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Abstract 
We present a new approach to change detection and propagation in order to update copies of 
documents, which are stored on various devices. Our approach, called Format-Independent 
Change Detection and Propagation (FCDP), is capable of computing the changes that have 
been made to a document on one device and applying the net effect to an unedited copy, which 
uses a different format and representation. For example, this allows users of mobile devices to 
modify documents, which have been generated by more powerful applications on different 
platforms, and to have the modifications reflected in the originating documents.  

Our algorithm, which has been implemented and tested, improves upon current change 
detection techniques since it does not require access to all content and metadata of the original 
document. Furthermore, the application of changes across differently formatted documents is 
automatic, requiring no user initiation like current desktop-to-PDA conversion products, and 
transparent, eliminating the user-directed translations steps found in commercial products. 

 

1. Introduction 

In today’s networked computing environment, users demand constant availability of data 
and information which is typically stored on their workstations, corporate file servers, and 
other external sources such as the World Wide Web (WWW). An increasing population of 
mobile users is demanding the same when only limited network bandwidth is available, or 
even when network access is not available. Moreover, given the growing popularity of 
portables and personal digital assistants (PDA), mobile users are requiring access to important 
data regardless of the form-factor, rendering capabilities and computing power of the mobile 
device they are using. We see three related challenges imposed by mobility:  
1. Any-time, any-where access to user data, regardless of whether the user is disconnected, 

weakly connected via high-latency, low-bandwidth networks, or temporarily completely 
disconnected. 

2. Device-independent access to data to allow users to switch among different devices, even 
while mobile, and have access to the same set of files. 

3. Application-independent access to data to allow users to modify portions of documents 
and files belonging to classes of related applications (e.g., the ability to modify parts of a 
document irrespective of the Word processing application that was used to create the file). 
In [8], the authors have described a three-tier architecture as a basis for overcoming the 

aforementioned challenges. The heart of the architecture is a mobile environment manager to 
support the automatic hoarding of data from multiple, heterogeneous sources into a variety of 
different mobile devices. The mobile environment manager, which resides on a central 



 

 

(master) repository server as well as on each of the computing devices that are used, 
eliminates the manual and tedious synchronization between the devices and the central 
repository on the one hand, and between multiple (mobile) devices on the other hand. The 
three-tier architecture and supporting algorithms provides any-time, any-where access to data, 
irrespective of which device is used (challenges 1 and 2) and enables the automation of 
synchronization tasks in both connected mode (following disconnection) and weakly 
connected mode.  

In this paper, we describe our approach to overcoming the third challenge, namely to 
provide format-independent access to data in mobile computing environments. In particular, 
we describe algorithms for updating copies of content-rich text documents that reside on 
different devices in different formats based on the capabilities of the device. Our approach is 
called Format-Independent Change Detection and Propagation (FCDP). FCDP is capable of 
computing the changes that have been made to a document on one device (e.g., a Microsoft 
Word document on the user’s desktop) and applying them to a copy with minimal formatting 
instructions and structure on a different device (e.g., a PDA incapable of directly 
manipulating a full MS Word document). Selectively removing metadata or content allows 
users of mobile devices to not only read a document generated on another platform and with a 
more powerful application, but to modify it and have those modifications reflected in the 
originating document. The application of changes across applications is automatic, requiring 
no user initiation like current desktop-to-PDA conversion products. Our creation of cross-
platform translations is also transparent and does not require the multi-step, user-directed 
translations found in commercial products. 

To illustrate how FCDP works, let us explore a simple scenario. A busy executive is 
composing a document in his1 office using a full-fledged word processor. To enable 
ubiquitous access to the file and automatic updates to a master copy for future changes, he 
adds the document to his “working file set” on the central repository server using the 
environment manager portion on his PC. Prior to leaving for a trip, he synchronizes his 
FCDP-enabled PDA with the repository server. The server-portion of FCDP automatically 
removes pictures, graphs, formatting, and other information that is not usable by the PDA’s 
editing application (e.g., a simple text editor)—leaving only the ASCII text. This reduction 
speeds up transmission to the device, minimizes storage requirements on the PDA, yet retains 
enough information to proofread and edit the contents of the paper while traveling. 

