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Abstract

This paper describes the design, implementation and results of a unified non-rigid
feature registration method for the purposes of of anatomical MRI brain registra-
tion. An important characteristic of the method is its ability to take into account the
spatial inter-relationships of different types of features. We demonstrate the appli-
cation of the method using two different types of features: the outer cortical surface
and major sulcal ribbons. Points sub-sampled from each type of feature are fused
into a common 3D point-set representation. Non-rigid registration of the features is
then performed using a new robust non-rigid point matching algorithm. The point
matching algorithm implements an iterative joint clustering and matching (JCM)
strategy which effectively reduces the computational complexity without sacrificing
accuracy. We have conducted carefully designed synthetic experiments to gauge the
effect of using different types of features either separately or together. A validation
study examining the accuracy of non-rigid alignment of many brain structures is
also presented. Finally, we present anecdotal results on the alignment of two subject
MRI brain data.
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1 Introduction

In human brain mapping, a spatio-temporal statistical analysis of anatomical
(MRI, CT) and functional (fMRI, PET, SPECT, EEG, MEG) data across
diverse modalities is required. It has become clear that the subject data from
different imaging modalities (MRI, fMRI, PET etc.) have to be placed in a
common spatial coordinate reference frame Toga and Mazziotta (1996) in order
to facilitate a statistical analysis. One way this can be achieved is by bringing
stable anatomical structures of different subjects (as seen in 3D MRI) into
register. This is a daunting task since there are many anatomical features—
cortical folding patterns such as sulci and gyri—that vary dramatically from
subject to subject and may not always be present. Nevertheless, the existence
of stable and consistent large scale anatomical structures such as the outer
brain surface, major sulci and major subcortical volumes allows us to be cau-
tiously optimistic of the success and value of 3D MRI brain registration.

There exist a plethora of 3D brain registration methods in the literature and
we briefly review some of the approaches in the next section. Most approaches
can be classified as either voxel-based or feature-based (with some recent meth-
ods attempting their integration). Our approach is feature-based and as with
other feature-based methods, we have to first extract the anatomical features
from the 3D MRI data prior to registration. In this work, we pay particular at-
tention to the extraction of stable, consistent and important brain structures.
Subsequently, registration is achieved by non-rigid matching of the important
brain structures. Our feature registration method differs from other work in
two important ways. First, we directly work on point feature locations rather
than higher order features such as surface normals, curvature etc. This has the
advantage of robustness since the noise in point feature locations is just point
“jitter” which can be modeled. The major downside of working with point
features is the well known point correspondence problem but as we shall ar-
gue, the difficulty of the correspondence problem has usually been overstated.
Second, as opposed to most previous approaches, we take into account the
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spatial inter-relationships between different types of point features by simul-
taneously aligning them in a joint homogeneous point representation space. As
we will show through our experiments, the combination of different features
provides important mutual anchoring information for each other and improves
the registration.

We begin by briefly examining the basic elements of different current brain
registration strategies.

2 Review

Most of the current efforts at inter-subject non-rigid anatomical registration
can be broadly categorized into voxel-based and feature-based methods.

Voxel intensity-based approaches try to find the best deformation such that an
image intensity similarity measure is maximized. Most methods in this class
allow highly complex volumetric deformations to accommodate vast anatomic
variations. For instance, spline models Meyer et al. (1997), elastic media mod-
els Bajesy and Kovacic (1989); Gee (1995), viscous fluid models Christensen
et al. (1997); Christensen (1999) and other local smoothness models Collins
et al. (1995, 1998) are introduced as constraints to guide the non-rigid spatial
mapping while maximizing a voxel intensity similarity measure.

Although the results of these methods clearly demonstrate the power of highly
complex non-rigid deformations, there have been concerns as well since these
methods do not attempt to match specific anatomical structures. A somewhat
tacit assumption underlying voxel-based methods is that the brain structures
are matchable as long as there is enough flexibility provided by the spatial
deformation. It is already well known that minor cortical sulcal patterns may
not be very consistent Toga and Mazziotta (1996), i.e., a minor sulcus in
one person may not even exist in another person. By forcibly matching such
non-corresponding anatomical structures, the extra flexibility of the complex
volumetric deformation may make the results unpredictable and hence less re-
liable. To somewhat alleviate this problematic aspect, modifications have been
added in some voxel-based methods to include higher level feature informa-
tion. For example, landmarks were used as an initial step in Christensen et al.
(1997); Joshi and Miller (2000) and major sulcal location information was in-
corporated via the chamfer distance measure in Collins et al. (1998). Despite
these modifications, the presence of inconsistent structures across different
subjects still remains an unresolved problem for most voxel-based methods.

This particular problem calls for more careful treatment of different brain
structures when used for the purposes of brain registration. There are ma-



jor brain structures which are consistent across subjects and are important
anatomically and/or functionally. In contrast, other minor structures may ei-
ther be inconsistent, hence not matchable, or not important and hence should
not be considered in the first place as they tend to increase the complexity of
the registration task. By using only the features which satisfy both the con-
sistency and the importance criteria, it not only provides us with a reliable
method to handle extreme variability across subject brains, but also reduces
the computational complexity. This brings us to the feature-based brain reg-
istration methods.

Obviously, features which represent important brain structures have to be
extracted first. The features run the gamut of landmark points Bookstein
(1989), lines, curves Davatzikos and Prince (1994); Sandor and Leahy (1997)
or surfaces Thompson and Toga (1996); Thompson et al. (1997); Davatzikos
(1997); Vaillant and Davatzikos (1999). After the feature extraction step, these
methods then attempt to solve the resulting feature matching problem (point
matching, line matching, curve matching or surface matching) for the best
deformation between the features. The spatial transformations resulting from
feature matching is then propagated to the whole volume. With recent ad-
vances on both the brain segmentation front using deformable models Xu
et al. (1998); Zeng et al. (1999a); MacDonald et al. (2000); Wang and Staib
(2000) and the feature extraction front Vaillant et al. (1996); Khaneja et al.
(1998); Zeng et al. (1999b), more and more anatomical features are becoming
readily available. The main question at this juncture is how to fully utilize
these different types of features for brain registration. We first review some
currently available methods.

