
 1

An XML Based Solution to

Delivering Adaptive Web Content for Mobile Clients

Wenzheng Gu and Abdelsalam (Sumi) Helal

Computer and Information Science and Engineering Department

University of Florida, Gainesville, FL 32611, USA

{wgu,helal}@cise.ufl.edu

Abstract

Due to mobile device proliferation, content providers

can no longer deliver only one version of their content to

the users, as they need to deliver an appropriate form of

content depending on the capabilities of the viewing

devices. Web authors either create multiple versions of the

same content for each device, or depend on some

intermediaries to do the transformation. In this paper, we

propose two new approaches to the adaptive mobile

content delivery based on the XML metadata. The first

approach, called partiality adaptation, allows web authors

to create one version of an XHTML page whose various

parts could fit various devices. The second approach,

called versioning negotiation, improves the efficiency of

content negotiation by eliminating the resource

description files. We further present our adaptation

algorithms on both client and server side to reflect user

intents. We also analyze the performance of our

approaches based on three experiments conducted on

different mobile devices.

1. Introduction

Providing a suitable content and presentation for

different client devices in heterogeneous environments is

becoming increasingly important today. There is already a

plethora of exotic electronic devices such as pagers, PDAs,

and color-display cellular phones, with no sign that the

diversity of their characteristics will diminish anytime

soon. As mobile devices come of age, one simple web

page is no longer universally valid.

Objects on the web can be classified into two categories:

an XHTML page, also known as a container page, and a

content file including many groups like video, image, text,

and audio. Significant research has been done to enable to

speedy content delivery of the second group; for example,

the Internet content transcoding and distilling for many

specific file formats [14,24,25,26]. In [14], a framework is

introduced to transcode contents among those groups. In

regards to the container page object type, a widely adopted

approach is to use XML to present the content and use

XSL to describe the presentation. To adapt to different

devices or context, XSLT is used to convert the source

XML to the destination XML file. Our research is focused

on both categories, because they are closely related to

each other. Whether or not to download the objects of the

second category depends on the links in the container

pages. Efficiently removing some embedded object

placeholders in the XHTML page can significantly reduce

the total number of downloaded objects.

 To better understand the client capabilities, network

connectivity, or user preference, metadata or annotation is

required and ranges from simple to complex descriptions.

Many simple metadata are incorporated into HTTP

headers, such as user agent information and page

expiration time. On the other hand, there exists a very

complex metadata like CC/PP specifying client-side

profile, including every detail of hardware and software.

Moreover, markup languages embed the metadata into

documents -- the tags. In our research, we use tags to

deliver the following information:

1) the appropriate size of XHTML page including the

appropriate number of embedded objects, and

2) the available versions of each object.

Content adaptation and negotiation are two major

approaches to delivering a suitable version of web objects

to mobile devices. Content adaptation usually refers to

those transcoding and distillation methods processed on a

proxy near the mobile users based on their profiles and

network QoS. Content negotiation, on the other hand, is a

process between the client agent and the content server.

The latter stores several variants of an object under

different identifications (URL). After negotiation, an

appropriate version is identified and delivered to the user.

We use the two aforementioned approaches combined to

achieve efficient content delivery to mobile clients. Our

research goals are to achieve the following:

• Bridge the gap between the different variants

associated with the same object, namely one copy for

 2

devices with different capabilities. For example, by

merging both WAP and HTML pages to one, we save

the time to generate different pages on the origin

server, and we lower the burden on the proxy to keep

track of different versions of the same content.

• Position web caching of objects in a better place for

content negotiation and adaptation rather than

delivering and transcoding cached copies directly. For

instance, by sharing the same pages with different

devices, the size of the user group will be increased,

and therefore the cache hit rate would be higher, and

the bandwidth usage and response time to user would

be reduced.

• Make better negotiation and adaptation by requiring

no client device information or intermediary. The

adaptation is based on an appropriate version other

than a large complete page. This reduces the proxy

workload and saves the bandwidth between the proxy

and origin server.

The rest of this paper is organized as follows. In section 2,

we discuss related work. In section 3, we describe the

design details of our adaptation algorithms. In section 4,

we present preliminary experimental results. Conclusions

are drawn in section 5.

Figure 1. Negotiation Algorithms (Regarding the left two graphs, negotiation decision are made on

servers. The right two graphs show that clients make the negotiation decision. But the upper right

graph takes three round trips, whereas the bottom right one takes two. On the top two graphs, pages

are returned from origin servers whereas at the bottom two, caching server can satisfy the request.)

2. Related work

There are many ways to describe device capabilities,

such as HTTP Request Header Fields, CC/PP, WAP

UAPROF, SyncML, Salutation, and UPnP [13,22]. All

have advantages and disadvantages; for example, the

HTTP request headers are too simple to describe the

mobile device’s capabilities and the user’s preference,

while CC/PP is too complex.

