
Pervasive Computing offers Adaptable Interfaces

Signals, Standards, Metadata, and ICADI June 26, 2003

Pervasive Computing Program

The Next Wave of Information
Technology...

This has already gone live Elite Care - Elder Care Delivery

- Wired residential buildings
- Locator badges, with IR & RF can be used to summon aid
- Health trend data capture: weight, administration of medicines
- Sensors, e.g.: weight sensor in beds, track wakefulness, sudden changes
- Reduced staff turnover, more effective resource allocation, better monitoring, lower costs

Research Interfaces Can Also Contribute

- Visionary system concepts, like oxygen, HPCS, Cognitive, and Pervasive systems offer essential road maps
- But real challenges remain to developing perceptive systems that:
 - Sense user signals like speech, gesture, and physiological measurement
 - Recognize words, speakers, gestural referents
 - Understand context, and user intent
 - Respond with information retrieval, computation, and rendering

NIST Smart Space and Meeting Room Projects

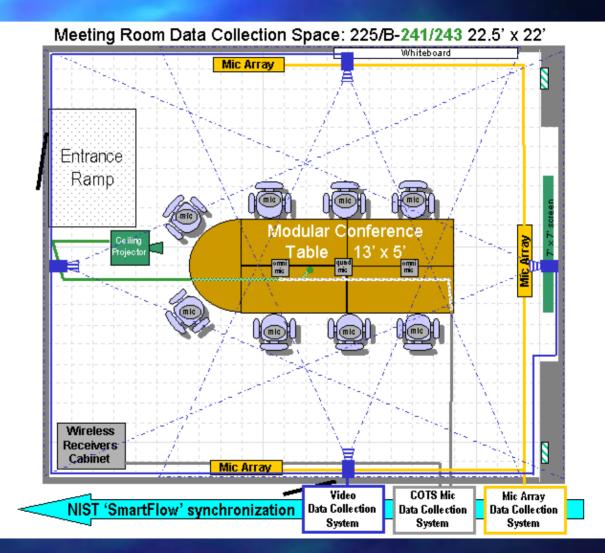
Smart Space <u>data</u>:

- Multi modal multi channel data acquisition and transport
- Distributed processing
- DSP Preprocessing:
 - Signal conditioning
 - Beam forming
 - Feature extraction
- Time tagging
- Archival storage
- Retrieval

Meeting Room *metadata*:

- Meeting data sets
- Multi level annotation, e.g.
 - Capitalization
 - Acronym detection
 - Proper noun detection
 - Sentence/utterance boundary detection
 - Filled pauses
 - Verbal edits (repeats, restarts, revisions)

Smart Spaces — What's Real?

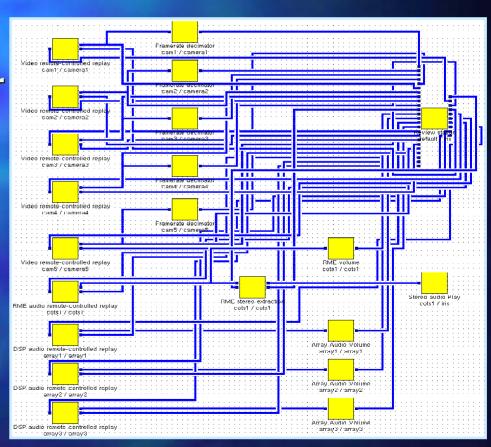

- Speech recognition possible using microphone arrays for skilled speakers
- Speech segmentation and speaker verification possible
- A selected skilled user can be transcribed in a cooperative group
- Transcribed speech can be parsed for basic commands

Meeting Room Data Collection Laboratory

- Phased microphone arrays
- Computer-controlled video cameras
- Biometric sensor fusion using commercial components:
 - Acoustic speaker identification
 - Facial image classification
- Speaker dependent speech recognition
- Data flow test-bed for integration of commercial products