During his travel, the executive updates the document. When connecting to the company 
server in the evening, the FCDP synchronization client on his PDA transmits the detected 
changes (using an intermediate format) to the central repository for synchronization with the 
master copy. Since only the changes are transferred, the necessary bandwidth demands are 
low. Once the changes reach the central repository server, they are re-integrated into the 
original, content-rich document, which is in the format used by the word processing 
application. To the best of our knowledge, this ability to apply the changes, which have been 
made to one document, to an unedited copy but of different format and content-richness is not 
currently possible. 

2. Approach 

As previously stated, our approach to change detection and propagation is part of a larger 
research effort to develop an infrastructure and methodologies for automatic hoarding and 
synchronization of data across devices and nodes to enable ubiquitous computing. The 
hoarding and synchronization architecture is shown in Figure 1. The central component of this 
                                                           

1 The terms he, his, etc. are used throughout this paper to refer to an individual which may be male or female. 



 

 

architecture is the Mobile Environment Manager (MEM), which has two primary 
components: M-MEM and F-MEM (Mobile and Fixed respectively). It provides the smart 
filtering algorithms and communication links between clients and the central repository and 
synchronization server. Underneath F-MEM is the meta-data database (Oracle Relational 
Database Management System with XML support) that manages the information about the 
working sets for each user including the default rules for device capabilities and the rules and 
filters for converting data into various formats to support transmittal between different 
devices. The meta-data database also contains the links to the actual data files that make up 
the working set, which are stored in a CODA file system [18].  
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Figure 1: Conceptual overview of our hoarding and synchronization architecture. 

A client’s M-MEM modules maintain contact with the servers or, upon reconnection to a 
network, establish connection to the synchronization server. Along with the initial 
communication setup, M-MEM identifies its O/S and device type. M-MEM also transfers the 
information it has captured during connected and disconnected states, including interesting 
file activities that need to be reflected in the user’s working set, changes in consistency 
desires, etc. to the F-MEM. Files not accessed within a certain amount of time are 
automatically removed from the working set. For active files, F-MEM receives either entire 
files or differential updates from the clients. Likewise, when a client first requests a file 
(either actively or through an access miss on the client), F-MEM sends the entire file. 

When M-MEM reports a file access miss on the client, F-MEM must transfer the 
requested file to the client. Our architecture uses an optimistic replication scheme similar to 
the one used in the Coda file system [18]. Since the server stores all files under its control as 
XML encoded files, it must translate the files into a format understood by the requesting 
application. If the client is using an application/device incapable of utilizing the content-rich 
data, the server initiates a content reduction process (in addition to the translation process) in 
order to produce a format understood by the client. 

For the following description of FCDP, we assume the mobile client is unable to render or 
edit content-rich documents. Furthermore, we assume that a low bandwidth, high-latency 
network connects the client to the data repository. The first step is to get the document from 
the repository to the mobile device. If necessary, F-MEM starts the conversion of the 
corresponding document into a XML-based format usable by the client. For complex, content- 



 

 

rich documents, an F-MEM initiated converter may also omit objects that are either not 
useable by the client or which are too big for efficient transfer over the network. A graphical 
depiction of this process is shown in Figure 2.  
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Figure 2: Conceptual overview of FCDP. 

Of particular note is the use of XML to provide the canonical encoding of the documents 
in the warehouse. Discussion of converting proprietary formats to XML is beyond the scope 
of this paper. Using XML as the encoding format allows us to leverage the growing set of 
tools and automation techniques to transform XML into other formats. It also eases 
processing of the document in comparison to commercial proprietary formats. 