In Bookstein (1989), landmarks are used for non-rigid registration and shape
analysis. A thin plate spline (TPS) bending measure is minimized while en-
suring that the Euclidean distance between landmarks is small. This method
is now viewed as being limited by the difficulty of finding good landmark
points. More recent approaches have been based on dense feature represen-
tations such as 3D surfaces. In Thompson and Toga (1996), the surfaces of
the lateral ventricles and outer cortex are chosen because they are develop-
mentally fundamental for the brain. To better represent the deep cortical
structures (sulci), parametric mesh surfaces are also interactively extracted.
A point-to-point mapping between each pair of the surfaces is then calcu-
lated and a linearly weighted 3D volumetric warping is generated. The work
presented in Davatzikos (1997) has a similar surface-based framework. Surface
curvature maps at different scales are used to model different brain structures.
More consideration is given to the inhomogeneity within the brain. A more
sophisticated elasticity model makes the algorithm flexible at the ventricles
and powerful enough to account for some abnormal cases where, for example,
tumors are involved. There has also been considerable interest in indirect sur-
face matching approaches based on surface reparameterizations (flattening or



mapping onto a sphere).

The above feature-based methods have been successfully applied to various
problems and have achieved excellent results Thompson and Toga (1996); Da-
vatzikos (1997). However, there is still room for improvement. While each
type of feature is useful by itself, these earlier methods neglected the valuable
information present in the inter-relationship between different features by sep-
arating the features from each other during matching. More recent research
efforts have been trying to capitalize on such information. For example, to im-
prove the cortical alignment, incorporation of sulcal features into the matching
framework has attracted a lot of attention. In both Thompson et al. (1997)
and Vaillant and Davatzikos (1999), major corresponding sulcal curves are
introduced into the mapping of the outer cortical surface. By enforcing exact
correspondence of the sulcal curves within such a mapping, it has been shown
that the alignment of the cortical surface can be improved. These methods
work well if there is only a single surface and a few other curves, which also
happen to be on that surface. It is not clear, though, how these methods can
be applied to other more general situations in feature registration, where, for
example, there are multiple surfaces that may or may not be connected.

We propose a general framework to attack this problem. The basic idea is quite
simple and straightforward. To achieve the combination and joint registration
of different types of features, we first fuse them together into a common point
representation space. After this step is accomplished, non-rigid registration
can be achieved by solving a point matching problem. In this work, we choose
two different types of anatomical features to demonstrate the idea. The first
is the smoothed outer cortical surface Zeng et al. (1999a). Smoothing of the
surface is done so that the surface still closely wraps over the brain and yet
all the sulci are filled. Such a surface captures the global shape of an individ-
ual brain. The second type of feature is the major sulcal ribbons Zeng et al.
(1999b). Major sulci, such as the central sulcus, the sylvian fissure and the
interhemispheric fissure, are chosen to bring forth more detailed shape infor-
mation from within the brain. We then fuse the two different types of feature
together by converting them all into a point representation, i.e., points are
sub-sampled from each feature and then placed together to form a common
point representation. Note that a point representation allows a unified treat-
ment of the different features while maintaining the unigeness of each feature
type via label or attribute. The flexibility of using point representations eas-
ily overcomes the otherwise difficult problem of feature data fusion. To solve
the resulting matching problem between hundreds of points, we have designed
a new iterative joint point clustering and matching algorithm. Originating
from our previous robust point matching (RPM) algorithm Gold et al. (1998);
Rangarajan et al. (1997); Chui et al. (1999); Chui and Rangarajan (2000), the
current algorithm has incorporated a few new improvements. By solving both
the forward (A to B) and the reverse (B to A) deformations, it is more symmet-



ric than the previous RPM. The clustering step is carried out simultaneously
with the estimation of the deformation so that the accuracy of matching is
improved while reducing the computational complexity. The deformation ob-
tained via the feature point matching process is volumetric and hence can be
directly applied to the volume data without further interpolation. We now
describe our approach in greater detail.

3 A Unified Feature Registration Method

The overall scheme of our method is as follows: i) choose and extract major
and consistent neuroanatomical features; ii) fuse these features into a common
point-set representation, iii) solve for the spatial deformation between two
feature point-sets through point matching. We explain each step in detail
below.

3.1 Feature Extraction

At present, we choose the outer cortical surface as well as major sulcal ribbons
as the dominant features. The outer cortical surface has been widely used for
brain registration since it provides a very good model for the global shape of
the brain. Automated extraction of the brain surface is based on the coupled
surface-based brain segmentation method as described in Zeng et al. (1999a).
Since the minor sulci seen on the brain surface cannot be expected to be
consistent across subjects, we decided to further smooth the cortical surface.
The smoothing is done so that the surface still closely wraps over the brain
but with all the sulci filled up (as shown in Figure 1). To accomplish this, we
first apply Gaussian smoothing on the original MRI volume image with skull
removed. The smoothing blurs all the sulci. Then we extract the smoothed
outer cortical surface as an iso-surface from the blurred volume image.

The second type of feature is the set of major sulcal ribbons. Major sulci,
such as the central sulcus, the sylvian fissure and the interhemisphere fissure,
are chosen because of their well known importance and relative consistency
across individuals. Instead of using 3D space curves, we use ribbons, which
provides a better representation for the sulci’s deep 3D structure (as shown in
Figure 1). The interactive extraction of these ribbons is done with the help of
a ribbon extraction method developed in Zeng et al. (1999b).



Fig. 1. Feature extraction. From left to right: i) original MRI brain volume;
ii) extracted outer cortical surface without smoothing; iii) smoothed outer cortical
surface; iv) extracted major sulcal ribbons; v) the joint feature representation with
the outer cortical surface and the sulcal ribbons placed together. Most of the ribbon
structures are hidden by the cortical surface.

