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Abstract A data-driven realistic design and evalua-
tion of vehicular mobility has been particularly chal-
lenging due to a lack of large-scale real-world mea-
surements in the research community. Current research
methodologies rely on artificial scenarios, random con-
nectivity, and use small and biased samples. In this pa-
per, we perform a combined study to learn the struc-
ture and connectivity of urban streets and modeling and
characterization of vehicular traffic densities on them.
Our dataset is a collection of more than 222 thousand
routes and 25 million vehicular mobility images from
1091 online web cameras located in six different re-
gions of the world. Our results centered around four
major observations: i. study shows that driving routes
and visiting locations of regions demonstrate power-law
distribution, indicating a planned or recently designed
road infrastructure; #i. we represent regions by network
graphs in which nodes are camera locations and edges
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are urban streets that connect the nodes. Such represen-
tation exhibits small world properties with short path
lengths and large clustering coeflicient; 7. traffic densi-
ties show 80% temporal correlation during several hours
of a day; iv. modeling traffic densities against known
theoretical distributions show less than 5% deviation
for heavy-trailed models such as log-logistic and log-
gamma distributions. We believe this work will provide
a much-needed contribution to the research community
for design and evaluation of future vehicular networks
and smart cities.

Keywords Vehicular networks - network science -
small-world - theoretical modeling - traffic analysis

1 Introduction

Research in the area of vehicular networks has increased
dramatically in the recent years. With the prolifera-
tion of mobile networking technologies and their inte-
gration with the automobile industry, various forms of
vehicular networks are being realized. These networks
include vehicle-to-vehicle [4], vehicle-to-roadside [13],
and vehicle-to-roadside-to-vehicle architectures. Realis-
tic modeling, simulation, and informed design of such
networks face several challenges, mainly due to the lack
of two main factors: i. Underlying topology, and is.
Large-scale community-wide libraries of vehicular data
measurement.

Topological understanding is important in accurately
modeling vehicular mobility. It involves intersections,
roads and their connectivity. It comes as no surprise
those topological constraints like speed limits, direction,
etc. impact traffic congestion, density, scenario genera-
tion, and mobility, which in turn affect the performance
of any network communication protocol [2]. Thus, for
accurate evaluation of a vehicular network, one should
have a better knowledge of its topology.

Earlier studies in mobility modeling have clearly es-
tablished a direct link between vehicular density dis-
tribution and the performance of vehicular networks’
primitives and mechanisms, including broadcast and
geocast protocols[1]. Initial efforts to capture realistic
vehicular density distributions were limited by a lack of
availability of sensed vehicular data[31]. Hence, there is
a need to collect and conduct vehicular density model-
ing using larger scale and more comprehensive datasets.
Furthermore, commonly used assumptions, such as Ex-
ponential distributions [1] and [30], have been used to
derive many theories and conduct several analyses, the
validity of which bears further investigation.

In this paper, we first study the structure and con-
nectivity of the urban streets of six major regions and
second, perform a large-scale data-driven systematic
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analysis and modeling of vehicular traffic density dis-
tributions.

Recently, the departments of transportation of sev-
eral regions (e.g., London, Sydney) have started to de-
ploy traffic web-cameras to critical intersections and
highways to study traffic patterns. We collected two
different kind of data: 4. geo-graphical coordinates of
these locations and created a graph G(V, E) as men-
tioned before. ii. To avoid the limitations of sensed ve-
hicular data, we also utilize the existing global infras-
tructure of tens of thousands of video cameras provid-
ing a continuous stream of street images from dozens
of regions around the world. Millions of such images
captured from these available traffic web cameras are
processed using a novel density estimation algorithm
to build an extensive measurement dataset of spatio-
temporal vehicular traffic densities.