On the client device (e.g., the Laptop or Palm shown on the right-hand side in Figure 2), 
an XML converter performs lossless, two-way conversion of the transmitted document into 
the format used by the client application and vice versa. After the file has been edited (e.g., 
upon file closing), it is re-converted into the intermediate XML document and compared to 
the downloaded version in order to identify the changes. This is done by the client-side FCDP 
which computes the minimum cost edit script [3, 5] that is transmitted to the FCDP server 
immediately (when in connected or weakly connected mode) or else upon reconnection. Note 
that re-conversion and change detection can also be a user directed event.  

On the server, FCDP applies the edit script to the XML version of the original document 
stored in its repository. The outcome of this is a document with the original content plus all 
the changes that were made to its filtered counterpart document on the mobile device. If 
necessary, the server can transmit the edit script to other mobile devices to bring those copies 
into a consistent state. The metadata repository also stores the edit script to provide versioning 
control if previous versions of the document need recovering. The following sections describe 
our implementation of the client and server-side FCDP algorithms in a prototype system as 
well as the results of an initial set of experiments validating our approach.  

3. Implementation of FCDP 

3.1. Overview of FCDP 

For this discussion, we refer to the original, unedited version of the document as the v0 



 

 

version; v1 refers to the version of the document after a user has modified it. Table 1 shows a 
summary of the various document incarnations used in FCDP.  

Table 1: Document legend in FCDP 

v0 Rich Content, XML Doc v1(-) Changed version of v0(-) 
v0(-) Text only version of v0 v1(-)’ v1

- with XML structure imposed 
  v1 v0 with modifications from v1(-) 

 
The first version of our FDCP algorithms focuses on the important and large class of word 

processing documents. Recall the scenario in Section 1 in which the executive wants to use 
his PDA to proofread and edit files created on his desktop computer. We graphically depict 
the use case in Figure 3 below. 
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Figure 3: FCDP overview with a text-only mobile client. 

We have developed tools to convert the canonical XML formatted document (v0) on the 
repository server into a text-only document (v0(-)). F-MEM transmits the document to the 
PDA. The executive then edits the document and creates version (v1(-)). The PDA’s M-MEM 
executes a text-based change detection program (GNU diff() [7]) between v0(-) and v1(-). M-
MEM transmits the edit script to the repository server where FCDP integrates the changes 
into its copy of v0(-) to create v1(-). It must convert the updated text-only document into a 
form (v1(-)’)usable by our XML change detection engine  called vdiff (verbose diff) engine. 
The server proceeds to detect the changes between v1(-)’ and v0 to create an XML based edit 
script. Finally, the server applies the edit script to v0 to create v1. We use two iterations of 
difference detection (GNU diff() and vdiff()) only when the mobile device is unable to support 
the processing demands of the vdiff-engine. In Figure 4, we depict a less extreme content-
transformation example. We expect the client to perform a single change detection 
exclusively using the vdiff-engine we describe here. 

To allow change detection across different text/word processing applications we chose to 
rely on XML to provide a universally accessible format. We found it easier to transform and 
reduce XML documents than transforming proprietary formats. The conversion of v0 
documents into v0(-) documents formats requires we track the transformations performed on 
the structure and contents of v0. Lossless conversion requires no such tracking but it is 



 

 

essential to allow cross-format change-detection. 
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Figure 4: FCDP overview with a generic mobile client. 

3.2. The Symmetric Difference Map File 

Word processors create documents with that contain a lot of metadata such as style and 
formatting information, page definitions, etc. We must identify the metadata, document 
structures, and document contents that, due to rendering limitations or bandwidth restrictions, 
mobile devices will not have access to. Once identified and removed, this missing data will 
not interfere with the change detection and propagation. Without this information, a 
“roundtrip” between a transformed and edited document back to the originating document 
would not be possible. To track this information we rely on externally stored data. We have 
created a vdiff schema, shown in Figure 5 that defines an intersection or symmetric difference 
map file between the document structure of an XML file and its corresponding 
transformation. 
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Figure 5: Diagram of vdiff schema. 