With the help of device description, an approach being

widely adopted to solve heterogeneous device problems is

content adaptation. Adaptation is most likely to be

deployed on the Internet edge, like transcoding, translation,

etc. The main drawback of this approach is that it breaks

 3

various “end-to-end” HTTP properties which applications

rely on. For example, many wireless gateways can

transcode the original HTML page to a WML [9] page so

it can be displayed on a WAP browser. But complicated

web pages can make the heuristic algorithm on the

intermediary difficult to apply. Also, the transformation

may be against the authors’ intention. There are many

publications on content adaptation. Smith et al. [14]

suggest manipulating web contents in two dimensions:

fidelity and modality. Knutsson et al. [15] proposed an

idea on server-directed transcoding which preserves HTTP

end-to-end semantics. Chi et al. [16] gave a solution on

image processing which can generate a higher resolution

JPEG based on the previous low-resolution version. Shi et

al. [8] presented a novel architecture to support caching of

dynamic personalized content for mobile users. There are

also other similar approaches including AvantGo, Web

Clipping, ASP+.NET, PHP HawHaw Library, and

XHTM/CSS[13].

Another approach is content negotiation. HTTP allows

web site authors to put multiple versions (variants) of the

same information under a single URL. To enable content

negotiation, the variant list of the resource is usually kept

as a file on the web server for later use. The list can also

be retrieved from the file and sent out in the HTTP

alternates headers. There exist three types of content

negotiation mechanisms. They are server-driven

Figure 2. Processing by partiality adaptation and versioning negotiation. With priority tags, the number of

objects to download is reduced in step 1 and with fidelity tags, the appropriate version is downloaded in step 2.

negotiation, agent-driven negotiation, and a combination

known as transparent negotiation. None give satisfying

solutions in terms of making decisions on the “best” copy.

With server driven negotiation, it is hard to determine the

“best” version because servers don’t usually have

complete user’s information. The major drawback of

agent-driven negotiation is that it introduces one more

roundtrip time to fetch the variant list [1]. In RFC 2295

[11], the transparent negotiation is clearly defined and

described. For the optimal transparent content negotiation,

the variant file can be kept on a web caching server to help

the intermediary make the final decision because it usually

knows the user better than the origin server.

Although this transparent negotiation takes advantage of

the cached variant list, variant properties and web contents,

the final decision is still made by the proxy server. It is

similar to letting a waiter decide the complete order for a

customer in a restaurant, instead of the customer

themselves. Figure 1 illustrates the above three scenarios

plus the versioning negotiation. At last, HTTP Remote

Variant Selection Algorithm (RVSA) is an important part

of the transparent negotiation, which is used to determine

the best variant [1].

To break a web page (a container page and its embedded

links) into several fragments is not a brand new idea. It

was first applied to those dynamic generated web objects.

In [2,3], the static contents of a web page are cached

separately from the dynamic parts. Chi et al. [4] proposed

a XML based mechanism to validate different fragments

of a web page in order to preserve data integrity.

“9”

“5

 Foo.png

Foo.gif

“0”

“9”

“5

 Foo.png

Foo.gif

“9”

“5”

Foo.png

1 2

 4

3. Design of partiality adaptation and

versioning negotiation

3.1 Overview

Partiality adaptation and versioning negotiation are

designed to deliver different web contents derived from

the same page for heterogeneous networks and devices.

Briefly, there are two types of tags. The first is priority

tag. Embedded Priority tags in an XHTML page indicate

author’s intention on how to partition a page into several

fragments which are easier to be adapted. Later, a portion

of the page can be downloaded upon the user’s request.

Furthermore, the priority tag can be used for not only

content files, but also XSL and XSLT template files. The

overall Internet traffic (including those for desktops) could

be reduced by downloading the XHTML page in a smaller

granularity. Moreover, the number of subsequent object

requests could be reduced as well.

The second tag type is fidelity tag, which is used for

versioning negotiation. Content negotiation requires a

variant list for every object because it is the process of

selecting the best representation for a given request when

multiple representations are available. On the server side,

content providers generate secondary versions of web

pages that users can select from; for example, an HTML

version or a WML version. A variant list is embedded in

the HTTP header in the current negotiation mechanism.

Figure 3. Hierarchy of PFML elements and PFML DTD

In our approach, fidelity tags convey the object variants

message to the clients directly and precisely. This enables

users to make their own decision in the first place.

Different fidelity descriptions correspond to different

attributes of content objects. For example, the language

and charset of text, and the size and resolution of images.

With the help of fidelity tags, a user agent can easily

understand how many different presentations are

associated with one embedded object and which objects

are more suitable to display. Therefore, a clear decision

can be made directly by the end user.

Priority tags not only maintain the end-to-end

communication feature of HTTP, but also give both ends a

better way to communicate. Publishers can use them to

indicate their concerns on different objects in terms of

priority. Clients can use them to fetch web objects as

desired. And intermediaries can apply the content services

accordingly.

Figure 2 shows how the content adaptation and

negotiation work. In step 1, the origin page is tailored to

the one without the lowest priority portion as the response

to the user’s first request. This adaptation work can be

easily done on either the original site or an intermediary

under the indication of priority tags. In step 2, the lower

resolution image is selected according to the variant list

embedded in the container page in the first response. The

negotiation is much more efficient because the adaptation

has generated a smaller page with fewer embedded objects.

