
DEVICE INTEGRATION IN SODA USING

THE DEVICE DESCRIPTION LANGUAGE

Chao Chen and Abdelsalam (Sumi) Helal

THE 9TH ANNUAL INTERNATIONAL SYMPOSIUM ON
APPLICATIONS AND THE INTERNET (SAINT 2009)

INTRODUCTION

The Pervasive Internet a

wild jungle of devices and

gadgets.

Heterogeneity of

Devices:

From pin-head sensors to complex devices

& appliances

Networks:

Ethernet, WiFi, Bluetooth, ZigBee, …

Running Environments:

None, OSGi, Jini, UPnP…

Device standards:

SensorML, IEEE 1451, ECHONET, Device

Kit…

THE HARD-WIRING PROBLEM

The typical ad-hoc strategy to integrate a device

A steep learning curve and laborious hacking experience

Needs to examine its interface and study the device protocol to

establish a connection.

May not produce re-usable code or know-how.

The lack of standard on both hardware and software ends

No automatic way to link the numerous and heterogeneous device I/O

Programmers have to manually write code to associate devices with

specific tasks.

The problem becomes even more acute when
the number of device types continues to grow the number of interfaces,
connections, protocols multiplies;

One considers how systems need to evolve throughout their life-cycles.

OUR RESPONSE AND APPROACH

Automate the process of device integration, so it would
require 0-effort from system integrators and pervasive
system builders.

Create an integration technology and associated proposed
open standard (SODA) to allow device and sensor vendors
to introduce such self-integrating products into the market
place.

DDL - A descriptive language that describes a broad range of
devices.

ATLAS - a service-oriented reference architecture for device
integrations.

DDL / ATLAS - A proposed implementation of the SODA
standard.

Talk OUTLINE

ATLAS: a service-oriented reference architecture for

sensor and device integration

DDL: Device Description Language - schema and its

reference implementation

Case Study: constructing a self-sensing space in the

Gator Tech Smart House (GTSH)

Standardization through SODA

Related work

Conclusion

ATLAS:

A Reference Architecture for Service

Oriented Sensor Platforms

THE ATLAS ARCHITECTURE

Atlas Middleware

Sensors Actuators
Complex
Devices

Atlas
Node

Sensor Ref Actuator Ref Complex Device Ref Atlas
Node

Sensor Ref Actuator Ref Complex Device Ref

Service
Composer

Context
Builder

IDE

Atlas
Middleware

ATLAS PLATFORM

ATLAS PLATFORM
Atlas Communication Layer

Atlas Processing Layer

Atlas Device Interface Layer
 Servo 8 Analog GPIO 32 Analog 16 Digital

 Processor

 ZigBee Ethernet Wi-Fi Antenna

Device Description Language (DDL)
Language Schema and its Implementation

MODELING DEVICES IN DDL

A DDL device model

DDL classifies devices into 3 categories:
Sensors

Actuators

Complex Devices

Device

Internal

Mechanism
Properties

Communications

Communications

In
te

rf
ac

e

Services

Applications

THE DDL LANGUAGE SCHEMA

DDL uses XML encodings.

Readable to both human and machine.

A DDL schema defines the constraints on the structure and
the content of a DDL document.

The schema will be enforced by the DDL validity checker, a
component of the DDL language processor.

<xsd:complexType name="Device">
<xsd:sequence>
<xsd:element name="Description" type="DescriptionType"
minOccurs = "1" maxOccurs="1" />
 <xsd:element name="Interface" type="InterfaceType"
minOccurs="1" maxOccurs="1" />
</xsd:sequence>
</xsd:complexType>

WHAT’S INSIDE A DDL DESCRIPTOR FILE?

Each DDL descriptor file describes a single type of device.

It contains:

Information for service registration and discovery

e.g., device name, model, function description, etc.

Description of device operations

each operation is a collection of input/processing/

output function chains

the low-level communication between a device and

its service are represented as ‘Signals’

the high level semantics of signals are ‘Readings’

AN EXAMPLE:

TMP36 ANALOG TEMPERATURE SENSOR

<Sensor>
<Description>…</Description>
 <Interface>
 <Signal id="ADC1">…</Signal>
 <Reading id="Temp1">
 <Type>Physical</Type>
 <Measurement>Temperature </
Measurement>
 <Unit>Centigrade</Unit>
 <Computation>
 <Type>Formula</Type>
 <Expression> Temp1 =
(((ADC1/1023) * 3.3)-0.5)*
(1000/10)</Expression>
 </Computation>
 </Reading>
 </Interface>
</Sensor>

An analog sensor:

“Signal”: a converted value

output from the ADC port

on the sensor platform.

“Reading”: the temperature

value in centigrade.