 

 

The symmetric difference map file contains the meta-data that reports the name of the 
originating application and the format of the targeted conversion. The schema then requires a 
tag-by-tag enumeration of shared and aliased tags or a tag-by-tag enumeration of unshared 
tags and unshared attributes. The ability to list only the intersection of identical tags between 
XML formats prevents having to enumerate every possible tag name in the domain of the v0 
document. The alternative is to list only the unshared tags (the symmetric difference) between 
two XML documents. Figure 5 shows the vdiff schema with the intersection element 
expanded. 

3.3. The vdiff() Algorithm 

The portion of FCDP responsible for detecting changes to the canonical XML-based 
representations, is vdiff(). Our implementation of vdiff() is based on XyDiff() [6] created by the 
VERSO team at INRIA.  

As in XyDiff(), we use XIDs (eXternal IDs) to provide permanent identifiers for every 
node in the v0 document. The pseudo-code below provides the top-most level of the vdiff() 
algorithm and assumes three arguments are provided by the invocation, the name of the v0 
document, the name of the v1(-)’ (referred to as “v1minus” for the remainder of this section) 
document, and the name of the map file describing structural similarities or differences. 

1 v0DOM = ParseAndLabel(v0document,isSource); 
2 v1DOM = ParseAndLabel(v1minusDocument,isNotSource); 
3 StructuralMapInfo = ParseMapFile(mapFile); 
4 BuildSubTreeLookupTable(v0DOM); 
5 FindAndUseIDAttrs(v0DOM); 
6 TopDownMatchHeaviestTrees (v1minusDOM); 
7 PeepHoleOptimization (v0DOM); //force matches if reasonably safe  
8 MarkOldTree(v0DOM, StructuralMapInfo); 
9 MarkNewTree(v1minusDOM, StructuralMapInfo); 
10 AdjustForUnSharedChildren (v0DOM, v1minusDOM, StructuralMapInfo); 
11 BuildLeastCostEditScriptForWeakMoves (v0DOM,v1minusDOM);  
12 DetectUpdatedNodes(v1minusDOM, v0DOM); 
13 ConductAttributeOperations(v0DOM, v1minusDOM,StructuralMapInfo); 
14 WriteXIDmapFile (v1minusDOM); 
15 WriteDiffInfoToFile (); 

We briefly explain the logic embedded in this code. In lines 1 and 2, the 
ParseAndLabel method uses the Xerces [2] XML parser to parse and validate the input 
XML files. Immediately after parsing, the method traverses the in-memory DOM and builds a 
mapping between each node and its XID. The ParseMapFile method in line 3 processes 
the contents of the map file and instantiates the appropriate classes and data structures. The 
data structures are primarily STL maps that ensure O(1) lookup. This ensures little 
performance penalty when seeing if an element tag is shared between the two documents.  

The BuildSubTreeLookupTable method of line 4 traverses the v0DOM-tree and 
builds an average case O(1) lookup table of sub-trees. The key for each sub-tree is a hash 
value created from the content of the sub-tree’s root plus the cumulative hash values of its 
children.  Line 5’s FindAndUseIDAttrs determines if any elements in the v0DOM-tree 
and v1minusDOM-tree have ID attributes and attempts to find the appropriate matched node. 
The identical value in the two ID attributes is prima fascia evidence of a match. 

In line 6, the TopDownMatchHeaviestTrees method uses the sub-tree lookup table 
built in line 4 to search for matches starting at the top of the v1minusDOM-tree. An obvious 
and mandatory match of the root nodes happens first, then a breadth-first search. If a match 



 

 

occurs at a non-leaf node, the method recursively assigns all the descendants of the matched 
nodes to their respective peers. 