Therefore the mobile devices can afford to process it since

fewer selection algorithms need to run.

3.2 Web caching in partiality adaptation and

versioning negotiation

Our approach improves the performance of content

negotiation by fully taking advantage of the current web

caching architecture. In regards to web caching, server-

driven adaptation is not always a good negotiation solution

because it always bypasses the caching server. Regarding

transparent negotiation, the optimized version requires not

only the cached web objects, but also client profiles, object

variant and property information. This would result in a

PFML

Priority

Fidelity

Choice

 Img Script Embed

Other

HTML

Tags …

<?xml version =”1.0”?>

<!DOCTYPE PFML SYSTEM “PFML.dtd”>

<!ELEMENT PFML (Priority*)>

<!ELEMENT Priority ANY>

<!ATTLIST Priority value (0|1|2|3|4|5|6|7|8|9) ‘0’>

<!ATTLIST Priority name CDATA #IMPLIED>

<!ELEMENT Fidelity (choice*)>

<!ELEMENT choice (img* | script* | embed*)>

<!ATTLIST choice sourceQuality CDATA ‘1’

 type CDATA #IMPLIED

 charset CDATA #IMPLIED

 language CDATA #IMPLIED

 feature CDATA #IMPLIED >

 5

significant modification of the current web caching

functionalities. Versioning negotiation gives a better

solution. The requested XHTML pages are embedded with

objects variant lists. As the bottom right part of Figure 1

shows, the best representation of an object can be

automatically selected by the user agent. Thus an explicit

URL request comes from a user agent as a normal request

without negotiation meta-data, and all the cached web

objects can be used as normal.

In the versioning negotiation, network traffic is reduced.

First, the server need not fetch complicated user agent

information, such as CC/PP. Second, compared with the

 agent-driven negotiation, versioning negotiation doesn’t

have one more round trip to send the variant list to the

users.

Our content adaptation approach also helps web caching.

Priority tags allow different devices share the same copy

of an XHTML file which is usually stored in the caching

server. A mobile device can take advantage of the copy of

a web page previously downloaded by some other device,

for example a desktop, in a caching hierarchy. Instead of

going all the way to the far end of the Internet, the client

with less capabilities can obtain a subset of the page by

extracting the content marked with higher priorities. On

the other hand, a device with more capabilities can use the

partial copy of a web page downloaded previously by a

Figure 4. Foo’s homepage implemented with HTML(left) and PFML(right)

smaller device, and send it to the user directly. This can

shorten the response time. The remaining objects could be

downloaded simultaneously and integrated with the

previous part at last. Therefore, letting the mobile device

users and traditional desktop users share the same web

page potentially increases the chance of web cache hit rate,

reduces Internet traffic, and lowers the response time to

clients.

3.3 Tags in partiality adaptation and versioning

negotiation

There are two types of tags and associated attributes in

our approach. These tags can be incorporated into other

XHTML languages so more complicated functionalities

can be implemented while the aforementioned adaptation

and negotiation goals can still be achieved. Figure 3

<HTML>

<!--Foo’s personal Web site. -->

<HEAD>

 < TITLE> Foo’s Home </TITLE>

</HEAD>

<BODY>

 <!- - self-introduction- ->

 <P> I am … </P>

 <!- -Personal picture - ->

 <!- - My interests - ->

 <P> I like sports and music… </P>

 <!- -friends’ link - ->

 <P>Foo1 < A HREF = HTTP://…></P>

 <P>Foo2 < A HREF = HTTP://…></P>

 <!- - contact information - ->

 <P> Phone #:… </P>

</BODY>

</HTML>

<?xml version = “1.0”?>

<PFML>

<Priority name =’foo_1’ value=’9’>

<!--Foo’s personal Web site. -->

 <HEAD>

 <TITLE> Foo’s Home </TITLE>

 </HEAD>

</Priority>
 <BODY>

 <Priority name =’foo_2’ value=’9’>

 <!- - self-introduction- ->

 <P> I am … </P>

 </Priority>

 <Priority name =’foo_3’ value=’5’>

 <!- -Personal picture - ->

 <!- - My interests - ->

 <P> I like sports and music… </P>

 <!- -friends’ link - ->

 <P>Foo1 < A HREF = HTTP://…></P>

 <P>Foo2 < A HREF = HTTP://…></P>

 </Priority>

 <Priority name =’foo_4’ value=’5’>

 <!- - contact information - ->

 <P> Phone #: (123)456-7890 </P>

 </Priority>

 </BODY>

</PFML>

 6

illustrates the overall structure of an XHTML page with

priority and fidelity tags and its Document Type

Definition (DTD). Here we name the language with the

new tags as PFML for documentation purpose.