3.2  Feature Fusion

Once all the features are extracted, we have a set of different 3D surfaces in
the form of the closed outer cortical surface and open major sulcal ribbons.
We then run a sampling procedure to convert each of the feature surfaces,
which are parameterized as polygonal meshes, into points. All the vertices on
a single feature surface are considered first. After dividing the space into cubes
of equal sizes, we compute the average of all vertices lying inside each cube.
The final point-set for each feature surface consists of all the average points
computed in this manner. In this way, the outer cortex is reduced from the
original order of 10%(50,000 ~ 80,000) vertices to approximately 1000 average
points. The ribbon surfaces are sampled in a similar fashion except that smaller
sized cubes are used to boost their relative importance since they represent
much smaller structures in comparison to the outer cortical surface. Each
ribbon, with originally about 1000 ~ 2000 vertices, is eventually represented
by roughly 100 ~ 200 average points. Since all the feature surfaces involved here
are relatively smooth, the sizes of the sampling cubes are chosen to achieve
sufficient data reduction without losing too much shape information. Finally,
the point-sets from each feature surface are combined to form a super point-
set, which is used as the common point-based representation for the purposes
of registration. The fusion/sampling process is demonstrated in Figure 2.

3.8 Joint Point Clustering and Matching Framework

After finishing the first step, we have a complex 3D point-set composed of
hundreds of points to represent each brain. We now need to solve for an optimal



Fig. 2. Feature fusion/sampling. From left to right: i) sub-sampling of the outer
cortical surface vertices. The original dense surface vertices are shown as dots and
the sampled mean points are shown as circles. A solid ellipsoid is inserted in the
middle for visualization purposes; ii) sub-sampling of the sulcal ribbons. Again,
dots represent original vertices and circles represent the sampled average points; iii)
placing the average points together, we form the super feature point-set.

non-rigid deformation that aligns the point-sets.

3.3.1 Joint Estimation of the Deformation and its Control Points

In order to define such deformations (usually in the form of splines), we are
usually required to specify a set of spatial control points. The choice of the con-
trol points is vital because they directly affect the behavior of the deformation.
Ideally, the control points should be chosen to accomplish the following two
purposes at the same time. First, they should provide maximal necessary flex-
ibility for the deformation to capture the variability of the data. However, too
flexible a deformation is not stable so it will be easily disturbed by a small
amount of noise or possible outliers. So the second requirement is that they
should also provide a reasonable amount of regularization of the deformation
to prevent it from becoming too flexible. These two conflicting requirements
make the choice of the control point locations difficult. The situation here is
actually even more difficult because we do not have much aprior information
about the deformations. Due to this reason, predefined control points are ar-
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Fig. 3. The joint clustering-matching algorithm. Each point-set is clustered into a
set of cluster centers (X to V, Y to U). The two sets of cluster centers are further
connected through deformations that match them. Both the cluster centers and the
deformation are unknown.

bitrary and problematic. Instead, we decided to include the control points as
unknown variables. Subsequently, we incorporate the estimation of the control
points into the overall process of estimating the deformation.

Based on the observation that the control points can better accomplish their
purposes when they are placed in the more densely distributed data locations,
and also the locations where the deformation is more complex, we choose to
cluster the data and use the cluster centers as our control points for the defor-
mation. Clustering is done during the process of estimating the deformation,
which fulfills the requirement that there be feedback of information from the
deformation estimation into the estimation of the control points.

The idea is demonstrated in Figure 3. Each of the two point-sets to be aligned
is clustered to achieve a set of cluster centers, which are also used as con-
trol points to define the deformation that matches the point-sets. The cluster
centers serve a dual purpose. They provide not only a concise representation
of the original point data but also an optimal control point-set for the defor-
mation. The need to specify the control points beforehand is eliminated. The
only parameters now apriori specified are the total number of clusters and a
regularization parameter.

A third and quite interesting aspect of the joint clustering and matching ap-
proach is the treatment of the correspondence problem. Since the cluster cen-
ters and deformation are jointly estimated, we can simply associate the cluster
center indices of one point-set with that of the other. This defines the corre-
spondence. With the two sets of cluster centers now evolving in lock-step, the
algorithm searches for the best cluster center locations and least deformation
that can match the two point-sets. A side benefit of the clustering approach is
that feature consistency is automatically established. Since cluster centers and
not the original point locations are matched, there is no need to have the same
numbers of feature points in the two point-sets. And as mentioned previously,
correspondence is established by having the same cluster center indices in the
two point-sets. Hence, the resulting cluster centers can also be viewed as an
automated landmarking method.



3.3.2 A Bayesian Posterior Joint Clustering and Matching (JCM) Objective

Function

Here, we derive a Bayesian posterior objective function that fully expresses our
joint clustering and matching goals. When viewed from a Bayesian perspective,
the likelihood expresses the data clustering aspect while the prior expresses
the matching aspect.

We first explain the notation. We begin with two point-sets. The reference
point-set X (which we seek to warp onto a target) has N, points. The target
point-set Y has NNV, points. Note that NV, can be different from N,. We represent
them as {z;,i = 1,2,...,N,} and {y;,7 = 1,2,..., N, }, while each z; (and
each y;) represents a single point location in 3D.

A set of cluster centers (with a total of K) is associated with each point-set.
The cluster centers arising from the reference point-set X is called V', con-
sisting of K centers {v,,a = 1,2,..., K}. The cluster centers arising from
the target point-set Y is called U, consisting of corresponding K centers
{tg,a=1,2,... K}.

A Gaussian mixture model McLachlan and Basford (1988) is used to model the
clustering likelihood. Since the brain anatomical feature point-sets are highly
structured, we can expect them to form tight clusters. Below, we separately
write down mixture likelihoods for both feature point-sets X and Y. It should
be understood that in the resulting algorithm, clustering is simultaneously
performed on both point-sets with exactly the same number of cluster cen-
ters. Correspondence is automatic since the same index is used for the cluster
centers in both point-sets. While the index is common, the locations of the
cluster centers will obviously be different.