We perform a comprehensive analysis of these data
to study the structure and connectivity of urban streets
and characterize the underlying statistical patterns of
traffic density at individual intersections and highways
of major cities. In results show that i. Visits to loca-
tions follow power-law distribution; #. Road networks
have short path lengths and large clustering coefficient,
indicating small-world properties; #i¢. Temporal corre-
lations of vehicular traffic density for individual cam-
era locations are nearly 80% between consecutive hours,
but go down to 30% for a 3-4 hours lag difference. We
also investigate traffic modeling by comparing the fre-
quencies observed in the empirical density distribution
to the expected frequencies of the theoretical distribu-
tion. The result of this activity shows that the empirical
values closely follow (less than 3% deviation on KS-test)
heavy-tailed models such as ‘Log-logistic’ and ‘Weibull’
distributions. The contributions of this work are:

— We provide, to the best of our knowledge, by far the
largest and most extensive dataset for future vehic-
ular network analysis. This potentially addresses a
severe shortage of such datasets in the community.

— We introduce a new and more practical way to look
into urban street networks based on driving routes.
A network graph of routes and locations depict small
world properties.

— We establish heavy-tailed models such as log-logistic
and log-gamma distributions as the most suitable
fits for modeling vehicular traffic density.

We believe our work helps ‘fill a gap’ between the ex-
pected and realized necessity for the ‘design and eval-
uation of realistic and data-driven models’ for future
generations of vehicular networks.

In section 2, we discuss related work, in section 3
traffic measurements and pre-processing discussed, in

section 4, we discuss topological analysis of urban street
maps for six different regions. In section 5, we statis-
tically model vehicular traffic and characterize it. In
section 6, we show the impact and challenges on the
vehicular networks. Finally, we conclude in section 7
with future work.

2 Related Work

In this section, we discuss the related work, which is cat-
egorized in data collection and pre-processing, network
analysis for urban streets and vehicular networks. In
the first category, we discuss the inadequacies of exist-
ing repositories of vehicular mobility data. Next, tech-
niques used to process image data are examined. In the
past, efforts have been made to collect vehicular mobil-
ity records; by GPS traces, via loop detectors and radio
sensors [14] and [16] and [34]. However, these datasets
are generally not publicly available and limited in their
scope, size, and geographic spread. In addition to their
small timeline (typically only a few days)!, which makes
their use for longitudinal analysis limited, the methods
applied were also specific to these datasets and cannot
be scaled for other purposes. We believe that similar
to the pedestrian trace dataset in [15], a comprehensive
record of vehicular mobility is vital for a research in
future vehicular networks. In contrast to the datasets
described above, our dataset covers six regions, for pe-
riods of several months at hundreds of locations (see
Measurement section for specifics).

Second, central to the data collection process is the
image processing, designed to be computationally effi-
cient for such a large data set. Many studies [6] have
been carried out that look into aspects of both back-
ground subtraction [7] and [20] and [25] and object de-
tection [17]. In background subtraction methods [10],
difference between the current and reference frame is

used to identify objects. In detection based approaches [26],

learning the object features (shape, size etc.) are used
to detect and classify them. In this research, we are
using temporal methods for background subtraction to
estimate a relative numerical value instead of counting
cars. We find background subtraction is much faster,
robust to outliers, applied universally and more scal-
able than object detection (see Measurement section
for more details).

Third, attempts have been made to examine the
structure and topological features of vehicular networks
using applied graph measures such as centrality. In this
regard, Cardillo et. al. [5] performed a l-square mile

1 Specifically, [1] uses 3 days of data, [14] uses traces rang-
ing from 30 hours to a total of 400 hours from 4 to 100 cars
(sensing points in that context) while [18] use a longer sample,
30 days, but only at 5 locations.
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project on several cities across the world and studied
local and global properties of the graphs to categorize
their organic versus planned growth. They also stud-
ied the backbone of a city by deriving spanning trees
based on edge betweenness and edge information. Sev-
eral other studies have also found that for sustainable
urban design, centrality, self-organized structures, and
scaling, are driving forces [3] and [8] and [29]. In [22]
and [23], the authors examined the relationship between
street centrality and densities of commercial and ser-
vice activities in the city of Bologna and Barcelona. We
take the approach of studying the features of a region
by extracting motorways that are frequently used and
connected with major locations. This way, we isolate
the issues of congestion and connectivity among zones
of these regions.

Finally, in-car and out-car computing has shown
promising results in terms of driverless cars, control in-
terfaces for future cars that will have minimal visual de-
mands, sophisticated traffic management systems, such
as those incorporating dynamic traffic assignments [12,
9] and [19] and [32]. While further examination of these
cutting edge technologies is beyond the scope of this re-
search, we believe our approach provides a planet-scale
system for data collection providing invaluable data for
the development of future vehicular services and appli-
cations.