3.3.1 Priority Tags. Priority tag is used to divide a web

page into several portions in order to cater to the devices

with different capabilities. Each part is assigned a priority

value. The author can use the attribute values of Priority

tag to express their intentions. Value ‘9’ indicates that the

corresponding content has the highest priority which must

be sent out when its URL is requested, whereas the value

‘0’ means the corresponding content is the least important,

compared to other parts of the web page. By default, the

value is set to ‘9’. The values could be incremented or

decremented automatically with the algorithms described

in section 3.4.

An example is given in Figure 4. Mr. Foo has a personal

web site. Whenever a request to his homepage is made, he

always wants his self-introduction and contact information

to be downloaded. So he assigns them priority ‘9’. And he

defines the remaining part as optional with priority value

set as ‘5’.

3.3.2 Fidelity Tags. Fidelity Tags are mainly used for

content negotiation. Other than keeping a variant list in a

file, web server can insert the lists and properties into an

XHTML page where the corresponding web object is

embedded. The lists and properties can be easily

Figure 5. The examples of using Fidelity tags. (The above

examples are adopted from RFC2296 [1] with some

modification.)

incorporated by applying Fidelity tags to them. Each pair

of Fidelity tags quotes a list of variants for one URL. The

choice tag specifies one of the versions of an object and its

properties. Figure 5 shows two objects where there are

three variants associated with each of them. The first

object is an image file associated with three presentations.

The image in GIF format has the best quality and biggest

size. (The quality values are evaluated by web author and

we adopt them from [1].) It is suitable for desktops and

laptops. To target PDAs, pictures in PNG format are the

best choice, because they have a little lower quality and

relatively smaller size. For those pager and cellular phone

users, a plain text can be displayed instead of the image. In

the second example, the document in English and kept as a

postscript file is the best version. English version in plain

text is worse. And the French plain text is the worst copy

in terms of quality. The variant selection can be done

ideally on the user agent, which has the complete

knowledge of the user’s hardware and software platforms.

3.4 Automated Assignment algorithm of fidelity

and priority values

3.4.1 Priority Assignment Algorithm

3.4.1.1 Server Side. An XHTML page first needs to be

divided into several segments because the smaller the

granularity, the easier to adapt to different devices. Each

segment can be as big as a whole page, or as small as a

table cell, a link to an object or even a word. Decision on

how to fragment a page is made by either the page author

or some automated programs. Regarding small web sites

like personal sites mentioned in Figure 4, the author could

fragment a page into several portions according to the

semantic. Fragmenting big commercial sites like

yahoo.com may be not an easy job for a human being,

whose size is about 50k. Instead, an automated program

can parse and fragment it. Some HTML tags could be

considered as the delimiters, such as pairs of <h1> </h1>

for headings, <p> </p> for paragraphs, <frameset>

</frameset> for frames, <table> </table>,<tr> </tr>, <td>

</td> for tables and etc. Tools like Xpath could be used to

locate these tags, then insert them in between the pair of

<priority> </priority>. Certainly, an unique ID like foo_x

in Figure 4 should be assigned to the segment for later use.

For each segment, the initial priority value could be

assigned in two ways, which are similar to the above

<Fidelity>

 <choice sourceQuality= “1” type=“img/gif”>

 <img src=“/images/foo.gif” width=“276”

 height=“110” />

 </choice>

 <choice sourceQuality=“0.6” type=“img/png”>

 <img src=“/images/foo.png” width=“76”

 height= “30” />

 </choice>

 <choice>

 foo

 </choice>

</Fidelity>

<Fidelity>
 <choice sourceQuality= “0.9” type= “text/html”

 language= “en”>

 <doc src=”/document/paper.html.en” />

 </choice>

<choice sourceQuality= “0.7” type=”text/html”

 language=”fr” >

 <doc src=”/document/paper.html.fr” />

 </choice>

<choice sourceQuality= “1.0” type=

 “application/postscript” language= “en” >

 <doc src=”/document/paper.ps.en” />

 </choice>

</Fidelity>

 7

fragment methods. If the authors fragment the page

manually, they could also assign the priority values by

themselves. In this way, they can show their intentions and

have some controls on their pages. Otherwise, an

automated program could traverse the whole page and

assign value “9” to all the segments as a default value.

There are ten priority values range from 0 to 9 and only

significant within the same page. That means the segment

priorities from different web pages are not comparable.

For each page, value 9 indicates the highest priority

whereas 0 means the lowest. Having been assigned the

initial value, the priority will be changed periodically

based on the number of accesses to a segment collected

from client agents. Figure 6 shows the algorithm.

Basically, if a client agent makes the request to the same

page, which it requested before, the number of clicks for

each segment will be piggy-backed. And the total

corresponding numbers would be updated accordingly on

the server. The priority values will be recalculated

periodically based on the number of clicks for each

segment.

Figure 6. Page Segment Priority Value Decision

Algorithm

Moreover, along with each request, there is a request

priority value sent by each client agent. It is used to reflect

user’s preference. Namely, what percent of the whole page

would be interesting to download. If the value is 0, the

complete original page would be sent out. If the value is 9,

only the smallest portion with priority value 9 would be

transferred. Generally, if the value is r, where 0<= r <=9,

all the segments with priority value p (p>=r) would be sent

out.