K
p(x\v,ﬂ(x), )= Z Wéx)p(xwa, Ya) (1)
a=1
where
1 1 Tae1
p(x|vg,0) = ———F exp (—5(33 —v,) X (x — va)) : (2)
(2m)z X8

In (1) and (2), K denotes the total number of cluster centers, D the dimension
of the point-sets (2D or 3D), = the vector (2D or 3D) of an instance, v, the
cluster center vector (2D or 3D), 7(®) the occupancy probability of the clusters
and Y the cluster covariance matrix. For the sake of simplicity and ease of
implementation, we immediately specialize to the case where the occupancy
probabilities are uniform (7{*) = 1) and the covariance matrix ¥, is isotropic
and diagonal (X, = o2Ip). Clearly, these choices can be questioned. The
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occupancy probability contains valuable information regarding the number
of members in a given cluster. And, the covariance matrix gives us valuable
information regarding the principal direction (tangent vector) at each cluster
center. Since we are already estimating the cluster centers, the memberships
of the feature points and the deformation between the two point-sets, we
have elected not to excessively burden the computation by also estimating the
occupancy probability and the covariance matrix at each cluster. After this
specialization, the mixture likelihoods (now written for Y') become:

1 K
pylu, o) = 2= > p(ylua, 0) (3)
a=1
where
(vlut0r0) = ————p exp (= 55ly — w?) 0
Uy, 0) = ———5exp | —=—=|y — u.|” | .

In (3), y is a vector (2D or 3D) instance, and u, is the ath cluster center. Note
the use of a common a index and total number of clusters K for X and Y.

As mentioned previously, the prior expresses the matching aspect. Essentially,
the cluster centers v and u are not independent. We relate v and u to each
other via “landmark” spline deformation functions f, and f,. Since v, and
u, are in correspondence, a landmark-based approach is well suited to model
the deformation. However, please note that the preceding mixture likelihood
clustering step can be viewed as an automated landmarking procedure since
clustering is performed in lockstep on both point-sets X and Y with the cluster
indices being identical as well.

L

> 53 (e = fo(wa) P+ v - fy(ua)|2)1 NG

a=1

p(o,ulfes f,) = Zi exp [

In (5), there are two deformation functions f, and f,. The function f, models
the “forward” deformation from v to w while f, models the “reverse” defor-
mation from u to v. We have chosen to use two deformations to avoid being
biased towards point-set X or Y. A second reason is that each function f,
actually comprises 2 (in 2D) or 3 (in 3D) separate functions (one for each co-
ordinate of u). This separability is undesirable since it implies an unwarranted
decomposition of the original 2D or 3D spline deformation into its constituent
dimensions Bookstein (1989). At present, we have not attempted to constrain
the reverse function f, to be the inverse of f, as in Christensen (1999) but
we do not see any technical difficulties in imposing this constraint in the fu-
ture. Finally, if a diffeomorphism is required, the functions f, and f, can be
replaced by a landmark-based diffeomorphism method as in Joshi and Miller
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(2000); Camion and Younes (2001). This is not technically as straightforward
as imposing the inverse constraint as in Christensen (1999).

The priors on the forward and reverse functions f, and f, are essentially
regularizers.

pUfe) = 5 Sp(-NILEIP), () = - esp(=AlIL, ). (6
Zy f

In (6), L is a regularization operator. In all deformation recovery experiments,
we have used the Laplacian operator which results in the familiar thin-plate
spline (TPS) in 2D and in 3D Wahba (1990); Bookstein (1989). The parameter
A is a regularization parameter.

Having specified the likelihood (on X and Y') and the prior (on (u,v) and
(fzs fy)), we may write the posterior.

plefv)p(ylw)p(v, ulfe, f,)P(f2)P(fy)

) @)

p(v,u, fu, fylo,y) =

The Bayesian MAP posterior objective function corresponding to (7) is

Ny K 1
Eposterior(vaua fmfy) = _Zlogzexp ( 2% 2 'Ua‘ ) ZlogZeXp < ua‘2>

i=1 a=1

(lta = o) 2+ Joa = Fy(u)P) + A (LSl + 1125, 12)8)

Equation (8) is the joint clustering and matching objective function.

As it stands, minimizing (8) is awkward due to the Y log 3" exp forms appear-
ing in the objective. This is a well known problem in Gaussian mixture mod-
eling Redner and Walker (1984). The well known expectation-maximization
(EM) algorithm McLachlan and Basford (1988) can be pressed into service
as an optimization algorithm. Since the mixture likelihood is non-convex, the
EM algorithm is usually executed many times with varying random initial
conditions. We instead adopt a deterministic annealing approach Rose et al.
(1990); Yuille et al. (1994); Hofmann and Buhmann (1997).

The main difference between the traditional EM algorithm for mixtures and a
deterministic annealing algorithm is in the treatment of the isotropic variance
parameter o2. In deterministic annealing, the variance parameter is imposed
from without rather than being estimated from within. A temperature pa-
rameter T = 202 as in simulated annealing (or MCMC) is gradually lowered
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from high values to low values. When the temperature 7T is high, the cluster
centers congregate around the center of mass of the point-sets. As the tem-
perature is lowered, a series of symmetry-breaking “phase transitions” Rose
et al. (1990) occur during which the cluster centers progressively move away
from the center of mass and toward their more local members.

Consider the following Gaussian mixture likelihood objective function:

Eix( Z log Z exp ( — i — Ua|2) : (9)

The objective function in (9) is a straightforward mixture objective unencum-
bered by the deformation prior. Now consider

N, K
Ecmp sz ‘JIZ —’Ua‘2 +TZZm§Z logmiz (10)
i=1a=1 i=1a=1

The objective function in (10) has a new variable m® and the temperature
parameter 7'. It turns out that

min Feyp (v, m") = Enic(v) (11)

when m?® satisfies m?, > 0 and 2%  m? = 1 Hathaway (1986); Yuille et al.
(1994) and when T is identified with 20%. The new variable m2; is a mem-
bership variable indicating the degree to which each point feature x; belongs
to cluster center v,. The main convenience resulting from using (10) rather
than (9) is that (10) does not have the 3" log ¥ exp form in it. Also, the term
>aimy logm?, is an entropy barrier function with 7" being the temperature.
We now perform this conversion from the mixture objective in (8) to a new
deterministic annealing objective along the same lines as the transition from

(9) to (10).