3 Measurements and pre-processing

In this section, we give details of the collected geo-
location information of cameras used for the analysis
of topological properties and recorded vehicular images
captured from these cameras to model and characterize
the vehicular traffic.

3.1 Topology Data of Camera Locations

Traffic web cameras are deployed on key intersections

and highways within every city. Thus, we can assume

these locations are representative of urban streets of

that city. We start by recording cameras’ geo-coordinates
and location information to study the topological prop-

erties of urban streets. This includes latitude and longi-

tude, zipcode, state, directional view, and camera loca-

tion. Later on, in section 4.1 we use this data to create

a network graph of urban streets.

3.2 Vehicular imagery data collection

There are thousands, if not millions, of outdoor cameras
currently connected to the Internet, which are placed

by governments, companies, conservation societies, na-
tional parks, universities, and private citizens. We view
the connected global network of webcams as a highly
versatile platform, enabling an untapped potential to
monitor global trends or changes in the flow of the city,
and providing large-scale data to realistically model ve-
hicular, or even human mobility. Majority of these we-
bcams are deployed by a city’s Department of Trans-
portations (DoT). Although, it’s not possible to deploy
them at every intersection or highway, nonetheless they
are strategically placed to capture the traffic trends
at critical locations. At regular intervals of time, they
capture still pictures of on-going road traffic and send
them in the form of feeds to the DoTs media server.
We have developed crawlers that collect vehicular mo-
bility traces from these servers. For the purpose of this
study, we have also made agreements with DoT's of large
regions by signing non-disclosure contracts and accept-
ing their terms of condition to use and to collect these
vehicular imagery data for several months (More infor-
mation are available on individual DoT’s website). We
cover cities in North America, Europe, Asia, and Aus-
tralia. Overall (here only six out of ten cities are pre-
sented with details in Table-I), we download 15 Giga-
bytes of imagery data per day from over 2700 traffic web
cameras, with an overall dataset of 7.5 Terabytes con-
taining around 125 million images. Since these cameras
provide better imagery during the daytime, we limit
our study to only those hours. Table 3.1 gives a high
level statistics of the dataset used in this study. Each
city has a different number of deployed cameras and a
different interval time that captures images. We believe
our study is comprehensive and reflects major trends
in traffic movement. Next, we discuss the algorithm to
extract traffic information from images.

3.3 Traffic Information Extraction

We aim to estimate traffic density on roads considering
the number of vehicles or pedestrians crossing the road.
We have a sequence of images captured by webcams.
Considering our problem, we have to be able to sepa-
rate information we need, e.g., number of vehicles and
pedestrians from the background image, which is nor-
mally road and buildings in that image. We apply back-
ground subtraction techniques [25] and dynamic filters
[10] to extract relevant traffic information. One could
then use regular object detection techniques to identify
and count number of vehicles in the high pass filtered
image. However, this is computationally expensive and
unnecessary. As an alternative, we count the number of
pixels and sum their values (with a value higher than
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Table 1 Global Webcam Datasets

City # Cameras Duration # Images # Routes
Connecticut 274 21/Nov/10- 20/Jan/11 7.2 million 74,801
London 181 11/Oct/10 - 22/Nov/10 1 million 32,580
Seattle 121 30/Nov/10 - 01/Mar/11 8.2 million 7,656
Sydney 67 11/0Oct/10 - 05/Dec/10 2.0 million 4,422
Toronto 208 21/Nov/10 - 20/Jan/11 1.8 million 43,055
Washington 240 30/Nov/10 - 01/Mar/11 5 million 59,809
Total 1091 - 25,2 million 222,323