NIST Meeting Room Data Collection Facility

Over 200
Acoustic and video
sensors
Generating
about 70 GB/Hr


Multi modal Meeting Recording

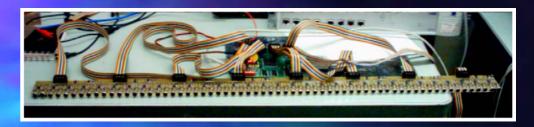
- Collect and review recordings
- Open systembased, interfaces with Smart Data Flow live or from archived data
- User selects video views and audio channels
- User controls camera view/movement

NIST Smart Data Flow Middleware

- Data transport as buffered data flows suitable for real time
- High-bandwidth, multi-sensor data on distributed clusters
- Native support for basic data types
 - Audio, video, vector, matrix, and opaque (raw data)
- Can route data to remote clients and archives
- Flows time tagged to millisecond resolution using NTP
- Visual facility for connecting Smart Data Flow clients

NIST Smart Data Transport Abstraction for Buffered Real Time Connectivity

```
"Hello World" of data flow
```

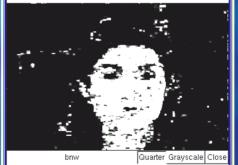

```
#include "preem.h"
static double history;
int main(int argc, char **argv) {
  preem init(&argc, argv);
 history = 0;
  preem run();
  return 0;
void preemphasis(const double *in, double *out)
  int i;
  out[0] = in[0] - 0.97*history;
  for(i=1; i<FLOW SIZE; i++)</pre>
    out[i] = in[i] - 0.97*in[i-1];
  history = in[2047];
```

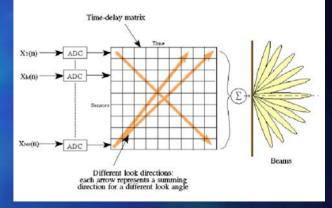
Client Run Loop

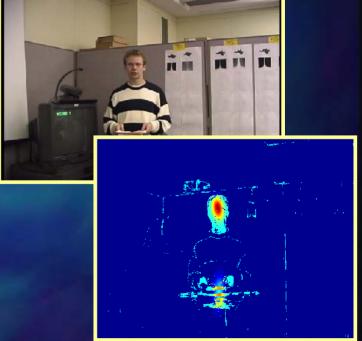
Distributed I/O flows

Simple Digital Filter

Multi Modal Sensors







The NIST Test Bed for Industrial Smart Space Technologies

Multiple microphones, arrays

- Speaker identification
- Speech recognition
- Source bearing estimation
- Close talk, lapel, tabletop, and distant microphones

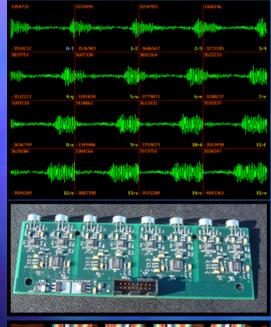
Video cameras, arrays

- Person finding
- Face localization and identification
- Gesture recognition
- Open source data flow transport and standardization
- Performance metrics

Usability Features NIST Smart Data Flow System

- Initial version was difficult to deploy and use — New version under development:
 - Visual flow graphs
 - Code generator
 - Simplified API
 - Device, user, and service discovery
 - Fault tolerant

NIST Mark-II Microphone Array


Fragile and Hard to Duplicate

Mark-II
Microphone Array
at GA Tech

The Mark-III Microphone Array

Integrated, Easy to Replicate

- VLSI, FPGA, VHDL, Preamps, ADCs
- 64 channel, 24bits at 48kHz
- 2Mbyte local data buffer
- **BOOTP IP negotiation**
- Fast Ethernet data transmission
- Responds to Smart Data Flow System: array ID, receiving node, array active indicator, etc.