Line 7 contains the critical PeepHoleOptimization method. This is an attempt to 
increase the number of matched nodes without creating false matches. For each matched node 
in the v0DOM-tree and its matched node in the v1minusDOM-tree, it builds a list of unique 
unmatched children. If there is only one instance of each tag name in each child list, match the 
child nodes. If there is more than one instance of the tag name, there is insufficient data to 
force a match. 

The MarkOldTree and MarkNewTree methods in lines 8 and 9 are straightforward. 
The MarkOldTree method traverses the v0 tree and marks every unmatched and shared-tag 
node as deleted. It also marks nodes as strong moved if they and their matched node do not 
have parents that are themselves matched to each other. The method MarkNewTree marks 
unmatched and shared of v1minusDOM as inserted. 

Line 10 lists a critical piece of FDCP. This method, AdjustForUnSharedChildren, 
ensures proper ordering of inserted and moved children. Without compensating for the offsets 
caused by unshared children, a node’s child list will not be in a correct sequence. For 
example, an inserted child may appear to be the ith child of a v1minus node. When 
incorporated back into the original document however, it should rightly be in the jth position. 
If left with an incorrect insertion position, the diff script will insert the node at the ith 
position. This incorrect positioning will cause errors as minor as wrongly ordered 
paragraph/picture sequences and as major as violating the DTD or Schema of the source 
document. 

The BuildLeastCostEditScriptForWeakMoves method of line 11 is a 
straightforward longest common sub-sequence problem. The task is to determine the least 
expensive means by which each node can turn its old child sequence into its new child 
sequence. The cost for inserts and deletes are proportional to the weight of the sub-tree each 
child represents. Line 12, DetectUpdatedNodes, is also uncomplicated in 
implementation. If a node and its matched node have only singular text node children, match 
the text nodes. Consider the text nodes updated and assign new XIDs to them. The method of 
line 13, ConductAttributeOperations, looks at every matched node and determines 
if its attributes represent inserted, deleted, or updated values. We again use the 
StructuralMapInfo and its O(1) lookups to minimize the expense of determining if the 
absence of attributes in a v1minusDOM-tree node are meaningful. In the domain of our test 
sets, this function also infers attributes for inserted nodes. This inference is critical to proper 
rendering of paragraphs in AbiWord [20]. 

3.4. Improvements to the vdiff() Algorithm 

Based on the performance of our initial implementation of the vdiff() algorithm, we 
incorporated several improvements to be able to handle more complex document structures 
with lower error rates. We refer to the new version of vdiff() as vdiff2() and its algorithm is 
outlined below. The least cost edit script referred to in line is based on the algorithm 
developed by Myers [16]: 

1 Match the nodes in the v0 and v1minus documents using the least cost 
edit script match algorithm; 

2 Adjust the structure of the v1minus document to make it isomorphic to 
the v0 document; 

3 Optimize matches; 
4 Construct delta script; 



 

 

The primary problem in the node matching phase in line 1 is that a sub-tree of text nodes 
(which store the document content) in the v0 document will represented as a single node in 
the v1minus document since all document structure has been lost. Hence, a simple matching 
of text nodes in the two documents would lead to unsatisfactory results. In order to solve this 
problem, a sub-tree match phase has been introduced as one of the phases of the match 
procedure. Another problem encountered in this phase is that text nodes also contain 
information other that the text content of the document in the v0 document. As an example of 
this consider inline images in Abiword documents. The image data is encoded into base-64 
characters and stored in an ordinary text node. The exclusion map mentioned above enables 
the algorithm to exclude such information from the match phase since each match has a run 
time linear in the size of the input nodes and image data tends to be very large. 