a certain threshold for RGB patterns that reflect dark-
ness in the images). Due to the perspective properties of
images, a vehicle will appear smaller (that is it will use
less amount of pixels) when its far away from camera,
whereas same vehicle may appear much bigger when
in front of camera. To counter this, we exponentially
weigh each pixel with increasing weights from bottom
of the image to the top (where the vehicle and corre-
sponding street width is relatively short). The cumula-
tive sum is represented as traffic density. This is much
faster than detecting and counting objects in an im-
age [28]. At the same time, it is more effective, because
we are looking at the percentage of the street (road),
covered by vehicles (as an indicator of how crowded the
street is), rather than number of vehicles. We evaluated
the nature of images and found that threshold for dark-
ness and respective spreading of headlight may cause
false positive results. Since these cameras do not have
night vision, we limit our study to 7am-6pm. Another
threshold we calculated is based the resultant binary
map obtained after the background subtraction is sent
for morphological operations to remove the noise. The
algorithm refine the map by removing the blobs, which
have smaller area compared to the perspective proper-
ties of images. While a car count might seem preferable
to a traffic density measure, there are several practical
challenges. A car count requires a far greater compu-
tational cost due to the effort required to isolate each
object, as current approaches are based on edge detec-
tion of objects. In addition to that, the resolution of
the images is not high enough to identify vehicle’s li-
cense plate number and edges in a very efficient and
effective way. For privacy issues, this is actually an ad-
vantage, we cannot construct the exact trajectory of
any object. Traffic congestion further complicates mat-
ters when cars occlude each other, making it difficult
to segregate cars based on edge structures. In addition,
vehicles at the far end of the road are small in the im-
age and cannot be detected by these algorithms.? For

2 Another solution could be to only count cars that are
close to the camera; while this is definitely an option for video
data, for snapshot data it would result in those distant cars
having left the scene before the next snapshot; the net effect
being that the maximum observed car count at a junction is

Table 2 Summary of regression analysis

Camera  df R?

Bolae=0.95) B1(a=0.95) p p
1 100 -1.1940.046 0.03+0.003 0.7922 0 091
2 100  -3.25%+0.130 0.0940.007 0.8579 0 0.92
3 100  8.16+0.045 0.10=£0.005 0.9308 0 1.00
4 100  8.16+0.045 0.10+0.005 0.9308 0 1.00
5 100  8.16+0.045 0.10+0.005 0.9308 0 1.00
6 100 -2.13+0.112 0.07+0.008 0.7499 0 0.88

Fig. 1 A comparison of empirical traffic densities with num-
ber of cars.

more information, please read accompanying technical
report that compare different approaches [28].

3.4 Ground Truth for Validation

To test the performance of the car density capture,
six cameras were selected at random and 102 images
from each were examined by hand to produce a ground
truth count for the number of cars. This ground truth
was then regressed against the measured car density
to check that the relationship is linear. The regression
from one of the cameras is shown in Figure 1 and has
a reasonable fit. There are some outliers, especially at
low levels of traffic and there also appears to be a slight
non-linear relationship between the ground truth and
measured car density due to the warping effect of per-
spective (discussed above). Table 2 shows the summary

truncated causing problems in the multivariate analysis later
on.
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Table 3 Parameter and details

Abbr. Deails Abbr. Deails Abbr. Deails Abbr. Deails

G, G Unweighted, Weighted graph km Largest degree d traffic density P Exponential Distribution
14 Total number of nodes (camera locations) (I;:) Average weighted degree per node L Characteristic path length M Gamma Distribution

E Total number of edges (streets) o Largest weighted degree C Clustering coefficient LL Log logistic Distribution
k Degree of a node a Power law exponent L, Random graph characteristic path length N Normal Distribution

(k) Average degree per node P Correlation coefficient Cr Random graph clustering coefficient w ‘Weibull Distribution

statistics for the regression analysis including Spear-
man’s correlation coefficient, p, which seems to imply
that there is a perfect non-linear correlation for cam-
era’s 3 to 5.3 Overall, the analysis shows that while
there are some errors, the relationship between the ac-
tual and measured number of cars is sufficiently clear
to allow analysis at a network level.

4 Analysis of Topological Properties

In this section, we examine degree distribution and small
world properties of six different regions and states in
order to study the structure and connectivity of their
urban street network. We represent this network by a
graph G = (V, E), where V is the set of camera loca-
tions as nodes and F is a set of driving segments as
edges, inter-connecting the nodes of set V' of the net-
work graph G. The degree k; of a node ¢ in G is the
number of edges incident with the node. In an undi-
rected and unweighted G (weight = 1), the degree can
be written in terms of the adjacency matrix A as

The weighted degree of each node 7 in undirected graph,
G is k , and can be written in terms of the adjacency
matrix W as

Next, we explain the graph generation process of ur-
ban street network of regions using Google Maps, and
then analyze their degree distribution for unweighted
and weighted cases, and finally examine their small
world properties.