N: K Ny K
Ecmp(vau> .f:w fy>mza my) = Z Z m£7,|x7, - Ua|2 + Z Z mgj|yj - ua|2

i=1a=1 j=la=1

K
+ > e — folva) " + Z [va = fy(ua) | + AT Lf:||* + AT LS, ||*

+T Z Z me logm?® + T Z Z my; logmj(12)

i=1a=1 i=1 a=1
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where mg; € [0,1] and m{; € [0, 1] satisfy the constraints:

K
> mi =1, fori=12,... Ny, (13)
a=1

and
K
> m¥ =1, for j=1,2,... N, (14)
a=1

The objective function in Equation 12 is closely related to the objective func-
tions used in our previous work on robust point matching. More detailed ex-
planations are available in Gold et al. (1998); Rangarajan et al. (1997); Chui
et al. (1999); Chui and Rangarajan (2000) showing that point matching can
also be viewed as a fuzzy assignment optimization problem. Here we intend to
give some brief but more intuitive explanations for all the terms used within
the above objective function.

The first two terms are average residue distance measures between the data
and the cluster centers. Note that the memberships present in the distance
measure are themselves unknown. These two terms basically measure the de-
gree of fidelity of the cluster centers (V and U) to the data (X and Y') respec-
tively.

The next two terms in the objective function in (12) try to find the best
deformation (both forward and reverse at the same time) to match the two sets
of cluster centers. Instead of matching the original data points, the deformation
estimation step attempts to match the cluster centers. Since the cluster centers
are actually the control points for the deformation splines, the deformation is
directly affected by a change in the cluster centers. This feedback loop between
the deformation estimation step and the clustering step allows us to more
closely model the deformation between the two data-sets. Such a feedback
loop is only possible when we allow the cluster centers (control points) to be
dynamically estimated while the deformation is being updated.

The fifth and the sixth terms play the role of regularization. The parameter
A is a weight parameter which controls the degree of deformation; larger the
regularization parameter, smaller the extent of deformation and vice-versa.
Note that the temperature parameter now modulates the regularization. At
high temperatures, the regularization is very large, thereby forcing the defor-
mation to be close to the identity mapping. As the temperature is lowered,
the cluster centers move away from the centroid of the two point-sets and
the deformation moves away from the identity mapping. This simultaneous
movement is governed by the temperature parameter setting.
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Before we explain the last two terms, we first discuss some interesting prop-
erties of membership variables. Our clustering membership variables m* and
mY are continuous variables in the interval [0, 1], which still satisfy the con-
straints that the total membership of each data point in all clusters is one.
The continuous value of the membership variable reflect the “fuzziness” in
our clustering model. For example, if all m?, are the same, the membership of
a data point in a cluster center is uncertaln. A small calculation shows that
this effectively causes all the cluster centers to lie at the center of mass of the
data point-set. At the other end of the spectrum, if all m?¥; are close to binary
values (either 0 or 1), each cluster center will represent a separate subset of
the data ponits resulting in a good representation of the shape of the data
point-set. Between these two extremes, the membership matrix mZ, of some
intermediate fuzziness would then generate a set of cluster centers which can
capture the shape of the data points at some intermediate level. The shapes
of the intermediate levels are very helpful in our quest for a good non-rigid
deformation. They are much simpler than the actual data shape, which make
them easier and more stable to match. On the other hand, they resemble the
actual data shape to some extent. So the answer for the deformation found at
a less detailed level can be used as a good initialization to find the deformation
at a more detailed level. If we have a way to gradually reduce the fuzziness
in a controlled manner while progressively improving our estimation of the
deformation, it obviously leads to a coarse-to-fine, scale-space like strategy.

Deterministic annealing accomplishes this purpose by adding the entropy
terms T'>",; m*; logmZ, and T'Y,; m¥; logm?; to the original energy function.
The temperature parameter T" now controls the fuzziness of the membership
matrices: higher the temperature, greater the fuzziness. As mentioned previ-
ously, this form of the entropy term effectively leads to Gaussian clusters. The
square root of T can then also be regarded as the size of the clusters. The
required fine control of the fuzziness can be achieved by gradually reducing 7T

3.8.83 The Joint Clustering-Matching Algorithm

The resulting joint clustering-matching algorithm is very simple. It essentially
involves a dual update process embedded within an annealing scheme. The
update of each variable is calculated basically by differentiating the energy
function w.r.t. that variable and setting the result to zero. We first briefly
describe the two update steps.

Step 1. Clustering: Update membership matrices and cluster centers.

m,. =

T qaz Y qa]
mY. (15)
. ZK 1 qaz a] ZK 1 qa]
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where,

|22 —val? lyj—val?
Q=€ g =e T T, (16)
and then,
NemZ s folug) Ny maiy;  fy(va)
Vg = —2= 4 L Ug = Y — I S (17)
i=1 2 2 Jj=1 2 2

Step 2. Matching: Update the deformation functions. This is a standard
least-squares spline fitting problem.

K

fo = g (3 o~ )+ ALER). (19
® a=1
K

fy:argrr}in <Z |Ua_fy(ua)‘2+)‘HLfyH2> : (19)
v a=1

The update presented for the cluster centers has been slightly simplified. The
deformations are held fixed when the cluster centers are updated despite the
fact that the deformation is actually a function of the cluster centers. Including
the complete relation into the formulation greatly complicates the calculation.
Another reason for this simplification is that we are only slowly refining the
deformations during this whole iterative process; it is reasonable to assume
that deformations estimated at successive iterations will not be vastly differ-
ent. The approximation based on the previous iteration should be most likely
sufficient.

Annealing: As before Gold et al. (1998); Rangarajan et al. (1997); Chui
and Rangarajan (2000), an annealing scheme (for the temperature parame-
ter T') controls the dual update process. Starting with a high value T}, the
temperature parameter T' is gradually reduced according to a geometric an-
nealing schedule, T, = Tpq - 7 (r is called the annealing rate). The dual
update is repeated until convergence at each temperature. The temperature T'
is then lowered and the process is repeated until the final temperature T';pq
is reached.

The parameter T},;; is set to the largest square distance of all point pairs. We
set r to be 0.97 (normally between [0.9,0.99]) so that the annealing process is
slow enough for the algorithm to be robust, and yet not too slow. To prevent
overfitting, the parameter T¥;,, should be set according to the amount of
noise within the data set. In this work, we make a simplified treatment to set
T'tinar to be equal to the average of the squared distance between the nearest
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neighbors within the set of cluster centers which are being deformed. The
interpretation is that at T',q, the Gaussian clusters for all the points will
then barely overlap with each other.