Figure 7. Client Agent Priority Value Decision Algorithm

3.4.1.2 Client side. For a downloaded web page, client

agent is responsible for counting the number of accesses to

each segment. Namely, the agent maintains a tuple

<URL/Segement_name, counts> for each segment in a

page. Based on this data, the client agent changes its

request priority value, which is set to 0 at the installation

time. The algorithm, which is illustrated in Figure 7, could

be running at the agent idle time without interfering with

user’s browsing. The request priority value of a client

Nj,c: total number of clicks on a page; increment upon each click

Nj,s: total number of segments of a page

Np: total number of pages

t: a function to calculate a specific threshold with parameters

Pj,i: priority value for segment i

Pj,c: priority value for a page

Tj,c: the time stamp to generate the Pj,c

Vk: the total number of pages having priority k, where 0<=k<=9

Pa: priority value for a client agent

Ta: the time stamp to generate Pa

Cj,i: total number of clicks on segment i, page j.

upon each click

if (new page)

 Np � Np +1;

 Initialize new (Cj,i)s to 0;

 Initialize new Pj,c to 0;

Cj,i � Cj,i + 1;

Nj,c � Nj,c + 1;

at the idle time

for each page j

 Pj,c’ � Pj,c;

 # change priority of page

 for each segment i

 if (Cj,i > t(Nj,c,Nj,s) and Pj,c > Pj,i)

 Pj,c � Pj,i;

 Tj,c � Tnow;

 else if (Tj,c expired)

 if (Pj,c < 9)

 Pj,c � Pj,c + 1;

 Tj,c � Tnow;

 # change priority of agent

 if (Pj,c <> Pj,c’)

 k � Pj,c’;

 Vk � Vk -1;

 k � Pj,c;

 Vk � Vk +1;

 if (Vk > t(Np) and Pa > k)

 Pa � k;

 Ta � Tnow;

 else if (Ta expires and Pa < 9)

 Pa � Pa + 1;

 Ta � Tnow;

Nc: total number of clicks; increment upon each click

Ns: total number of segments of a page

t: a function to calculate a specific threshold with parameters

Pi: priority value for segment i

Ti: the time stamp to generate the Pi

Tnow: the current time

Ci: total number of clicks on segment i

Ci’: total number of clicks on segment i sent from client agent

executed on each access

for each segment i

{

 Ci � Ci + Ci’;

 Nc � Nc + Ci’;

}

executed periodically

for each segment i

{

 # priority value increment

 if (Ci > t (Ci,Pi,Nc,Ns) and Pi < 9)

 {

 Pi � Pi + 1;

 Ti � Tnow;

 }

 # priority value decrement

 # expired means the segment hasn not been touched for a

period

 else if (Ti expired and Pi > 0)

 {

 Pi � Pi –1;

 Ti � Tnow;

 }

}

 8

agent is determined by the user’s behavior. First, the

priority value of a web page visited by the agent is

calculated. This is based on the statistic values of segment

clicks. Then by collecting the page priority values of all

the visited pages, the priority value of the agent can be

determined. Generally, two rules are applied for both page

and agent priority decisions:

1. If the number of accesses to a segment/page is greater

than a threshold, the current value is set to the

minimum of current priority value and the

segment/page value;

2. If a priority value hasn’t been changed for a long time,

the priority value is incremented.

3.4.2 Fidelity selection algorithm. As illustrated in

Figure 5, the Remote Variant Selection Algorithm (RVSA)

[1] could be used as the automated fidelity Selection

Algorithm. In fact, this algorithm is more suitable for our

versioning negotiation because the meta data in RVSA are

used to describe web objects, but not the device

information. Thus, with the description and the on hand

device information, client agent could make a good choice.

If RVSA is run on any server, the lack of device meta-data

can potentially result in a biased decision

4. Experimental Evaluation
4.1 Experiments on Priority Tags
 We conducted a series of experiments on the client and

proxy sides. On the client side, three types of wireless

devices were used. The first is a J2ME-enabled Motorola

i85 cellular phone. It uses Nextel service which provides a

maximum 19.2 kbps transfer rate. We consider this as a

low-end device in terms of network performance, CPU

power, and display size. The second one is an IBM 390

Thinkpad which uses a 802.11b compatible wireless card

to connect to the access point in our lab. The connection

rate was at 11 Mbps. This is considered to be a high-end

device. The third one is an iPAQ 3800 PDA and uses the

same network adaptor and network connection as the

laptop but with less computation power and memory.

We’ve also programmed a proxy server and let it run on a

Figure 8. Experimental Environment

Sun Ultra 60 workstation. The proxy code includes several

modules as a normal proxy server does. They are a server

side module, responsible for setting up a connection with

the web server; a client side module, in charge of the

communication with clients; a cache management module;

and a PFML parser. The two web servers we used were

google.com and cnn.com. The HTML page of cnn.com is

about 50k and frequently updated. On the other hand, the

HTML page of google.com is less than 3k and rarely

changed.

We designed three cases, as Figure 8 shows, to

download a portion of the web page to the client which is

about 1k size.