4.1 Network of Urban Streets

— Segment: A path (an edge in the network graph)
that directly connects two locations.

3 The other notation in Table 2 is standard regression no-
tation: df denotes the degrees of freedom. a and [ are the
regression coefficients as y = ax + 3, R? is the % of variance
explained, see Equation eqn:r2, p is the p-value.

Fig. 2 An example of segment and route. The route between
51 and 53 has three segments.

— Route: A path that is made up of a set of segments,
when other locations appear in the order of the in-
creasing distance from source to destination (seg-
ments corresponding to those pair of locations are
added).

As mentioned before, we generate a network graph with
nodes acting as camera locations and set of edges as

driving route segments connecting them. Sometimes routes

are made up of a set of driving segments (in case other
locations are en-route between a source and a destina-
tion), as returned by Google Maps API that is shown
in Figure 2. In order to generate this graph, we start
by taking the geo-coordinates of a pair of camera loca-
tions and calculating the driving information between
them. Next, we check for a possible subset of other
camera locations that may lie en-route. All such lo-
cations are inserted in order of their occurrences and
connected through intermediate segments (as edges).
For example, driving from New York to San Francisco,
we drive through Iowa City, Omaha, Salt Lake City,
and Sacramento in that order. If no such locations ex-
ist, the source and destination are directly connected
by an edge (as one big segment). We iterate this pro-
cess for all pairs of camera locations, which are total
V % (V — 1). While doing so, we also maintain a be-
tween count for the traversed edges (individual seg-
ments), connecting source and destination pairs. This
measure gives the frequency of a segment appearing
between every pair of source and destination. We in-
crease respective between count by one for a segment
(edge) every time it is traversed. The resultant network
is represented as a weighted graph showing the loca-
tions and segments (as edges) with laters’ weight equal
to the frequency of their appearance on multiple route.
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Table 4 Report of degree distribution, power-law exponent, path length, clustering coefficient, and model fitting of traffic

City V. E (k) km (&) km a(G) a(G) L L, C C»

Dominant distribution as Best Fits (By Ranking)

Dominant distributions as Best Fits (By % Deviation KS-Test)

17 Best Fit_277 Best Fit 377 Best Fit 3% 5%
Connecticut 274 2128 15 51 8994 32119 3.5 241 3.6 2.33 0.52 005 LL[B7%]  M[11%] Pl0.5%] LL[62%], M[15%], W[3%)] LL[04%], M[44%], W[19%)]
London 181 1252 13 32 2180 7089 3.5 3.5 304 223 0.5 007 LL[42%]  M[39%] WI[16%] M([34%], LL[34%], W[10%], N[0.5%] LL([82%], M[70%], W[47%), N[7%]
Sydney 67 319 9.5 26 322 985 3.5 2.98 2.73 205 0.56 0.137 LL [62%]  M[32%) N[2%] LL[88%], M[61%], W[4%], N[2%] ~ LL[98%], M[88%], W[44%], N[18%]
Toronto 208 1128 10 44 7435 21323 2.8 35 502 25 0.6 005 M[46%] WI[31%] LL[21%) M{[75%], W[58%], LL[34%] M[94%], W[88%), LL[87%], P[4%), N[1%]
Seattle 121 513 9.8 21 1235 3376 3.5 35 33 227 0.56 0.087 W[36%] LL[34%] G[29%] WI16%], G[14%], LL[4%] G[55%], W[47%], LL[35%]
Washington D. C_240 3089 26.8 92 3530 15824 3.5 2.8 234 1.9 0.537 0.11 LL[80%]  W[11%)] G[7%) LL[60%], W(8%], G[6.54%), E[4%] _ LL[91%], W[35%)], G[30%), E[14%]

(a) London

(b) Sydney

(¢) Washington D. C

Fig. 3 A geo-laid network of urban streets of three regions is shown. The nodes are camera locations and edges are routes
connecting these locations. We have shown Sydney with its weighted degree (k) network.

