
NILE-PDT: A Phenomenon Detection and Tracking Framework
for Data Stream Management Systems

M.H. Ali1, W.G. Aref1, R. Bose3, A.K. Elmagarmid1, A. Helal3, I. Kamel2, M.F. Mokbel1

1Department of Computer Science, Purdue University, West Lafayette, Indiana {mhali, aref, ake, mokbel}@cs.purdue.edu
2College of Information Systems, Zayed University, U.A.E. Ibrahim.Kamel@zu.ac.ae

3 Computer and Information Science & Engineering, University of Florida {rbose, helal}@cise.ufl.edu

Abstract

In this demo, we present Nile-PDT, a Phe-
nomenon Detection and Tracking framework us-
ing the Nile data stream management system.
A phenomenon is characterized by a group of
streams showing similar behavior over a period
of time. The functionalities of Nile-PDT is split
between the Nile server and the Nile-PDT ap-
plication client. At the server side, Nile detects
phenomenon candidate members and tracks their
propagation incrementally through specific sen-
sor network operators. Phenomenon candidate
members are processed at the client side to de-
tect phenomena of interest to a particular appli-
cation. Nile-PDT is scalable in the number of
sensors, the sensor data rates, and the number of
phenomena. Guided by the detected phenomena,
Nile-PDT tunes query processing towards sensors
that heavily affect the monitoring of phenomenon
propagation.

1 Introduction

Many sensor-network applications are interested in detect-
ing and tracking phenomena that appear in their fields of
interest. Examples of interesting phenomena include the
spatiotemporal propagation of pollutants, e.g., an oil spill
region or a gas leakage cloud. Formally, we define a phe-
nomenon to be a group of sensors that join with each other,
over similar values, α times in a time-window of size w.
This definition is controlled by two parameters, the strength
(α) of a phenomenon and its time span (w). The strength

Permission to copy without fee all or part of this material is granted pro-
vided that the copies are not made or distributed for direct commercial
advantage, the VLDB copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Very Large Data Base Endowment. To copy otherwise, or to republish,
requires a fee and/or special permission from the Endowment.

Proceedings of the 31st VLDB Conference,
Trondheim, Norway, 2005

parameter (α) qualifies a set of sensors to form a phe-
nomenon if the sensors produce the same value at least (α)
times. A value that appears less than α times is considered
noise and is not reported as a phenomenon. The time span
parameter (w) can be viewed as a time-tolerant parameter.
w limits how far a sensor can be lagging in reporting a phe-
nomenon.

Nile [3], a stream query processing engine developed at
Purdue University, provides a pipelined execution of con-
tinuous queries over sensor data streams. In this demo, we
introduce Nile-PDT, a framework for Phenomenon Detec-
tion and Tracking using Nile.

2 Features of Nile-PDT
The task of phenomena detection and tracking is divided
among the Nile server and the Nile-PDT client application.
At the server side, we make use of a new query operator,
the SN-join (or the Sensor Network join) operator. SN-join
is a generalized similarity-based binary join operator that is
designed for sensor network applications. The main chal-
lenges in realizing SN-join are the following: First, SN-join
is a similarity-based join. In other words, it is not necessary
that sensor values match exactly. Sensor readings that are
close to each other in value will still join and produce an
output tuple. Second, and most interesting, is the follow-
ing feature of SN-join. The input to SN-join is a sensor
network SN that is composed of many sensors, each sup-
plying an input data stream. For example, the data stream
of sensor i in SN is referred to by SN[i]. Since there are
many sensors in SN, it is the responsibility of SN-join to
figure out which pair of sensors SN[i] and SN[j] out of
the many sensors in SN that have similar joinable values
within a time window w of each other. SN-join uses a
relevance feedback mechanism that guides SN-join as to
which streams to join in order to increase the likelihood
of producing binary join output tuples. Nile-PDT applies
SN-join, along with other query plan operators, over the in-
coming sensor data streams to report the sensors that join
with each other over a time-window w as phenomenon can-
didate members. The client tracks the detected candidate

SELECT i, j, value, ts
FROM SN
WHERE SN [i].value ≡ SN [j].value

AND i <> j
AND <other conditions>
WINDOW W

Figure 1: Nile-PDT SQL queries

members and aggregates them to form a phenomenon with
the desired features, e.g., having the minimum number of
occurrences (α), the minimum number of sensors in a phe-
nomenon, the spatial location of sensors, and the connect-
edness of the members, etc.