� Remote Case: the page is downloaded from the origin

site. The client sends out a request to our proxy server,

then the proxy relays the request to the origin site.

Having received the whole page from the web, the

proxy extracts the first 1k data and forwards it to the

client.

� Extracted Case: we put the pages of the web sites onto

the proxy server’s local disk, and inserted some pairs

of <Priority …> </Priority> tags into the origin pages.

Upon the user’s request, the parts marked with

<Priority value= “1”> are extracted and sent back to

the client.

� Cached Case: we put an extracted copy of the web site

on the proxy, which is about 1k. When the user’s

request came, the copy was sent out immediately.

Figure 9 shows the total time measured between the

user’s sending out the request and receiving the desired

page. The performances of cached and extracted cases are

very similar, whereas the remote case has two or three

orders of magnitude of larger retrieving time. Each node

represents the average time collected from 49 runs (7

different times in a day and Sunday to Saturday in each

1

10

100

1000

10000

100000

Cnn L
apto

p

G
oogle

 L
apto

p

Cnn P
DA

G
oogle

 P
DA

Cnn P
hone

G
oogle

 P
hone

lo
g

a
ri

th
m

ic
 t

im
e

Remote

Extracted

Cached

Figure 9 Comparison of total time to download pages to

different devices

 9

week). According to the experimental result, in regards to the cnn

page, the average time to process a cache hit is about 3ms, to

fragment a 50k cnn.com home page is about 15ms, and to

download it from the web is approximately 5000ms. For a

smaller page like Google’s homepage, which is about 3k. the

three values are 3ms, 4ms, and 500ms. The 500ms is due to its

relatively long expiration time which results from pages

downloaded from nearby proxy servers. The first observation is

that to fragment a page on the local cache server is much faster

than retrieving it. The second observation is how slow cellular

phone-proxy-connection time offsets the benefit brought by the

web caching in both the “CNN phone” and “Google phone”

cases. On the other hand, when the wireless link transfer rate is at

least one order of magnitude lower than that of the wired line and

the size of the Web object is small, for instance 3k, the saved

time is less significant compared to the delivering time on the

current telecommunication network. But according to the

experiment, it still saved about 1.5 seconds out of 10 seconds

total delivering time. Therefore, to draw a more accurate

conclusion on the performance of a priority tag on the slow

wireless networks, we measured the delivering time on the

cellular phone by sending out requests to 100 popular Web sites.

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

0 5000 10000 15000 20000 25000 30000

Page Size (bytes)

D
o

w
n

lo
a

d
in

g
 T

im
e

 (
m

s
)

Remote Extracted

Figure 5-11 Simulation data on 100 Web sites retrieved by

cellular phone.

The sites were collected from www.hot100.com with more

than 10 categories. The sites are generated using Overture's

search rankings for the query contained in the category. The 10

categories that we chose are listed in Table 5-2.

We used both Remote and Extracted Cases. With remote

simulation, the pages were downloaded to the cell phone from

the origin site. The downloading time is shown by the blue

square in Figure 5-11. But this time, in our client code, the

intermediary copies are allowed to fetch. Since the selected Web

sites are very popular, pages are most likely to be downloaded

from a proxy server close to client agents. Therefore, this is the

best scenario for the Remote case, namely, users can always

download a page very fast. In comparison, we stored pages on

our Unix machine, and when users’ requests come in, the pages

are simply read through once and sent back to the phone directly.

We did not extract any contents because we want to deliver the

same sizes of the pages, otherwise the saved transferring time on

a wireless network will dominate the overall amount of saved

time. The Extracted Case measurement is shown with pink

diamond dots in Figure 5-11. The average size of downloaded

page is 4843 bytes. The average downloading time is 6875ms in

remote simulation, whereas it is 5910ms in extracted simulation.

Therefore, by allowing users to share the cached objects among

heterogeneous devices with Priority tags, we are able to save

965ms to download an average-sized Web page. The

performance is improved at least 14%.
 There are several things which need to be taken into

account. First, the workload on the proxy is pretty low,

which may lead to less processing time of page extraction.

Second, the proxy server is supposed to be put at the spot

where the backbone of the Internet and the cellular

network are connected. But in doing our simulation, it was

not deployed this way. Most programs were coded in

JAVA language except the one on PDA, which is in C#.

But in [23], C# and Java are proven to be very close in

TCP socket performance.

4.2 Experiment on Fidelity Tags

We conducted two simulations on both content

negotiation with CC/PP and our Versioning Negotiation.

We showed the experimental result that Versioning

Negotiation outperformed the content negotiation with

CC/PP. The simulation environment was set up as Figure

16 shows. The Web server is Apache. It hosts more than

1000 personal Web sites of CISE Department students and

professors at the University of Florida so we are able to

test the simulation with some real workload. Two CGI

modules were put onto the server programmed with Perl.

One is for CC/PP, the other is for Versioning Negotiation.