DDL defines

the semantics of a

temperature reading

the process of the signal

to reading conversion

ANOTHER EXAMPLE: UA-767PC

DIGITAL BLOOD PRESSURE MONITOR

<ComplexDevice>
<Description>…</Description>
 <Interface>
 <Signal id=”signal1">…</Signal>
 <Reading id=”diastolic">
 <Type>Physical</Type>
 <Measurement>Diastolic Pressure</
Measurement>
 <Unit>mmHg</Unit>
 <Computation>
 <Type>ByteStreamFilter</Type>
 <Expression> diastolic =
signal1.substring(4,6)</Expression>
 </Computation>
 </Reading>
 </Interface>
</ComplexDevice>

A complex device:

“Signal”: the byte stream

output from the serial port.

“Reading”: the blood

pressure measurement

converted from the byte

stream.

THE INTEGRATION PROCESS

 Sensors

 Actuators

Complex

Devices

 Device Vendor

A
p

p
li

ca
ti

o
n

s

Application Programmer

Atlas Web Interface

Atlas Bundle

 Repository

Device

 Services

 OSGi

 Framework

Device Service

 Bundle

Ant Builder

Other

Services

 Middleware Provider

Composition

DDL Web Front-End

DDL Descriptor

 Validity Checker

DDL Descriptor

 Generator

DDL

 Descriptor DDL Parser

Bundle

Generator

DDL Schema

Service

 Bundle

 Template

Device Bundle Project Code

1. Bundle source code

2. Build.xml

3. Manifest.mf

 Online Generation Online Submission

 System Integrator

 DDL Language

 Processor

Role Implications (without ATLAS/DDL)

The system integrator is the sole player in the field and

has to deal with both hardware and software

complications.

Applications Hardware interfaces,

 Communication

 protocols, etc.

Software interfaces,

 Business logic, etc.
Devices

System

 Integrator

Role Implications (with ATLAS/DDL)

Multiple roles are engaged;

Their responsibilities are clearly separated by both

hardware and software abstractions.

S
er

v
ic

e-
o

ri
en

te
d

 P
la

tf
o

rm
/M

id
d

le
w

ar
e

Middleware

 Provider

Device

Services

Devices

DDL

Device

Vendor

Applications

Application

 Developer

System

 Integrator Middleware

 support Hardware

 abstractions

Software

 abstractions

Case Study:

Constructing a Self-Sensing Space in

the Gator Tech Smart House

CASE STUDY

Self-Sensing Space:

An intelligent environment that recognizes its
devices and services, interpret their status, and
generate a model of the space.

The challenges:

Integration of dumb objects: a self-sensing space
should not ignore everyday objects such as
furniture and electric appliances.

End-to-end self-integration: both smart devices
and dumb objects should be seamlessly self-
integrated into the space.

APPLICATION SCENARIO

Device
Bundle
Factory

Remote
Caregiver

System
Integrator

DDL Device
Descriptor

Self-Sensing 3D Interactive Model Interaction

Resident

Smart
Devices

Dumb
Objects

Atlas
Platform

Atlas
Middleware

Service
Bundle

Service
Bundle

Smart
Plug

Standardization through SODA

STANDARDIZATION

DDL is a proposed implementation of

the Service-Oriented Device

Architecture (SODA) standard

framework.

SODA is

an emerging standard alliance,

an extension to SOA to incorporate

devices in distributed enterprise systems.

When modeled as a service, device access

and control can be made available to a

wide range of enterprise applications using

SOA mechanisms.

STANDARDIZATION (II)

The DDL language specification and its software are

available online at

http://www.icta.ufl.edu/atlas/ddl/

Related Work

RELATED WORK

There have been a number of standards proposed:

ECHONET
The Energy Conservation and Homecare Network standard, initiated in Japan.

IEEE 1451
The IEEE standard for smart transducer interfaces.

SensorML
The Sensor Model Language, initiated in the geospatial community.

Device Kit
An IBM implementation of the SODA architecture

COMPARISON OF STANDARDS
Key

Comparisons

ECHONET IEEE 1451 SensorML Device Kit DDL

Encoding Class specification in
plaintext

Interface Definition
Language

XML XML XML

Design
perspective

Object-oriented Modular Data-oriented Modular Data-oriented

Device Model Single object Multiple blocks Process chain Multiple layers Single device, cross
layer

Other
Comparisons

ECHONET IEEE 1451 SensorML Device Kit DDL

Basic
component

Device Block Process Device function
layer

Device

Composite
component

NA Device Process Chain Device Derived virtual
sensor

Measurement
modeling

Primitive data
types

Complex data
types

Complex data
types

Primitive data
types

Primitive data
types

with aggregation

Protocol
modeling

Inexplicit Explicit Inexplicit Explicit Explicit

Software
support

NA NA NA DKML parser and
Eclipse plug-in

DDL Language
processor

Specification Published Published Published Only schema
available

Published online

Conclusion

CONCLUSION

The scale and pace by which the Pervasive Internet is

evolving today demand a new breed of integration

technology that is scalable and automatic.

The Device Description Language within the Atlas sensor

platform and middleware is capable for describing and

integrating a great variety of devices ranging from a

pinhead sensor to a complex device.

Currently sensors and complex device integration are

supported.

We are now working on an improved design of the Atlas

firmware to better support actuator integrations.

Thank you!