The primary steps involved in the matching procedure are: 
1. Construct a list of text nodes from the v0 document by excluding any sub-trees 

specified in the exclusion map. 
2. Construct a list of text node sub-trees from the v0 document using the list constructed 

in step 1. All sub-tree members are removed from the first list as a result. 
3. Construct a list of text nodes from the v1minus document 
4. For each text node in the v1minus list, use the least cost edit script match algorithm to 

pair it with a text node in the v0 document list. During this process, all match values 
are retained in a hash table for fast lookup. When a match is found, i.e., the script 
length is below a threshold determined by the input lengths, a check is made to 
determine that the v0 document node was not already matched. If so, the better match 
is selected. 

5. For each node in the v0 document sub-tree list, if the size of the subtree is below a 
threshold, compute all permutations of the sub-tree nodes and store them in a list. The 
nodes in this list are then matched against all nodes in the v1minus list to find the best 
match. If the subtree exceeds the threshold size, we do not compute any permutations 
and compare the natural node order of the v0 document to the nodes in the v1minus 
list. Hence the overall runtime of vdiff2() is closer to O(NM), where N and M are the 
number of text nodes in both trees. Once a best match is determined, a trace through 
the edit graph of the two strings is determined. This trace combined with our 
knowledge of the end points of the v0 sub-tree nodes, allows us to determine the 
matching sub-strings in the v1minus node. Thus we have performed an approximate 
sub-string match that can associate sub-strings with their edited versions within a 
certain threshold. 

Line 2 of the vdiff2() algorithm is responsible for adjusting the structure of v1(-)’ to make 
it isomorphic to that of v0. The steps involved in this phase are: 

1. Apply the sub-string matches by replacing the node in the v1minus document by its 
corresponding sub-strings. 

2. Adjust the document for unshared ancestors by inserting all unshared ancestors of a 
matched node in the v0 document into the v1 document. However, the condition 
where unshared ancestors of sibling nodes in the v0 document are being inserted 
would cause two separate sub-trees to be generated. To handle this, the sibling sub-
tree of the candidate node in the v1minus document is checked for matches against the 
ancestors being inserted. If matches exist and the v0 document ancestors are already 
matched to these nodes, the existing v1minus nodes are used. 



 

 

3. Adjust the document for unshared nodes by traversing the trees and importing all 
unshared nodes of matching parents. 

Optimization of matches in line 3 and the construction of the delta script in line 4 are 
unchanged and performed in the same manner as in the original vdiff() algorithm. 

4. Experimental Results 

4.1. Experimental Setup and Description of Data Sets 

The testing platform consisted of an AMD Duron 650Mhz processor, 128 Mb RAM and 
an IBM-DTLA-307030 hard drive running Mandrake Linux 8.2 (kernel 2.96) with gcc 
version 2.96 and Xerces-C++ 1.4. Test data for the experiments consists of ten AbiWord 
generated term papers, forms, memos, letters and pages from documents such as E-books and 
brochures. We conducted insert, delete, move and update operations on 0%-50% (at 10% 
increments) of the paragraphs in the original document and 10%-40% (at 10% increments) of 
the content of each paragraph. Hence, each test case resulted in 96 modified documents. In the 
following test cases, vdiff2() is used instead of the original vdiff() algorithm. 

 We lack empirical evidence to demonstrate that this sequence is reflective of real world 
editing patterns, but intent to establish empirical evidence in future work. The test documents 
contained no graphics or other embedded objects, just formatted and styled text. We 
deliberately kept the test set small to better control the fluctuation of document structure 
within our collection of documents. The primary goal of the experiments was to prove the 
viability of cross-format change detection. A secondary goal consisted of proving the 
assumption that content reduction can result in transmission savings. 
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Figure 6: Bytes to transmit v0 vs. v0(-) documents (generated by AbiWord) 

4.2. Bandwidth Savings 

Transmitting text-only versions of documents to PDAs can result in large reductions in the 
amount of data transmitted. Although the AbiWord test set was relatively small (960 test 
cases derived from 10 source documents), results from the Puppeteer project [11] also 
substantiate the savings achievable by content reduction as shown in Figure 6. 