The CC/PP module receives the users’ requests, retrieves

the device information from a third-party site, matches

different versions with devices descriptions, and sends

back the selected version to the client. We call our

Versioning Negotiation module PAVN. It behaves like a

normal Web server which simply returns pages. The

matching process between devices and objects happens on

the client side. We used a Motorola i95 cellular phone as a

client and programmed with J2ME and MIDP 1.0. Elapsed

Figure 16. Simulation environment to compare

performance on CC/PP and PAVN negotiation modules

 10

time is measured on the cellular phone and displayed on

the phone screen. The downloaded pages and objects are

not displayed because for both methods, they take the

same amount of time to render. The phone has 1.5M

RAM, 160*120 screen, 8 bits color depth [31]. The CPU

speed is not disclosed by Motorola, but it is estimated to

be around 100MHz [32].

The simulation results are illustrated as a bar graph

in Figure 17. The vertical axis indicates the round-trip

time to fetch the Web objects. The horizontal axis shows

the sizes of the downloaded objects. The plus sign on the

object size means two objects were downloaded; for

example, 1k+256 indicates that two objects were

downloaded. It means the size of the index page is 1k, and

the size of the embedded object is 256 bytes. Each bar

shows the average time of 15 runs.

The Versioning Negotiation outperformed CC/PP

in all 9 cases where both the CC/PP and PAVN algorithm

are executed. The average saved time is about 870

milliseconds. To further explore the amount of the saved

time, we analyzed the performance on the two server side

modules carefully.

The two CGI modules are very short. The PAVN

CGI simply gets the request, opens the corresponding file,

and sends it back. The CCPP CGI uses the Library for

WWW in Perl (LWP) to fetch the device CC/PP file, then

gets the image format information, for example, the width,

height and the resolution, and finally opens the requested

file and returns it.

0

2000

4000

6000

8000

10000

12000

1k
+1

k

1k
+5

12

1k
+2

55
1k

+0 1k

51
2+

512

51
2+

256

51
2+

0
51

2

25
6+

256

25
6+

0
25

6 0

Object Size (bytes)

R
o

u
n

d
-t

ri
p

 T
im

e
 (

m
s

)

PAVN

CCPP

Figure 17. Simulation results on CC/PP and Versioning

Negotiation

We used the UNIX time command as a benchmark

to measure the two programmed modules. Figure 18

shows the details returned by the time command. For the

CCPP module, the majority of the extra time was spent on

retrieving the CC/PP file from the Internet. The user

process consumes 0.78 second, the system calls on

network takes 0.11 second, including file opening and

network connection setting up, and the total elapsed time

is 1.35 seconds. Therefore, it takes about a half second to

fetch the CC/PP file from the Internet by subtracting the

first two numbers from the last one. Regarding the PAVN

module, the total elapsed time is 0.34 second, the user

process takes 0.28 second, and the system time consumes

about 0.02 second on file operation. We therefore saved

about 1 second on the server side by using PAVN instead

of the CC/PP module.

In our novel implementation, several issues are not

considered. First, the CC/PP file is fetched from the proxy

server which certainly saved a lot of time. Second, in the

real implementation of CC/PP, there are always some delta

data sent to the Web server from the client as

complementary information, for example, the upgraded

operating system version or the size of the memory sticks

which was just inserted into the expanded slots. The extra

information will also cost some extra time for the CC/PP

module. Third, we used an average size of CC/PP files,

which is 4.24k bytes because we could not find out a

standard CC/PP file for the Motorola i95cl phone [33].

The processing time of the Versioning Selection

Algorithm (VSA) on both server and phone is

insignificant compared with the object delivering time

spent on the wireless and wired networks. With a lack of

benchmark tools on cellular phones, we could not find out

the accurate time spent on the phone client as we did on

the UNIX server. But we got several timestamps while our

application was running. It takes only 25ms to parse the

fidelities of one object as shows. But we use only this

datum as a reference since it is measured inside the

program and thus not accurate.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

CCPP

PAVN

time (seconds)

total
system
user

Figure 18. Time measured on the server side

It is interesting to observe that there is a significant

delay on setting up a connection on a wireless network.

The experiments show three cases to download 512k Web

objects: 256+256, 512, and 512+0. In PAVN, to download

512 bytes with one round-trip consumes 5398ms. But the

others take 6959 and 6677ms separately. It is similar to the

CCPP method. Therefore, it would be more efficient to

download everything necessary at once on the current

 11

wireless network, which is similar to the WAP solution.

But pushing Web contents is a preemptive solution which

is opposite to our pulling method in versioning

negotiation.

Finally, we can see the trend of computing power

of small devices and their connected wireless links will be

developed extremely fast in the near future. The saved

time by deploying PFML will be more significant.

Moreover, we do not need different solutions to different

devices. The ubiquitous Web will finally appear on all

devices.

5. Conclusion
We have presented two approaches to adaptive web

delivery to end users with diverse mobile devices. The

first approach is partiality adaptation, which uses priority

tags to enable both communication ends to indicate their

intentions and allow different device users to share the

same web pages. The second approach is versioning

negotiation, which uses fidelity tags to let client agents

make their decisions to choose the best available version

without incurring an extra round of message exchange.