Smart Space Prototype Technologies

- Integrated industrial components:
 - IBM speech recognition
 - Intel OpenCV face recognition
 - Wireless networking
- Unique sensor arrays for data acquisition:
 - Beam forming
 - Source localization
 - Acoustic/video sensor fusion
- Large scale data collection for smart space R&D

Sensors Will Allow Personal Interfaces

- Current interfaces are nominal who presses the buttons does not matter
- Sensor based interfaces can be personalized
 - Recognize who said what, gestures etc.
 - Understand what did it mean in context
- "Computer, bring up my appointment calendar."
- Customized to user mode prefrences

Vision of the Possible: An Accessible Meeting Room That...

- **Takes the minutes** from the moderator
- Responds to commands, depending on who spoke, what they were looking at, or pointing to
- Accesses information by voice query
- Provides security based on participant identity
- Completely Hands free

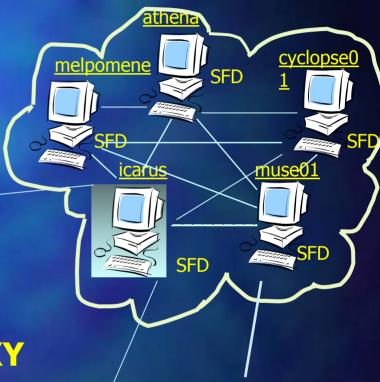
Accessibility Prototype: Hands Free Services

- User device discovery
- Hands free preference negotiation
- Service discovery:
 - Microphone array
 - Speaker ID
 - Speaker dependent speech recognition
- Upload biometric profiles for recognition
- Distributed data acquisition and processing

PDA Integration for Accessibility Experiments Data Flow

Wireless PDAs

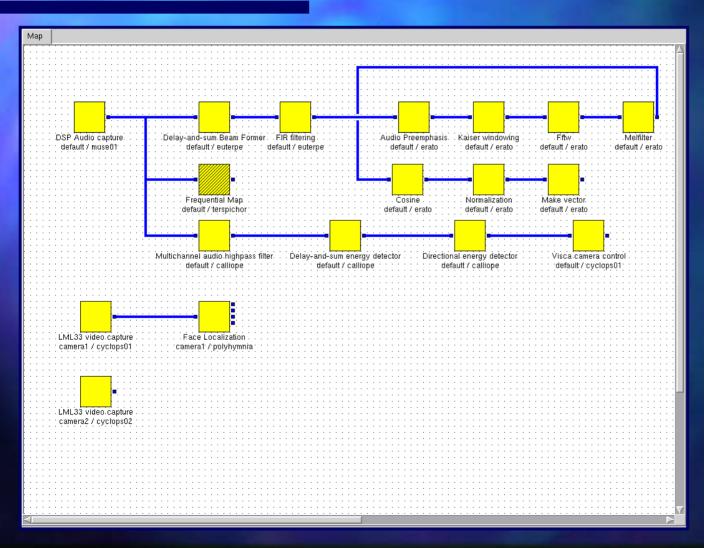
Qt Clients


HTTP Request Via

Wireless 802.11 network

CGI Program

Smart Flow Gateway



Personalized User Interfaces: User Discovery

- Automated device/service discovery using INCITS V2 preference protocol:
 - Hands free
 - Eyes free
 - Ears free
- Define appropriate multi modal service responses:
 - Speaker ID and speech recognition
 - Screen Reader with Braille or TTS output
 - Automatic meeting captioning

Example: Speaker ID Flow Graph

- Array data capture
- Source bearing
- Beam forming
- Cepstrum pipeline
- Speaker ID
- Camera steering

What Can NIST Do for this Community?

- Chartered to enhance industrial technology using measurements and standards
- Be a neutral moderator of industry/academic partnerships
- Provide advanced metrology, advice
- Cooperatively produce standard reference data
- Publish measurement algorithms and protocols
- Publish non-regulatory standards embodying community agreements

Measurements and Standards Will be Key...

- Performance metrics
- Standardized integrating platform:
 - Data formats
 - Transport mechanisms
 - Distributed computing
 - Adaptive interfaces for the disabled
- Contact <u>stanford@nist.gov</u> if you are interested in a working group

Questions

- Your Thoughts?
- Your Experiences?