bound for performance (in terms of delay). (4.2)
The overhead-optimal protocol, on the other hand, minimizes
the number of transmission counts using the knowledge of
future encounter events. This protocol delivers messages to all
reachable receivers under the minimum possible transmission
count. The pseudo-code we use for these two optimal protocols
is summarized in Algorithm 3. Notice this is basically a gener-
alized version of the Dijkstra algorithm, with a different metric
(i.e., delay or transmission count) used in either protocol.
(4.3) The optimal 1-path protocol is an oracle-based protocol
to leverage the fastest path to deliver the message to the
neighborhood of the TP – Using the knowledge of the future
encounter events, it identifies the node that could receive the
message the earliest among all intended receivers, and finds
the path taken from the sender to reach this particular node.
The optimal 1-path protocol then uses this path to deliver
one copy of the message to the neighborhood of the intended
receiver group. Once a copy of the message is delivered to
the thsim-neighborhood to the TP, it follows the same group
spread phase as in CSI:T. This is the optimal performance
(upper bound) for the family of protocols delivering one copy
of message to the neighborhood of the target profile, if one
chooses a good (shortest delay) path – note that this shortest-
delay path may not always follow an increasing gradient of
similarities to the TP.
Performance metrics We compare these message dissemina-
tion schemes with respect to three important performance met-
rics: delivery ratio, average delay, and transmission overhead.
The delivery ratio is defined as the percentage of the intended
receivers (those with similarity greater than thsim to the TP )
actually receive the message. We account for the transmission
overhead as the total number of messages sent in the process
of delivery. See more discussions on the additional overhead
of exchanging the behavioral profiles later in section VIII-A.

7We have also tried various values of thsim and the results are similar to
what we show here.
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/* done[i]: if the metric for node i is finalized */
/* metric[i]: current best metric to reach node i */
/* from[i]: the previous hop of node i */
/* reach time[i]: time node i receives the message */
/* s: the source node */
/* candidate: current node under consideration, from

which all other “unfinished” nodes could
potentially improve the metric */

forall Node i do
set done[i] = false;
set metric[i] = inf.;
set from[i] = null;
set reach time[i] = inf.;

set done[s] = true;
set metric[s] = 0;
set reach time[i] = sendtime;
set candidate = s;
while candidate 6= null do

foreach node k that done[k] = false do
foreach Encounter event between candidate and
k after reach time[candidate] do

if Message delivery from candidate to k
improves (reduces) metric[k] then

Modify metric[k];
set reach time[k] =
Encounter event time;
set from[k] = candidate;

forall Node k such that done[k] = false and
metric[k] 6= inf. do

Find node m with minimum metric[m];
if m 6= null then

set candidate = m;
set done[m] = true;

else
set candidate = null;

Algorithm 3: Algorithm for the oracle-based optimal pro-
tocols. The metric under consideration is delay in the
delay-optimal protocol, and number of transmissions in the
overhead-optimal protocol.

2) Evaluation results: We show the normalized perfor-
mance metrics with respect to that of epidemic routing (the
relative performance for each protocol assuming epidemic
routing is 1.0) and its 95% confidence intervals in Fig. 9. We
first observe, among all compared protocols, our CSI:T leads to
a high delivery ratio (0.96 for USC, 0.94 for Dartmouth) with
very small overhead (0.02 for USC, 0.018 for Dartmouth). We
summarize the comparisons as follows.
(1) The epidemic routing leads to the highest overhead while
its aggressiveness also results in the highest possible delivery
ratio and the lowest possible delay. Notice that our CSI:T
has close delivery ratio to the epidemic routing but very low
overhead.
(2) The random walks do not work well regardless the number
of copies and the value of TTL, with delivery ratio lower than
45% in all cases and high delay. Since the random walk does
not transmit messages using the guidance from user behavioral
profile, it wastes a lot of transmissions without sending the