Joint Clustering-Matching (JCM) Algorithm
Pseudo-Code:

Initialize T', f, and f,.
Dual Update:

- Clustering step: update {mZ,, mzi,

- Matching step: update f, and f,.

vg and ug}.

Anneal: T'= T - r until T, is reached.

3.3.4  Choice of Splines to Model the Deformation

We now specify the deformation parameterization in order to complete the
algorithm specification. Although it is almost impossible to specify the ex-
act deformation that can account for all of the inter-subject brain structural
differences, many types of deformation models originating from either con-
tinuum mechanics or spline theory have been used to provide reasonable ap-
proximations. Splines have been especially popular for feature-based methods
Thompson and Toga (1996); Davatzikos (1997) because of their well estab-
lished geometrical properties. However, when it comes to the specific choice
of the spline, there are few guidelines as to which spline is the most suitable.
Since our framework is general and can accomodate different splines, we are
able to conduct controlled comparative studies between different splines.

We implemented two types of radial basis function splines Wahba (1990).
Given a set of control points {v,,a = 1,2,...n}, a radial basis function basi-
cally defines a spatial mapping which maps any location x in space to a new
location f(x), represented by,

n

f(ZL’) - Z Ca¢(|‘r - Ua|) (20>

a=1

where | - | denotes the usual Euclidean norm in 3D and {c¢,} is a set of map-
ping coefficients. The kernel function ¢ assume different forms. If we choose
o(r) = exp(—r?/o?), it becomes a Gaussian Radial Basis Function (GRBF).
The parameter o controls the locality of each kernel function. A small value of
o generates more localized and hence less smooth warpings. A different choice
of using ¢(x) = —r leads to another type of radial basis function called the
Thin Plate Spline (TPS). Compared to the GRBF, TPS has a more global
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Fig. 4. Corpus callosum example: K = 10. Leftmost: original point-sets. Left of
center: Cluster centers and correspondence. Center: Forward transformation. Right
of center: Reverse transformation. Rightmost: Overlay of point-sets

nature—a small perturbation of one of the control points always affects the
coefficients corresponding to all the other points as well. It is worth pointing
out that TPS has one less free parameter. Another nice property of the TPS
is that it allows the deformation to be cleanly decomposed into a rigid (affine)
and a non-rigid component.

Due to space considerations, we have not included here the detailed solutions
to the spline fitting problem (Equation 18 and 19). We would like to just point
out that there are closed form analytic solutions available for both GRBF and
TPS Wahba (1990) since they are essentially linear least-squares problems.
Though derived from geometrical features, both deformations are defined over
the whole 3D space and can hence be directly applied to the volume data.

4 Experiments and Results

We begin by illustrating the way the JCM algorithm works on 2D point-sets.
We use two typical 2D corpus callosum shapes for the illustration.

A crucially important parameter in JCM is the number of cluster centers K.
Below, we show the results of executing the JCM algorithm with K = 10
through K = 60 cluster centers. The 2D shape has about 90 points. Figures 4-
9 take us through this sequence of increasingly better approximations of the
shape. It is clear from the figures that the corpus callosum shape is well rep-
resented after K = 30. Until that point, the shape is pinched in the middle
(as seen from the cluster center locations).

We are also interested in gauging the performance of the JCM algorithm on
candidate point-sets. A 2D template was first chosen. Both noise and defor-
mation performance were studied. Instead of TPS, we use a different non-rigid
mapping, namely Gaussian radial basis functions (RBF) Yuille and Grzywacz
(1989) for the random transformation. The coefficients of the RBF were sam-
pled from a Gaussian distribution with a zero mean and a standard deviation
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Fig. 8. Corpus callosum example: K = 50.

s1. Increasing the value of s; generates more widely distributed RBF coef-
ficients and hence leads to generally larger deformation. Random noise are
added to the warped template to generate the target point-set. We then used
JCM find the best TPS to map the template set onto the target set. The er-
rors are computed as the mean squared distance between the warped template
using the TPS found by the algorithms and the warped template using the
ground truth Gaussian RBF.
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Fig. 9. Corpus callosum example: K = 60.
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Fig. 10. Left: Deformation and Right: Noise performance on 100 trials

We conducted two series of experiments. In the first series of experiments,
the template was warped through progressively larger degrees of non-rigid
warping. The warped templates were used as the target data without adding
noise or outliers. The purpose is to test the algorithms’ performance on solving
different degrees of deformations. In the second series, different amounts of
Gaussian noise (standard deviation sy from 0 to 0.05) were added to the
warped template to get the target data. A medium degree of warping was
used to warp the template. The purpose is to test the algorithms’ tolerance
of noise. 100 random experiments were repeated for each setting within each
series. The results are shown in Figure 10. Surprisingly, we did not observe
much variation as K was increased. We speculate that the performance is
likely to show quantized jumps as K is increased corresponding to the cluster
center phase transitions. Clearly, this needs to be studied in greater detail.

We conducted various experiments on both synthetic and real data to evaluate
our algorithm. Experiments on real data is clearly necessary since that is the
ultimate goal of the algorithm. However, because the ground truth for real
data in inter-subject brain registration is usually not available, the synthetic
data provides a good alternative for validation purposes. In our experiments
with synthetic data, we intend to answer the following questions: i) does the
fusion of different types of features improve the registration or not? ii) if it
does, what is the degree of improvement? With these questions in mind, we
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first describe the synthetic experiments and the validation procedure.

4.1  FExperiments on Synthetic Data

4.1.1  The Design of the Synthetic Experiment

The synthetic experiments for registration are normally carried out in the fol-
lowing steps: i) construct a template; ii) construct a target from the template
via a synthetic deformation (ground truth); iii) recover a good deformation
(via the algorithm) to match the template to the target; iv) examine the errors
between the solution and the ground truth deformation.

In order to make the synthetic study more reliable, we carefully designed
the experiment to eliminate any bias due to the fact we have knowledge of
the ground trouth deformation. Essentially, knowledge of the ground truth
deformation should not affect the algorithm’s performance. For example, if
one type of spline is used to construct the synthetic target data, a different
spline should be used for subsequent recovery. Similar rules apply for the
examination of the errors as well. Instead of using the features directly involved
in the matching to evaluate the matching error, different features or the volume
data should be used. Keeping these considerations in mind, we briefly describe
the design of each step for the synthetic study.