(b) London

(c¢) Sydney

(a) Connecticut

(d) Toronto

(e) Seattle (f) Washington D.C

Fig. 4 Radial axis layout of urban street location show a two dimensional representation of degree distribution. Each radiating
axis (spar) is grouped by similar degree distribution (k). The clockwise varying of color dots from blue to red mean increase in
the value of (k) for nodes. The varying sizes of dots are respective average weighted degree (k). A larger size dots mean more

weight. For Connecticut and Sydney the distribution of (k) show power-law distributions with 2 < o < 3 and for Toronto show
the same for its (k) distribution. London is an old city, with lots of small streets and intersections (hence more than one ways
to reach destination), show no power-law distributions (o = 3.5).

The most frequently taken edge segment has the largest
between count. For simplicity (undirected graph anal-
ysis), we assume each street allow bi-directional traf-
fic. In general, locations are connected by a maximum
of 3-5 roadways, in our case we ease this assumption
for investigating the connectivity patterns. In Fig.3(b),
we show the example of a weighted graph of Sydney
generated with 67 camera locations. The underlying
process of generating this network graph is computa-
tionally expensive [27], nonetheless it has many bene-
fits: i. We use Google Maps API to calculate all possi-
ble routes and intersections, today, anyone planning to
travel, accesses maps via Google or like services. . We
are assured that resultant graph filters-out non-frequent
routes, which help to better explain the cause of traf-
fic congestion on frequently taken routes and locations.

112. The recommendations can be made to generate dy-
namic routes from diverting the traffic on already con-
gested segments. There are several variations of between
count.

— Unweighted Graph: We baseline the between score
of a street (edge) to one if it has ever appeared.

— Weighted graph by distance: The weights on the edges
can be replaced by actual driving distance. Thus,
recommendation can be made in case shortest path
is available between a pair of source and destination.

— Weighted graph by distance and between score: The
weights on the edges are a combination of distance
and between score. It helps to discover overhead and
congested segments in the network.
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Fig. 5 A CDF P(z) and its maximum likelihood power-law fits for two locations.

4.2 Analysis of Degree Distribution: Unweighted Case

We study the number of connections that camera lo-
cations have with one another. It helps to analyze the
connectivity and probability of taking alternate routes
to the destinations. A network analysis of Toronto’s
cameras shows their degree distribution is follow power-
law distributions. As evident in Fig.4, the radial axis
graph of Toronto clearly shows only 2-3 locations with
large degree distribution. In Fig.5, an exponent value of
«a = 2.8 shows that the maximum likelihood power-law
fit for the degrees of its few locations have a long right-
side tail of values that are above the mean. A value
x obeys a power-law if it is drawn from a probability
distribution p as:

p(r) x ¢

«a a constant known as exponent parameter. The usual
value of exponent lies in the range 2 < o < 3 with some
exceptions.

Above results indicate that such locations have much
higher connectivity with rest of the one-hop far loca-
tions. On the other hand, if they are removed from the
network, average path length will increase, and location
pairs will become disconnected and traveling between
them will become impossible.

4.3 Analysis of Degree Distribution: Weighted Case

The weighted degree of a camera location is calculated
based on the frequency of its connected edges that have
appeared between any pair of source and destination.
Using Google Maps, we have calculated shortest path
between all pairs of locations, and the list of locations
that are on en route. Therefore, it is possible that few
locations have been traversed more often than other,
making them the most visited locations. In our study,
we find the locations belonging to Sydney and Con-
necticut demonstrate a power-law distributions, which

means they create an hour glass model, making most of
the traffic to pass through few locations. It also makes
them susceptible to traffic congestion and closures. In
Fig.4, we see the distribution of node sizes represent-
ing weighted degrees for Connecticut and Sydney, with
power-law exponent a = 2.41 and 2.98 respectively in
Table-4. In Fig.5, a cumulative distribution function for
maximum likelihood fit for Connecticut and Toronto is
shown.