message towards the right nodes.
(3) For the simplified version of CSI:T, group spread only, the
delay is longer and the delivery ratio is lower than our CSI:T
protocol, and the difference is quite significant. This validates
the need for the gradient ascend phase before the group spread
phase. We will further investigate this phenomenon later.
(4) Comparing with the optimal protocols with future knowl-
edge, we see that there is really not much room for the
CSI:T protocol to improve in terms of the delivery ratio
and the overhead. (4.1) Specifically, CSI:T has more than
94% of delivery ratio and uses less than 84% overhead of
the delay-optimal strategy. The delay, on the other hand,
has some room for improvement. The key reason of this
difference (in terms of delay) is that our gradient ascend phase
generates only one copy of message from the sender and it
moves towards the TP following strictly ascending similarity,
while the delay-optimal protocol generates as many copies as
needed to achieve the lowest delay for each node. (4.2) When
comparing with the overhead-optimal protocol, we observe
that the overhead CSI:T incurs is about the same (with less
than 5% difference) as the overhead-optimal protocol, and the
delay is less in the USC case (by 20%) but slightly more in the
Dartmouth case (by 11%). Base on the above comparisons, our
CSI:T protocol does well in terms of overhead and delivery
ratio, even compared to the optimal protocols with perfect
information of the intended receivers and future encounter
events. (4.3) Finally, comparing with the optimal 1-path, which
delivers one copy of the message to the neighborhood of the
TP using the best (fastest) path based on the knowledge of
the future encounters, our CSI:T has 1.40 and 1.47 times more
delay, for USC and Dartmouth, respectively. This calls for a
further investigation of selecting good path(s) from the sender
to the TP , which we leave out for future work.

The average performance metrics shown above provide
adequate comparison between protocols, but do not reveal the
detailed differences of the protocol performance under differ-
ent scenarios. To achieve this, we analyze the performance
metrics by splitting the simulation cases into categories, de-
pending on the original similarity metric between the sender’s
behavioral profile and the TP, Sim(BP (S), TP ). By the split
statistics shown in Fig. 10, we see why the gradient ascend
phase is needed to improve the delivery ratio and reduce the
delay. When we use only the group spread phase, and the
sender is dissimilar from the TP, it takes a longer time before
any encounter event happens directly between the sender and
anyone in the neighborhood of the TP, if it happens at all –
hence the delay is longer, and the delivery ratio is lower. The
introduction of the gradient ascend phase in CSI:T is thus
crucial for these senders who are dissimilar from the TP to
achieve good performance.

Comparing the differences between two versions of random
walks, few long threads and many short threads, reveals an
interesting difference. The concept that leads to the difference
is illustrated in Fig. 11. Many short threads are better if the
sender is close to the TP, in terms of both delivery ratio and
delay, as the sender generates a lot of threads to “occupy”
the neighborhood – since the threads are short, and similar
users encounter more frequently, they are likely to stay in
the neighborhood, even if the random walk does not make
forwarding decisions based on behavioral profile similarity at



11

� ��� � ��� �

( S LG HP LF �UR X WLQ J
& 6 ,�7

* URXS �VS UHDG �R Q O\
' HOD\�R S WLP D O

2 YHUK HDG �R S WLP D O
2 S WLP DO �� �S D WK

5: �77/ ��� �FR S \ �
5: �77/ ��� �FR S \ �

5: �77/ �� �FR S \ ���

' HOLYHU\�5 DWLR ' HOD\ 7 UDQ VP LVVLR Q �2 YHUK HDG

(a) USC.

� � � � � � � �

( S LG HP LF�UR X WLQ J
& 6 ,�7

* URXS �VS UHDG �R Q O\
' HOD\�R S WLP D O

2 YHUK HDG �R S WLP D O
2 S WLP DO�� �S D WK

5: �77/ ��� �FR S \ �
5: �77/ � �FR S \ ���

' HOLYHU\ �UD WLR ' H OD\ 2YHUK HDG

(b) Dartmouth.

Fig. 9. Performance comparison of CSI:T to other protocols.

all. This phenomenon is also observed in our earlier work [15].
By contrast, if the sender is far away from the TP, long random
walk threads provide a higher chance of moving close to the
TP, while short threads provide less hope. Our CSI:T protocol
successfully leverages the implicit relationship between
behavioral profile similarity and encounters detailed in
section VI-B to improve the message delivery when the
sender is dissimilar to the target profile. This highlights
the power of incorporating the understanding of user
behaviors in the profile-cast paradigm.