4.1.1.1 Construction of the Template: We choose one normal male
brain MRI (without the skull) as the raw data for our template. For the pur-
poses of registration, as explained before, the smoothed outer cortical surface
and a set of major sulcal ribbons are extracted as features.

We need to prepare the template for later error measurement as well. Apart
from these features used for the registration, we asked a neuroanatomy expert
to extract a different set of landmark points over the whole brain volume to get
a rough error measurement. The landmark points includes two sub-groups: one
group distributed on the outer cortical surface and another group distributed
at critical locations of the sub-cortical structures (as shown in Figure 11). The
idea is that while the error calculated over the whole landmark point-set will
give us a rough global estimate of how good the alignment is, the errors from
each sub-group can tell us a little bit more about where the error originates.

To provide even more detailed measurement than landmarks, we also have
the MRI volume fully segmented and labeled with the help of neuroanatomy
expert. A label is assigned to each voxel according to which structure the voxel
belongs. A hierarchy of structures is used. The volume is first segmented into
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Fig. 11. Template for the Synthetic Study. Top row, from left to right: i) the template
MRI volume; ii) the cortical landmarks; iii) the subcortical landmarks in 3D view;
iv) again the sub-cortical landmarks in 2D view.

Bottom row, from left to right: i) a surface rendering of the fully segmented
brain MRI volume; ii) a 2D slice of the segmentation. Different colors stand for
different labels; iii) the corresponding gray level MRI slice with the contours
from the segmentation; iv, v) another slice.

the background and the brain. The brain is then divided into cortex and sub-
cortex. The cortex is subdivided into different lobes with gray/white matter
segmentation performed for each lobe. Within the sub-cortex volume, a list
of important sub-cortical structures are segmented including the thalamus,
caudate, putamen, brain stem and the ventricles. With this finely segmented
brain volume template, we can then make very detailed error measurements.

4.1.1.2 Using GRBF as Synthetic Deformation to Construct the
Target: We choose GRBF as the synthetic deformation to warp the tem-
plate data. The main reason is that with its locality parameter o, GRBF can
easily generate both local and global warpings. By comparing the algorithm’s
performance under these different circumstances, it provides another valuable
way to evaluate the algorithm’s performance. The control points for GRBF
are manually chosen to be a group of grid points (64 points total) over the
whole volume.

4.1.1.3 Using TPS to Recover the Deformation: We choose TPS as
the deformation spline in our feature registration/point clustering-matching
algorithm. Using TPS instead of GRBF obviously makes the problem more
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Ground Truth Deformation (GRBF)
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Ground Truth Deformation (GRBF)

Fig. 12. Ground Truth GRBF (Local Warp and Global Warp). Top row, from left
to right: i, ii) two side views of the original brain volume; iii) a randomly generated
GRBF with a small 0 = 30 (local warp). The original space is shown by the regular
dotted 3D grid and the warped space by the solid deformed grid; iv, v) two side
views of the warped brain volume by GRBF.

Bottom row, from left to right: i, ii) original brain volume; iii) a GRBF with
a big o = 60 (global) warp. Note the difference between the local warp and
the global warp; iv, v) the warped volume.

difficult. However, it is necessary since it provides more unbiased validation
of the algorithm. The advantage of using TPS is the smaller number of free
parameters compared to GRBF. Apart from the annealing parameters, the
only extra parameter that TPS needs is the regularizationparameter A. The
value for A is manually chosen. The annealing parameters are set as discussed
above. We specify the total number of cluster centers K to be 150 to give TPS
enough flexibility.

To answer the question posed above, we run the JCM algorithm with different
settings to see if the combination of features really improves the registration.
Three different choices of features are compared— the outer surface alone,

23



Before Point Matching Before Point Matching Before Point Matching

Fig. 13. Joint point clustering-matching using TPS. Top row, from left to right: i) a
3D view of 2 feature point-sets before point matching. One point-set is shown using
crosses and another using circles; ii, iii) two 2D views.

Bottom row, from left to right: i) a 3D view of the feature point-sets after
point matching. TPS is used to deform one point-set (circles) to match the
other set; ii, iii) two 2D views.

the sulcal ribbons alone and the combination the outer surface and the sulcal
ribbons. One matching example of using both the outer surface and the sulcal
ribbons is demonstrated in Figure 13 and 14.

4.1.1.4 Examination of the Errors: FErrors are calculated based on both
the landmarks as well as the labeled volume. To measure the errors on land-
marks, we first warp the original landmarks with the ground truth GRBF to
get the ground truth set A. After the TPS registration, we warp the original
landmarks again with the TPS recovered by the algorithm to get the solu-
tion set B. Errors are then calculated between A and B as the Euclidean
distances between the two warped landmark point-sets. A similar procedure
is performed for the labeled volume as well. The only difference between the
landmark error and the volume error measurements is that in the latter, the
error is measured as the ratio of misaligned voxels between the two warped
labeled volumes for a certain segmented structure. First the misaligned voxels
are counted for a particular structure. The error ratio is calculated by dividing
the misaligned count by the actual total number of voxels in that structure.
Such a error ratio basically provides a relative measurement for the alignment
of each structure.
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with the GRBF. Note that though the warped volumes from TPS and GRBF
look almost the same on the surface, the two deformations are still slightly
different over the whole space. It shows that the two splines have different
behaviors.

4.1.2  Synthetic Fxperiments and Results

We carried out 2 series of synthetic experiments: one with a smaller value of
o = 30 in GRBF for more localized warpings and one with a larger value
of ¢ = 60 for global warping. Ten randomly generated trials (with randomly
generated GRBF coefficients) are included in each series. The algorithm is
run 3 times for each trial, each time with a different choice of feature—outer
surface alone (method I), sulcal ribbons alone (method II) and the combination
of outer surface and sulcal ribbons (method III). The errors for each method
is averaged over the total 10 trials to get both the mean and the standard
deviation. The error statistics are shown in Figure 15 and 17.