The main features of NILE-PDT are summarized as fol-
lows:

1. Query processing with relevance feedback. The
query processor aims at maximizing the number of
detected phenomena. Based on the detected phe-
nomenon candidate members, query processing is
tuned towards sensors where phenomena are most
likely to develop. In this demo, we developed two
query operators that make use of relevance feedback:
SN-join and SN-scan.

2. Load shedding and scalability. Nile-PDT provides
feedback to the Nile stream manager to control the
sampling rate of sensors. Sensors that contribute heav-
ily to the propagation of phenomena are given more
attention, while sensors that participate in no phenom-
ena are sampled at a lower rate. As a result, Nile-PDT
scales with the number of sensors, sensor data rates,
and the number of detected phenomena.

3. Incremental processing. Nile-PDT incrementally
monitors phenomena in the sensor network and con-
tinuously updates the user with the appearance and
the disappearance of phenomena. Nile-PDT takes ad-
vantage of Nile’s notions of positive and negative tu-
ples [2] to incrementally track the phenomenon prop-
agation.

Phenomena detection and tracking is initiated by a con-
tinuous SQL query issued by the client. To support the exe-
cution of continuous queries over sensor data, the system is
extended with the abstract data type (ADT) SensorNetwork-
ADT. SensorNetwork-ADT extends the functionality of re-
lational tables by appending extra information to each tu-
ple. A sensor reading is in the form SN [ID].(value, ts),
where ID is a sensor identifier and value is the reading
value of that sensor at timestamp ts. Figure 1 introduces the
general form of SQL-queries that are issued by the client.
Sensor network SN is joined with itself, which means any
two sensors from SN are eligible to join with each other
based on a similarity join over SN.value. The condition
(i <> j) prevents the sensor from being joined with it-
self. Other conditions can be specified as well in the where
clause, e.g., timestamp and value predicates. The result
is sent to the Nile-PDT client to be grouped and analyzed

SN[i].value � SN[j].value

AND i <>j

join note

Sensor Network

SN-Scan

scan note

�

i, j, value, ts

Figure 2: Nile-PDT query plan

then to report sensors that join with each other more than α

times within the last time-window w.

3 Query Processing with Relevance Feed-
back

Figure 2 gives the query plan for the query in Figure 1.
The stream tuples are pushed from the sensor network into
the system’s input buffers through the SN-scan operator.
Then, the SN-join operator is applied over the incoming
streams to detect which sensors give the same or similar
readings over the specified time-window. SN-scan and SN-
join are special operators that are tuned for sensor-network
processing. These operators may accept feedback (or hints)
from other query plan operators that express the relevance
of the join output tuples to the query result.
The SN-scan Operator. SN-scan is responsible for attach-
ing the sensor-network platform to the sensor-network ab-
stract data type (SensorNetwork-ADT). SN-scan scans the
sensors for fresh readings and passes these readings up in
the query plan. SN-scan is optimizable through its capabil-
ity to accept scan notes from higher operators in the query
plan. The scan notes update the relative frequencies at
which the SN-scan operator reads from the sensors. The
scan notes are extracted by estimating the likelihood of a
sensor to contribute to the output. The scan note is a well-
defined interface through which the SN-scan operator can
be tuned to increase the scanning rate of a specific sensor.
The SN-join Operator. A traditional join operation does
not scale to a sensor network that contains thousands of
sensors. Stream join has been discussed in literature,
e.g., [1, 5]. In the context of Nile-PDT, each sensor does
not have to join with every other single sensor in the sen-
sor network (e.g., a phenomenon spans only a portion of
the sensor network). The challenge is to find the join pairs

from among the many sensors that join together over the
time-window w.