B. CSI: Dissemination Mode (CSI:D)

1) Evaluation setup: In the scenario of CSI:D mode, the
target profile specified by the sender is not used to determine
to where the message should be sent in the behavioral space.
Hence, the protocol seeks to keep one copy in every neigh-
borhood in the behavioral space. In our evaluation, we start
from 1000 randomly selected users as the senders. Since the
target profile of the intended receivers can be orthogonal to
the behavioral profile, we create the scenario for evaluation
by randomly selecting 500 nodes as the intended receivers
for each sender, and consider the average performance. We
vary the two thresholds, thfwd and thnbr in our CSI:D mode
protocol proposed in VI-D, to adjust the aggressiveness of the
forwarding scheme. Setting lower values for both thresholds,
we expect, would lead to fewer message holders. Furthermore,
the existence of a message holder now prevents nodes in a
larger neighborhood from becoming message holders. This
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Fig. 10. Split performance metrics of CSI:T based on the similarity between
the sender and the target profile (for USC trace).
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Fig. 11. Illustration for the comparison between one long random walk and
many short random walks.

provides for less aggressive operation and forwarding, thus
leading to lower delivery ratio and more delay, but incurring
less overhead.

We compare various parameter settings of our CSI:D mode
with two baseline protocols, (1) the epidemic routing and
(2) the random walk. Epidemic routing again serves as the
baseline for comparison. In the random walk, the visited
nodes along the walks become message holders and they
will later disseminate the messages further when encountering
with the intended receivers. We also compare CSI:D with
two oracle-based optimal protocols, (3.1) the delay-optimal
and (3.2) the Tx-optimal. The delay-optimal protocol again
assumes global view of the network and the knowledge of the
future. Every node in the network knows who the intended
receivers are, and sends the messages to other nodes only
if they lead to the fastest delivery of the message to one of
the receivers. The Tx-optimal (transmission optimal) protocol
sends the message to other nodes only if they lead to the
delivery of the message to one of the receivers with minimum
number of transmissions, considering all possible ways to
reach the receivers given future encounter events. In both
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optimal protocols, the intermediate nodes (i.e., non-receivers)
keep a copy of the message as they have to store it for future
transmission(s).
Performance metrics The performance metrics we consider
are delivery ratio, average delay, transmission overhead, and,
in addition, storage overhead. Here the transmission overhead
refers to the total number of transmissions to spread the
message to holders and to deliver them to the intended
receivers. The storage overhead is the number of eventual
message holders that remain in the network after our scheme
is stabilized (recall that some message holders may decide to
cease performing the task if another message holder is found
with similar behavioral profile in CSI:D). This is the overall
amount of storage space consumed by the nodes collectively
to deliver the message8. In the epidemic routing protocol,
all nodes that receive the message hold on to the message
for future transmissions (there is no distinction between the
message holder and a regular node), hence the transmission
overhead and the storage overhead are the same.

2) Evaluation results: In Fig. 12 we show the average result
of 1000 simulation cases with 95% confidence interval. We
use the legend CSI:D-thfwd-thnbr for our CSI:D scheme. (1)
Comparing with the epidemic routing, our protocol saves a lot
of transmission and storage overhead. It is possible to use only
about 7.2% strategically chosen nodes as the message holder
and reach the intended receivers with little extra delay (about
32% more), when thfwd = 0.3 and thnbr = 0.7. The delivery
ratio is almost perfect, no lower than 98.5%. On the other
hand, if one desires further reduction of the overhead, setting
lower threshold values provides a way to trade-off more delay
and less delivery ratio for less overhead, e.g., setting thfwd =
0.05 and thnbr = 0.5 cuts the transmission overhead to less
than 30% of the previous parameter setting. The delivery ratio
is still more than 96.7% with this less aggressive parameter
setting, and the storage overhead is as low as 2.2%.

(2) For the random walks, we have configured the TTL
values to have similar overhead to the CSI:D (i.e., compare
RW TTL=350 with CSI:D-0.7-0.3 and RW TTL=150 with
CSI:D-0.6-0.1). We notice that although the delivery ratio of
the random walk is also very good (1.5% to 10% inferior to
the corresponding CSI:D), thanks to the non-zero encounter
probability between dissimilar nodes, its delay is much longer
than the corresponding CSI:D (between 50% to 108% more).
This is because the random walk does not leverage the implicit
structure of the behavioral space to select the message holders
wisely, as CSI:D does. The random walk leaves copies within
the same neighborhood of the original sender with higher
probability, as similar nodes are more likely to encounter
(i.e., the random walk will not “leave the neighborhood” in
a small number of hops). Hence, for random walks there
exists significant overlap between the nodes encountered by
the selected message holders, and the intended receivers that
are dissimilar to these holders have to wait for a long time
before some “random” encounter events occur to receive the
message, resulting in the longer delay.