Thus, while Toronto is skewed on connectivity, Con-
necticut and Sydney are skewed on visiting same lo-
cations again and again. We can say that traffic con-
gestion in Toronto appears because of geometry of lo-
cations, while for Connecticut and Sydney its because
specific routes have been traversed. The city of London
appears to have even distribution for both metrics, as
evident in its radial layout in Fig.4 and Table-4. We can
say that London network is more resilient than other
regions, with lot of small and inter-connecting streets,
exhibiting properties of an historic city’s growth.

4.4 Small World Analysis

We investigate that network of urban streets of all six
regions clearly exhibit small world properties. In gen-
eral, a network with small world should have small av-
erage path length (L < 6) and large clustering coeffi-
cient (0.4 < C < 1). We make a basis for a fair com-
parison, by using Erdos-Renyi G(n,M) [11] model to
generate a random graph for each city separately, with
n =V and M = FE. To ascertain our structure, we ex-
amine C against C,. for each city - for C to be extreme
in that distribution and greater than the ninety-fifth
percentile. Next, we calculate the average path length
(L) and clustering coefficient (C) of the six regions’
networks and compared them against L, and C, of
random graphs respectively, as shown in Table-4. We
find that networks of all six regions have small average
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Fig. 6 A CDF of C and C, show large values of clustering coefficient for regions network to random graphs, indicating priors’

network structure exhibiting small world properties.

path length (VL < 6) and large clustering coefficient
(VC — 1, C > C;), with Toronto having largest value
of clustering, C' = 0.6. The CDFs of clustering coeffi-
cient are shown in Fig. 6 - i. a quick convergence for
the random graph, indicating very small clustering co-
efficient values of C,. ii. All values of C' > 0.3, and large
gaps in curves indicating network of regions exhibiting
strong small world properties.

5 Traffic Modeling and Characterization

We studied connectivity of urban streets, now we turn
to model and characterize the traffic density on these
streets. We will see, how the traffic is correlated with
itself for several hours of the day. Later, we will use
known theoretical distributions to model traffic densi-
ties.

5.1 Traffic Flow Auto-Correlation

We investigate correlation coefficients (p) to measure
the degree to which traffic from a camera is linearly as-
sociated with itself for 42 days. In our case, we are using
this to analyze the change in traffic densities. We ana-
lyze the correlations for 1-4 hour lags for each camera
against itself during 12 hours of the day, from 7 AM to
6 PM. For example, we investigate what the correlation
is between the traffic at 7 AM and 8 AM (1-hour lag), 1
PM and 3 PM (2-hour lag) etc. In Fig.7, we show CDF
for various hours lag of the day. For the city of Sydney
the hourly traffic change is highly correlated, almost
80% of cameras’ next hour traffic is 70% correlated to
its current hour. For next two hours from the current,
the traffic for 80% of the cameras are only 50% or less

(a) d =2023,0.28 (b) d = 5400,0.55 (c) d = 9230,0.93

Fig. 8 Traffic with varying densi-
ties[(a)low/(b)medium/(c)high] is shown. The first value
is the result of background subtraction and later is the
normalized value.
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Fig. 10 Best fits for six regions. The values in the box show
deviation.

correlated. And around 60% cameras have only 30%
correlation for a time lag of 3-4 hours. While in case
of the city of London, the next hour traffic density for
80% cameras is close to 60% correlated to the current
hour. It goes further down to 30% for next two hours
and around 15-20% for a 3-4 hour difference. Thus, ve-
hicular traffic has temporal richness, which in-turn af-
fects the mobility of vehicles and therefore, have an im-
pact on the performance of routing protocols [2]. Similar
trends are observed in other regions, but omitted here
for brevity.
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Fig. 7 CDF showing correlation of traffic densities between hour differences of the day.

(a) Low Traffic (b) High Traffic

(c) Periodic Traffic (d) Random Traffic

Fig. 9 Several variations in traffic densities across 42 days traffic monitoring are shown. Fig-(a) show relatively mild traffic
during various hours of the day, while (b) show high traffic recording for the full trace periods. In Fig-(c) we find a regularity
patterns during the morning and evening hours when the traffic is relatively higher to afternoon hours. A random traffic

pattern is recorded in the last.