From the error statistics based on landmarks (Figure 15), method III is clearly
shown to be superior than the other two methods. It brings the landmarks
within 1 ~ 2 voxels’ distances consistently despite the fact that we are trying
to use TPS to match to a target which is generated by a different spline
(GRBF). The results confirm that the combination of the two types of features
does improve the registration.

The data also reveal other interesting facts. Since all our features are mostly

located at the cortical regions, it is not surprising that the alignment of the
cortical landmarks tends to be much better than the sub-cortical part. Includ-
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(Mean/Std., Unit: Voxel) | Method I | Method II | Method III
All Landmarks 2.83/0.61 | 1.96/0.29 | 1.58/0.30
Cortical Landmarks 2.23/0.48 | 1.88/0.29 | 1.15/0.30
Sub-Cortical Landmarks | 3.46/0.97 | 2.05/0.46 | 2.03/0.38

Fig. 15. The error statistics based on the landmarks of test series 1 (local GRBF
warp). Method I: using outer cortical surface alone. Method II: using sulcal ribbons
alone. Method: using both together. Overall, method III gives smallest errors. Also
note that the cortical landmark errors tend to be smaller than the sub-cortical
landmark errors.

(Mean/Std., Unit: Voxel) | Method I | Method IT | Method III
All Landmarks 2.17/0.82 | 1.84/0.32 | 1.23/0.26
Cortical Landmarks 1.58/0.58 | 1.57/0.30 | 0.83/0.25
Sub-Cortical Landmarks | 2.79/1.00 | 2.12/0.48 | 1.88/0.41

Fig. 16. The error statistics based on the landmarks of test series 2 (global GRBF
warp). Note that the errors generally improve a little bit when compared to test
series 1.

ing further features to represent the sub-cortical structures certainly should
help. One interesting fact is that method II with the sulcal ribbons actually
outperforms method I, which uses the outer cortical surface in places. This is
not what we originally expected. Even though the major sulcal ribbons are
extended more into the brain, they seem to be too sparse a representation.
The results from the experiments clearly indicate their better 3D placement
outweigh their major disadvantage, namely sparseness. The ellipsoidal shape
of the outer cortical surface is also more likely to cause rotation errors. Gen-
erally the behavior of TPS is more global when compared to GRBF. So it
is natural that TPS approximates GRBF better when the warping is more
global. This is confirmed by smaller errors from test series 2.

As shown in Figure 17, the error statistics measured based on the segmented
volume data not only confirm all our findings based on the landmarks but also
provide more detailed information. While its errors on the cortical lobe regions
are comparable to other methods, method I (with only the outer cortical
surface) simply cannot provide enough anchoring information when it comes
to the sub-cortical structures. On the other hand, method II (with only the
sulcal ribbons) clearly suffers from the sparseness of its feature representation.
For any structure that is relatively far away from the sulcal ribbons (e.g.
cerebellum) , method II leads to large errors. All these problems can be avoided
by combining them together as in method III.
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Fig. 17. The error statistics based on the volume of test series 1 (local GRBF warp).
Left, comparison of method IIT and I. Right, comparison of method III and II.
Method I, with only the outer surface, yields much bigger errors for all sub-cortical
structures. Method II, with only the sulcal ribbons, tend to perform worse near the
rear region of the brain (occipital lobe, parietal lobe, cerebellum and brain stem),
from where all the ribbons are relatively far away. Note: when measuring errors on
the brain lobes, the distinction between the gray matter and the white matter is
neglected to provide a more global and overall evaluation of the alignment.

The inclusion of error examination on gray and white matter allows us to
check the alignment at a much detailed level. For very convoluted structures
like the gray/white matter interface, small local misalignments can accumulate
to a large error. Compared to the relatively low errors on lobe alignment,
the residual errors at the gray/white matter interface are much larger. This
indicates that the alignment at a fine local level can be improved. The small
difference between TPS and GRBF is magnified and clearly demonstrated
here. The volume error statistics of test series 2 is similar to test series 1 but
with a slight improvement and hence, we do not repeat them here.
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Fig. 18. An experiment with two real brain data. From left to right: 1) the reference
brain; 2) warped reference brain (warped to match the target); 3) the target brain.
Note how the warping changes the brain’s global shape.

4.2 Ezperiments on Real Data

We conducted some preliminary experiments on a few pairs of anatomical
MRI brain data. At the present stage, our feature representation is well suited
for the global alignment of the brain. We include one example based on the
currently available feature representation here in Figure 18. We believe that to
provide a more adequate representation of the complex brain structures, more
detailed brain structural features are needed, especially from the sub-cortical
regions.

5 Discussion and Conclusion

The above experiments show that the combination of different features inherits
each feature’s merits while avoiding the problems stemming from exclusive
usage. As we discussed above, though the outer cortex provides a good model
for the overall brain shape, its ellipsoidal shape is vulnerable to rotation errors.
This weakness can be eliminated with the help of the sulcal ribbons. On the
other hand, without the outer cortical surface, the sulcal ribbons alone are too
sparse. By jointly registering the features, the alignment is better constrained.
The new joint clustering and matching (JCM) method provides a simple and
effective way of accomplishing the goal of unified registration.

Even though we only discussed using multiple surfaces in this paper, the idea
of fusing different features into a common point representation space is general
and can be easily applied to other features such lines and curves. It is also
possible to add weight factors and attributes to each type of feature in this
framework. The point clustering-matching engine is quite general as well. The
matching of the feature points is indirectly accomplished by matching cluster
centers. In essence, we are trying to achieve a many-to-many fuzzy matching
between the original dense feature point-sets. For the discrete point represen-
tation derived through sub-sampling, exactly corresponding points are rare.
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Therefore, perfect one-to-one matching may no longer be the optimal solution.
The fuzziness in our matching greatly alleviates this problem by allowing par-
tial correspondences. A single parameter 1" afford fine control over the degree
of such fuzziness. If we stop the algorithm at a higher 7', higher fuzziness is
achieved. If we lower the final temperature, we can achieve the limit of bi-
nary correspondence which may or may not be desirable. Clearly, the effect
of varying the two free parameters—the number of cluster centers and the
regularization parameter—mneed to be studied. Also, we speculate that the
inclusion of additional information such as the principal components of the
covariance matrix of each cluster may improve the performance of the JCM
algorithm especially on larger data-sets.
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