Another indicator of how FCDP reduces the amount of data that mobile devices need to 
transmit is shown in Figure 7. If the mobile device has to transmit the entire v1(-) document, it 



 

 

will have to transmit far more data than just the edit script generated by GNU diff(). 
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Figure 7: Bandwidth savings when using GNU diff versus value shipping of entire file  

  The cumulative savings generated by vdiff2() are shown in Figure 8. The vdiff2() edit 
script sizes are only 7.53% of the total size for XyDiff [6]over all 960 test cases, which is a 
significant savings. Of course the more significant factor is that XyDiff generated files lose 
almost all document formatting. 
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Figure 8: Comparison of vdiff2() edit script sizes with those generated by XyDiff. 

4.3.  Error Rates 

In order to compute the error rates, we applied the edit operations on the source document 
to generate edited documents (we denote these as “reference modified documents”). These 
documents were then converted to text and provided as an input to vdiff2() along with the 
original source documents. The resulting documents after applying the generated deltas were 
compared to the modified reference documents for quantification of error. Figure 9 shows a 
plot of the number of missing nodes of various types using the reference documents as the 
expected result. As can be seen, vdiff2() error rates are significantly lower than those for 
XyDiff, having only 5.7% of the total number of missing nodes. Please note that negative 
node counts indicate those errors where vdiff2() created “new” nodes that are not part of the 



 

 

original document.  
It is important to point out that these performance benefits are achieved at the cost of 

runtime performance: whereas the original vdiff() algorithm is almost 5% faster than XyDiff, 
vdiff2() is now roughly five times slower than XyDiff. However, we believe that the slower 
performance of vdiff2 does not impact its usefulness, since accuracy is much more important. 
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Figure 9: Missing node counts for vdiff2() and XyDiff against the reference modified documents. 

5. Related Research 

The research described in this paper falls into two categories: XML difference algorithms 
and bandwidth adaptation. 

5.1. XML difference algorithms 

Our approach to change detection and propagation in XML documents is based on tool 
developed by the VERSO Team at INRIA for their Xyleme Project [6, 14]. This tool has the 
original name of XyDiff and now has the name verbose-diff (vdiff): accounting for 
documents’ differing levels of structural verbosity and content. XyDiff expanded on the 
capabilities of Sun’s [21], IBM’s [9] tools by incorporating the ability to capture move and 
update semantics. Like [3, 4], XyDiff is one of the few XML tools to utilize the move 
semantic for diff scripts. This takes advantage of the hierarchical nature of XML and allows 
movements of entire sub-tree to new locations with a single entry in a diff script. 

The original XyDiff algorithm [14] utilizes external identifiers (Xyleme IDs) to 
permanently identify each node in the v0 XML document. These identifiers correlate to a 
post-order traversal of the DOM tree created by parsing the XML document. The remainder 
of the XyDiff algorithm shares 85% commonality with the previous version of vdiff(). The 



 

 

algorithm shown in Section 3, minus all details associated with the StructuralMapInfo, 
applies for XyDiff. 

5.2. Bandwidth Adaptation Through Content Reduction, Editing, and Propagation 

The research described here is part of an overall effort to build the infrastructure to 
support device independent mobile computing. Other device-independent computing efforts 
are under way at Stanford [1], DARPA [19], IBM [10], and at Texas A&M [13]. 

Our effort to allow the executive to propagate text only changes into a complex format 
(like OpenOffice’s StarWriter, AbiWord, and MS Word) expands on work done in the area of 
change detection. GNU’s diff() utility, for example, compares flat text files using the 
algorithm described in [16]. There are also numerous front ends to diff() that present the 
results in various formats. The difficulty with diff() and similar utilities is they use line 
breaks as record delimiters: however, line breaks often do not exist nor have real meaning in 
binary data files. In addition, diff-based utilities do not recognize hierarchically structured 
data and are unable to discover movement of data from one location to another. Due to these 
shortcomings, we are adapting existing research on finding minimum cost edit distances of 
structured data (see, for example, [5, 23]). This line of research transforms the data into a tree 
structure. An edit script can change tree A into tree B with a sequence of inserts, deletes and 
moves of A’s nodes so that it looks like B in both shape and content. A minimum cost edit 
script is one that is least expensive with respect to I/O operations, time to completion, and 
other desired metrics [3].  