The primary focus of our future work is to find out the

threshold of network speed that can significantly offset the

benefits of our approaches on a wireless network based on

our experiments.

6. Reference
[1] RFC 2296 Remote Variant Selection Algorithm.

[2] F. Douglis, A. Haro, and M. Rabinovich. HPP: HTML

Macro-Preprocessing to Support Dynamic Document

Caching. In USENIX Symposium on Internet Technologies

and Systems, Monterey, California, USA , Dec. 1997.

USENIX Association.

[3] Edge Side Includes, http://www.esi.org.

[4] C. Chi and Y. Wu . An XML-Based Data Integrity Service

Model for Web Intermediaries. In Proceedings of the 7th

International Workshop on Web Content Caching and

Distribution, Boulder, Colorado , August 2002.

[5] F. Reynolds, J. Hjelm, S. Dawkins, and S. Singhal,

"Composite Capability/Preferences Profiles: A user side

framework for content negotiation," 27 July 1999.

[6] Gimson, R., et. al., "Device Independence Principles", W3C

Working Draft, September 2001.

[7] C. Ng and P. Tan . QoS and Context Delivery in Rule-Based

Edge Services. In Proceedings of the 7th International

Workshop on Web Content Caching and Distribution ,

August 2002.

[8] W. Shi and V. Karamcheti. CONCA: An Architecture for

Consistent Nomadic content Access. In Proceedings of the

WCCC Sorrento, Italy , June 2001.

[9] Wireless Markup Language(WML)

[10] V. K. and A. Joshi. "An End-End Approach to Wireless

Web Access," In Proceedings of the International

Workshop on Wireless Networks and Mobile Computing,

April 2001.

[11] Transparent Content Negotiation in HTTP. [RFC2295]

[12] A Syntax for Describing Media Feature Sets.

http://www.faqs.org/rfcs/rfc2533.html

[13] M. H. Butler Current Technologies For Device

Independence. Hewlett Packard Laboratories Bristol;

External Technical Report HPL-2001-83; 30 March 2001

[14] Smith, J.R., Mohan, R. & Li, C.. Transcoding internet

content for heterogeneous client devices. In Proceedings of

IEEE Conference on Circuits and Systems , 1998

[15] Bjorn Knutsson, Honghui Lu, and Jeffrey Mogul.

Architecture and Pragmatics of Server-Directed

Transcoding. In Proceedings of the 7th International

Workshop on Web Content Caching and Distribution,

Boulder, Colorado , August 2002.

[16] Chi-Hung Chi and Yang Cao . Pervasive Web Content

Delivery with Efficient Data Reuse. In Proceedings of the

7th International Workshop on Web Content Caching and

Distribution, Boulder, Colorado , August 2002.

[17] Intermediary Rule Markup Language (IRML)

http://www.ietf-opes.org/documents/draft- beck-opes-irml-

02.txt

[18] RFC 2005

[19] Dirk Husemann, Pervasive Computing Computer Networks

Volume 35, Issue 4, March 2001

[20] Mark. Weiser, The computer for the twenty-first century,

Scientific American, September 1991

[21] Davison, B.D. A Web caching primer Internet Computing

volume 5 number 4 July/August 2001

[22] T. Lemlouma, N. Layaida. Content Adaptation and

Generation Principles for Heterogeneous Clients. OPERA

Project, INRIA Rhone Alpes.

[23] http://one.cs.washington.edu/csharp/network.html.

[24] A. Fox and E. A. Brewer: Reducing WWW latency and

bandwidth requirements by real-time distillation. Proc. of

the 5th International 3WC, Paris, France (1996).

[25] SF Chang, "Optimal Video Adaptation and Skimming Using

a Utility-Based Framework," in Proc. IWDC-2002 , Capri

Island, Italy, Sep. 2002.

[26] Z. Lei, N. D. Georganas, "Context-based media adaptation

for pervasive computing", Proceedings of Canadian

Conference on Electrical and Computer Engineering

Toronto, May 2001.

[27] H. Bharadvaj, A. Joshi, and S. Auephanwiriyakul. “An

Active Transcoding Proxy to Support Mobile Web

Access,” In Proceedings of the 17th IEEE Symposium on

Reliable Distributed Systems, 1998.

 12

[28] The Convergence of Heterogeneous Internet-Connected

Clients Within IMASH. IEEE Wireless Communications

06’02.

[29] Bjorn Knutsson, Honghui Lu, and Jeffrey Mogul,

Architecture and Pragmatics of Server-Directed

Transcoding, Proceedings of the 7th International Web

Content Caching and Distribution Workshop, pp. 229-242,

August 2002.

[30] A. Joshi. On Proxy Agents, Mobility and Web Access,

Baltzer Mobile Networks and Applications 5, 2000

[31] I95cl Multi-Communication Device J2ME Developers’

Guide, Motorola Inc. 2002.

[32] Phone description, available: http://www.ilmunc.org/

motorola_i95cl.html

[33]Device profiles, available: http://w3development.de/

rdf/uaprof_ repository/ , W3C 2001.