5.2 Traffic Modeling and Characterization

Here, we focus on modeling the arrival process of traf-
fic (traffic density value) in equal intervals of times
against known theoretical distributions. In Fig.8, we
show three traffic scenarios of varying intensities from
low to fully congested location, captured by the density
parameter(d).The objective of this study is to help un-
derstand the underlying statistical patterns. We already
filtered these for the purpose of showing the maturity in
our studies to select and identify the statistical patterns
without much deviations. To ensure the validity, we
also performed several goodness of fit test using Max-
imum likelihood estimation (MLE) and Kolmogorov-
Smirnov test to measure average deviation and com-
pare the values in the density vector to known distri-
bution. We systematically model individual locations’
empirical traffic density distribution against well known
theoretical ones. In Fig.9, we show four different loca-
tions with changing traffic densities during 12 hours
for 42 days. This result invalidates a general notion of
‘rush hours’ that traffic is relatively higher only during
morning and early evening hours. In order to match, we
use five theoretical distributions: Exponential, Gamma,
Log-Logistic, Normal and Weibull. We find that traffic
at individual cameras can vary a lot, but in general
log-logistic, Gamma and Weibull distributions can cap-
ture some of the key features. We rank these distri-
butions (based on KS-tests) in Table-3, with four out

of six regions’ individual locations have log-logistic as
the 1%t best fit, while Toronto has Gamma distribu-
tions. In Table-3, we show dominant distributions at
3% and 5% deviation using the KS-test. In Fig.10, re-
sults show the dominance of distributions for all the lo-
cations from all six regions. Overall, the empirical data
closely matches log-logistic and Gamma distributions.
We find that even on regions’ aggregate traffic levels,
the log-logistic distributions provide a good estimate
of empirical data. These results are realistic scenarios,
and can be used as input for simulators to evaluate the
performance of vehicular routing protocols.

6 Future Application to Vehicular Networks

The experience gained from the analysis and model-
ing of traffic densities potentially aids in future design
and evaluation of vehicular networks. Today, most of
the simulation tools input generic or random scenar-
ios and disregard the challenges brought by mobility in
vehicular networks [2] and [24] and [33]. In our case,
the benefit of urban street analysis and large dataset
of realistic traces, and its modeling results prove to be
very helpful in developing rich scenarios for testing pro-
tocols, network dynamics, scalability of traffic, topol-
ogy size estimation, and the analysis of traffic patterns.
The data-driven realistic simulation tools and mobility
models are necessary for accurate evaluation of vehic-
ular routing protocols and services. However, our anal-
ysis shows that traffic characterization and communi-
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cation network analysis tools (e.g., ns2) are separately
developed and therefore lack a tight integration [24] and
[21]. Our gathering and analyzing real traffic data can
aid in identifying metrics (e.g., spatio-temporal den-
sity) to develop data driven mobility models and simu-
lators. The unique challenges (e.g., high speed, inter-
mittent connectivity) in inter-vehicle [4] and car-to-
roadside [13] communication require the development
of robust and efficient routing protocols. We can use
the cameras’ geo-coordinates and their traffic density
distribution to develop and test new performance met-
rics and protocols. In the future, we aim to focus on
developing realistic and data-driven models. We have
also plan to make this dataset available to the research
community and extend our existing work to study cen-
trality measure for all the cities.

7 Conclusion

We know topological properties (like directions and lanes)
impact the movement of vehicular traffic on roads. In
this paper, first we have discussed an approach to cre-
ate a network of urban streets from driving directions
and second use of vehicular imagery snapshot images
from freely available online cameras for traffic analysis.
Our results have shown that for three regions (Con-
necticut, Sydney, and Toronto), during several trips,
visits to their locations and streets exhibit a power-
law distributions. A temporal auto-correlation of 80%
is evident for traffic densities in those three cities for
consecutive hours (1-2 hours) of the day. In London,
high and variable traffic pattern. We have observed a
stable periodicity of traffic density for many days (42
days) corresponding to weekdays and weekends. This is
an important result, and can aid in developing futuris-
tic traffic prediction models. We have also found that
empirical traffic densities closely follow (with less than
3% deviation) theoretical distributions like Log-logistic
and Weibull. We believe our work will provide much
needed contribution to the research community.
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