(3) Finally, we compare the CSI:D protocol with the optimal

8Typically, only about a couple dozens of message holders drop the message
in the simulation cases in our CSI:D protocol. Even if we have accounted
for the temporarily invested storage, it adds less than 1% additional storage
overhead.
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Fig. 12. Performance comparison of CSI:D to other protocols.

protocols. We point out that with aggressive parameter settings
(e.g., CSI:D-0.7-0.3), the delay of the CSI:D is not much more
than the delay-optimal protocol (by 27% to 32%). When the
CSI:D is set to reduce overhead (e.g., CSI:D-0.5-0.05), its
transmission overhead is very similar to (less than 7% more
than) the Tx-optimal but the delay is much better, by 60% and
150% for USC and Dartmouth, respectively.

The performance of CSI:D protocol again shows the
power of incorporating user behaviors in protocol design.
By careful evaluation of behavioral similarity and selective
message holder assignment, it is possible to achieve good
delivery ratio and delay with much less overhead. Our
CSI:D not only significantly out-performs the baseline
protocols, but also shows reasonably close delay and trans-
mission overhead when comparing with the corresponding
optimal protocols.

VIII. DISCUSSION

In this section, we further discuss some detailed issues re-
garding the additional overhead incurred by the CSI protocols,
and a privacy-preserving option to eliminate the need for users
to explicitly reveal their behavioral profiles.

A. Additional Overhead

In addition to the message transmission and storage, in our
proposed CSI protocols, due to the need for exchanging and
maintaining the behavioral profiles, there is some additional
overhead.
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Overhead for exchanging the behavioral profiles We iden-
tify some additional components on top of the actual message
transmissions when the encounter events between mobile
nodes are used for message dissemination. Some of the com-
ponents are common to any message dissemination schemes,
and the others are unique to our CSI protocols.
• The common overhead for all the message dissemi-

nation schemes considered in infrastructure-less mobile
networks includes the neighbor-discovery beacon signals
for nodes to discover each other when they encounter,
and the exchange of a list of “messages seen” to avoid
receiving duplicated messages from different nodes. This
type of overhead is a function of the encounter pattern
itself and is independent of the actual protocol used. We
ignore these common factors in our analysis.

• Exchanging the behavioral profiles for the evaluation
of mutual similarity is an additional component that
exists only in our CSI protocols. However, the behavioral
profile is sent only if a node has message(s) to send9.
Thus, comparing with the protocols that require proactive,
persistent exchanges of control messages (e.g., encounter
probability vectors in ProPHET [17]), qualitatively, CSI
has lower overhead, especially when the volume of
traffic is low in the network. Furthermore, thanks to
the repetitive pattern in our daily lives, a small set of
vectors and their corresponding weights are sufficient to
summarize user behaviors [4]. It is worthwhile to pay this
small overhead to achieve the reduction of actual message
transmission counts as we see in section VII, especially
if the message size is much larger than the behavioral
profiles. This is usually true as messages are transferred
in a bigger unit (i.e., a “bundle”) in DTNs.

• The actual message size has to be augmented with the
TP as well. This is a constant overhead, and it can be
reduced if the target vector is “sparse” (e.g., if the TP
considers only the visits to the gym exclusively, there
is only one 1 in the vector. Instead of adding a vector
(0, ..., 0, 1, 0, ....) in the header, the vector can be encoded
(i.e., by specifying (gym, 1)) to save space.).

• In the CSI:D mode, the message holders have to exchange
the list of behavioral profiles of known holders. This
happens only between a small subset (less than 8%) of
the nodes, and the exchange is necessary only when there
is a difference in the lists. To further alleviate this, two
nodes can compare their known holder lists using a hash
value, and exchange only the difference.

Overhead for maintaining the behavioral profiles In order
to maintain the behavioral profiles, nodes have to keep track
of their visiting time to various locations. Note this does not
require a node be aware of all possible locations in the envi-
ronment – it has to keep track of only the locations it visited.
When two nodes exchange the behavioral profiles, each entry
in the behavioral profile contains only a subset of locations
with annotations for these locations (e.g., Node A specifies
(library, gym) = (0.8, 0.2) while node B specifies (library,
computer lab) = (0.4, 0.6)). The nodes will take a union
of the location sets when comparing their similarities (e.g.,

9The privacy-preserving operation introduced in the next section further
eliminates behavioral profile exchange.

in the previous example, when node A sends the behavioral
profile to B, B will convert the profiles to BP (A): (library,
gym, computer lab) = (0.8, 0.2, 0) and BP (B): (library, gym,
computer lab) = (0.4, 0, 0.6) before comparing). The required
storage on each node is minimal, as we show about three
to five days of summarized mobility preference is sufficient to
establish a stable behavioral profile for the users in section IV.