To address this challenge, we developed a new join op-
erator, the SN-join operator that is especially designed for
large-scale sensor networks. SN-join is guided by the out-
put of the query to direct the join operation towards sen-
sor pairs that are more likely to contribute to the join out-
put. In the context of Nile-PDT, SN-join is guided by the
detected phenomenon candidate members to perform the
join among sensors with similar behavior. SN-join main-
tains a 2-d matrix (P) that records the probe probability
between each two sensors. A reading from sensor SN [i]
probes sensor SN [j] for a join based on the probability Pij

(i.e., with probability 1 − Pij , the probing overhead will
be skipped). Higher operators in the query plan provide the
SN-join with join notes that help update the probability ma-
trix (P). Based on the portion of a sensor stream that has
been seen so far, join notes are extracted by estimating the
likelihood of two sensors to contribute to the join output.
The join note is a well-defined interface through which SN-
join can be tuned to favor the join operation among certain
sensor pairs. Several sensor probing mechanisms are ex-
plored in the context of Nile-PDT. The purpose is to track
existing phenomena (guided by the join notes), but at the
same time detect new phenomena that emerge in new re-
gions in the sensor network. This feature is captured in our
demo by measuring the time delay between when a phe-
nomenon actually happens and when it is detected by Nile-
PDT.

The second challenge in realizing SN-join is that of sim-
ilarity matching. Due to sensor calibration and/or mea-
surement errors, sensor readings can be similar in value
but are not necessarily the same. As a result, SN-join
is a similarity-based join. The Nile-PDT demo reflects
two similarity-based techniques. The first technique uses
a pre-clustering operator that is below SN-join in the query
pipeline. This pre-clustering operator dynamically clusters
the sensor readings and feeds SN-join with cluster-ids. In
this case, SN-join performs equi-join based on the cluster-
ids. Alternatively, the second technique is to push a similar-
ity distance function inside SN-join, so that sensor readings
join with each other if the distance between the readings is
less than a threshold. Both techniques are reflected in the
Nile-PDT demo and their performance is contrasted.

4 Load Shedding and Scalability

Data streams may arrive with high rates at the system’s in-
put buffers and they can be bursty in nature. Such behav-
ior overloads the system and deteriorates the query perfor-
mance. Load shedding avoids heavy-load periods by drop-
ping some of the input tuples. In contrast to dropping the
tuples randomly, the tuple dropping policy favors a cer-
tain performance measure. Load shedding that is sensitive
to phenomena detection tries not to lose phenomena while
dropping some of the input data. Load shedding is achieved
through the SN-scan operator where sensors that contribute
to phenomena are processed more frequently than sensors

that do not contribute to any phenomenon.
Scalability in Nile-PDT is achieved through the SN-scan

and SN-join operators. Both operators avoid wasting the
processing time in sensors that do not help in detecting
and tracking phenomena. For example, using the relevance
feedback mechanism, an incoming sensor reading may end
up probing a few tens of sensors looking for a match in-
stead of probing thousands of sensors in the sensor net-
work. As illustrated in our demo, during simulations that
include a sensor network of thousand sensors with each
sensor stream having an average inter-arrival time of one
second, Nile-PDT is able to capture more than 90% of the
outstanding phenomena.

5 Incremental Processing

Once a phenomenon is detected, the tracking process
is conducted incrementally at both the server and the
client sides. At the server side, incremental processing is
achieved through the notions of positive and negative tu-
ples [2]. A positive tuple is reported when a join occurs to
denote the appearance of phenomenon candidate members.
A negative tuple is reported when one of the previously-
reported join components expires, i.e., becomes old enough
to get outside of the most recent time-window w. Negative
tuples are important to invalidate phenomenon candidate
members if sensors stop showing the same behavior over
the most recent time-window w.