XML specific diff algorithms include laDiff [4], IBM’s XML Diff Merge Tool and XML 
treeDiff [9], and Sun’s DiffMk [21].  Their shortcoming in this proposal is they all require a 
100% overlap in tag and attribute set domains for both XML documents. They each mandate 
that absence of data in the modified file is a delete operation imposed on the original file. We 
do not impose such a restriction. 

Research on common/intermediate representations using XML has been ongoing at 
Stanford University with the Lore Project [15]. In addition, the open source community and 
Linux developers have created numerous XML converters for popular word processing 
formats [22] that we are leveraging. Our goal is to make any and all translations invisible to 
the user, and automatically apply detected changes between file versions. 

The Puppeteer [12] project at Rice University is the closest to our vision of systems that 
support ubiquitous computing without adapting the user’s applications. They use public 
Microsoft APIs to parse original MS Office documents into OLE-based DOMs. The DOMs 
nodes are individual structures (e.g., page, slide, worksheet) from within the MS document. 
They offer the ability to transmit content in low- and high-fidelity modes, and switch between 
the two. The mobile device’s MS Office applications then manipulate the data as usual. 
Puppeteer also is beginning the process of allowing edits to the low-fidelity components on a 
mobile device and integrating those changes into the high-fidelity version. Puppeteer does not 
yet have the cross-application design goal that we are attempting to implement. 

Another line of research in bandwidth adaptation is the Odyssey project [17]. Odyssey 
also adapts application data to the current state of the network connection. Unlike Puppeteer, 
Odyssey requires applications be customized to support its implementation scheme. This is in 
contrast to Puppeteer, which uses public APIs of applications to manipulate that application’s 
data files. It is also in contrast to our own system, which utilizes a common format for 
supported applications: XML. 



 

 

6. Conclusion and Status 

In this paper we have presented change detection and propagation methods to synchronize 
documents which are stored on various computing devices. Our approach, called Format-
Independent Change Detection and Propagation (FCDP), is capable of computing the 
changes that have been made to a document on one device and applying the net effect to an 
unedited copy, which uses a different format and representation. This allows users of mobile 
devices to modify documents, which have been generated by more powerful applications on 
different platforms, and to have the modifications reflected in the originating documents. 

Our work is contributing to the state-of-the-art in the following important ways. We 
presented algorithms and techniques for converting XML documents into a client-usable 
format (in this case an ASCII text editor). We have developed algorithms and techniques to 
convert client-usable formats into minimalist XML documents based on the originating 
documents’ XML DTDs/Schemas. We have also developed tools to track where and how the 
minimalist XML representations intersect with the XML tag&attribute set of the originating 
document. We developed a technique to infer, whenever appropriate, attributes for new XML 
nodes when the modifying application cannot generate those attributes. Finally, we presented 
a heuristic to integrate shared and unshared nodes across XML documents to ensure useful 
ordering of document content. 

Despite the promising results of our experiments, our system is still work in progress. We 
are currently refining the approach to provide more capabilities and improve performance. To 
improve performance we want to develop customizable peephole optimization routines that 
rely on specific knowledge of the XML data structure. We also will use placeholders in the 
bandwidth-adapted files to mark the location and existence of stripped elements. That step 
will help us improve performance (both in time, and size of the edit script). Placeholders will 
allow movement, deletion, resizing, and other manipulation of the placeholder (though not its 
actual contents). We are also studying the runtime performance of the algorithm and are 
trying to develop more efficient alternatives for the most expensive phases. 
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