In addition, if the beacon signals from locations are not
available, it is possible to use the mutual encounter vectors as
the behavioral descriptors for the nodes – nodes who move
similarly should have similar encounter sets. In this sense,
we could replace the representation to be totally independent
of the infrastructure. The relationship between the two repre-
sentations (i.e., location preference vectors versus encounter
vectors) is a subject for future investigation.

B. Privacy Issues

While the profile-cast message dissemination paradigm
achieves good performance with significant overhead reduc-
tion, it also raises user privacy concerns. In some cases,
individuals may not want to reveal their own behavior. We
discuss privacy-preserving options of our CSI protocols below.

First we emphasize that the original design of CSI presented
in section VI inherently possesses a privacy-preserving feature:
we only use a small subset of user behavior (specifically, the
mobility preference) in the behavioral profile, and with the
singular value decomposition, we reveal only the summarized
trend, not detailed location visiting events for the user (e.g.,
the exact time and duration a user visits various locations). In
addition, the behavioral profiles are exchanged only between
nodes, not stored in any public directory, and the behavioral
profile exchanges happen only when a given node is involved
in message dissemination.

We can further reduce the behavioral profile exchanges in
the CSI scheme, and hence help to further preserve privacy as
follows. For the CSI:T mode, when nodes encounter, instead of
exchanging their behavioral profiles, the node with a message
to send would first send to the other node the TP of the
message and its similarity score to the TP. The other node
locally calculates its similarity to the TP and decides whether
to request for the actual message. This completely removes
the need for behavioral profile exchanges in CSI:T mode.

For the CSI:D mode, when two nodes encounter, instead
of asking the other node to send its behavioral profile, the
message holder sends the list of known holder’s behavioral
profiles. Since this list does not contain the identities of the
known message holders, distributing it does not pose a privacy
threat10. If the other node decides to become a message holder,
instead of immediately sending its behavioral profile back
to the old message holder, the new holder requests for the
message but silently adds its behavioral profile to its own
holder list, and delays the dissemination for a later holder
profile list exchange. This prevents the old message holder
from linking the behavioral profile and the identity of the new
holder.

Finally, as a last resort, privacy-minded individuals can
always opt-out of the service, and we expect this would not

10When there are multiple holders on the list, it is not possible to tell which
behavioral profile corresponds to the holder sending out the list.
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impact the performance severely, as it has been shown that
the encounter pattern between nodes in mobile networks is
rich enough to sustain up to 40% of nodes opting out before
observing a performance degradation [14]. Opt out options
shall be evaluated more thoroughly in our future work.

IX. CONCLUSION AND FUTURE WORK

In this paper, we propose a novel profile-cast paradigm in
which user behavioral profiles, instead of their identities, are
used to represent targets of communication. We first represent
user mobility by the association matrix and summarize it
using singular value decomposition techniques. The behavioral
profile we obtain displays high stability even when using data
for only several days. The behavioral profile remains highly
similar for the same user across time, and the similarity metrics
between two users are well-correlated for the time span of
weeks.

The analysis lays the foundation for the design of CSI pro-
tocols, which highlight the applicability and efficiency of the
profile-cast paradigm in infrastructure-less mobile networks. It
meets the design goals outlined in section VI-A with respect
to efficiency, flexibility and privacy preserving properties. The
CSI protocols perform closely to the delay-optimal protocols
(with 94% or more delivery ratio and less than 83% of
overhead; in CSI:T the delay is less than 47% more than the
optimal 1-path, in CSI:D the delay is less then 32% more
than the delay-optimal) and show significant improvement over
behavior-oblivious protocols.

We are working towards an implementation of the CSI
schemes based on mobile devices and consider a real-world
evaluation. One key issue for further study is to adapt our
protocol to a more privacy-preserving operation, and improve
its resistance to spamming (e.g., include a reputation system).
We are also considering different applications of behavioral
profiles, including targeted advertising via our CSI schemes.
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