At the client side, the client receives phenomenon can-
didate members on the form of a tuple that consists of the
IDs of the two joining sensors and the join value. Each tu-
ple can be positive or negative to denote the appearance or
disappearance of the candidate members. The client acts
based on each tuple. Upon receiving a positive tuple, the
client may perform one of the following actions: (1) cre-
ate a new phenomenon, (2) add one more sensor to an
existing phenomenon, or (3) merge two phenomena into
one bigger phenomenon if the two phenomena get con-
nected. Upon receiving a negative tuple, the client may
perform one of the following actions: (1) delete an existing
phenomenon, (2) remove a sensor from an existing phe-
nomenon, or (3) split one phenomenon into two smaller
phenomena if they get disconnected.

6 Demo Description

A graphical user interface (GUI) is developed for both the
Nile-PDT client and the Nile server to visualize the phe-
nomenon detection and tracking processes. Figure 3 gives
snapshots of the GUI of both the client and the server. Our
demo has two setups: one where the sensor network is sim-
ulated (as described in Section 4) and the other is using real
sensors, as described below. Our demo hardware consists
of a grid of heat sensors (Figure 4) that are connected via
a wireless sensor platform [4]. Each platform interfaces
with the sensors that are connected to it as OSGi service
bundles [6]. The sensor platform used in Nile-PDT has a
flexible modular architecture that consists of a processing

(a) (b)

Figure 3: Snapshots of the Nile-PDT visualization tools: (a) client visualization (b) server visualization

module, a communication module, and a testing module.
Each sensor platform has a limited processing capability.
Details about the sensor platform and the modules can be
found in [4].

When we run the demo using a simulated sensor net-
work, the client GUI (Figure 3a) represents each sensor
by a circle that reflects its location in space. Sensors are
spread all over the space arbitrarily. The client can keep
track of both the original phenomena that are computed of-
fline given infinite resources (depicted as gray circles) and
the phenomena that are detected by the system (depicted as
black circles). The client GUI shows the efficiency of the
system in two aspects: (1) the number of detected phenom-
ena relative to the original number of existing phenomena,
and (2) the response time (delay) of the system. The re-
sponse time is identified by how far the detected phenom-
ena propagation lags after the original phenomena propa-
gation.

The server GUI (Figure 3b) demonstrates the system’s
internals and shows how the query plan is executed. The
query plan is displayed graphically and the incoming tu-
ples keep moving up the query plan from one operator to
the next. When we run the demo using a simulated sensor
network, the server can be executed in slow-motion (via in-
serted delays) and the number of sensors is reduced for the
sake of demo clarity.

References
[1] M. Hammad, W. Aref, and A. Elmagarmid. Stream window

join: Tracking moving objects in sensor-network databases.
In Proceedings of the SSDBM Conference, pages 75–84, July
2003.

[2] M. A. Hammad, T. M. Ghanem, W. G. Aref, A. K. Elma-
garmid, and M. F. Mokbel. Efficient execution of sliding-

Figure 4: The various sensor modules in a sensor platform.

window queries over data streams. Technical Report CSD-
03-035, Department of Computer Science, Purdue University,
June 2004.

[3] M. A. Hammad, M. F. Mokbel, M. H. Ali, W. G. Aref,
A. C. Catlin, A. K. Elmagarmid, M. Eltabakh, M. G. Elfeky,
T. Ghanem, R. Gwadera, I. F. Ilyas, M. Marzouk, and
X. Xiong. Nile: A query processing engine for data streams.
In Proceedings of the Intl. Conf. on Data Engineering, page
851, April 2004.

[4] A. Helal, H. Zabadani, J. King, Y. Kaddoura, and E. Jansen.
The gator tech smart house: A programmable pervasive
space. Cover Feature, IEEE Computer, 38(3):64–74, March
2005.

[5] J. Kang, J. F. Naughton, and S. Viglas. Evaluating window
joins over unbounded streams. In Proceedings of the Intl.
Conf. on Data Engineering, pages 341–352, March 2003.

[6] D. Marples and P. Kriens. The open services gateway ini-
tiative: An introductory overview. IEEE Comm. Magazine,
39(12):110–114, 2001.

