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Abstract

Deterministic annealing and relaxation labeling algorithms for classification and matching
are presented and discussed. A new approach—self annealing—is introduced to bring deter-
ministic annealing and relaxation labeling into accord. Self annealing results in an emergent
linear schedule for winner-take-all and linear assignment problems. Self annihilation, a gener-
alization of self annealing is capable of performing the useful function of symmetry breaking.
The original relaxation labeling algorithm is then shown to arise from an approximation to
either the self annealing energy function or the corresponding dynamical system. With this
relationship in place, self annihilation can be introduced into the relaxation labeling frame-
work. Experimental results on synthetic matching and labeling problems clearly demonstrate
the three-way relationship between deterministic annealing, relaxation labeling and self an-
nealing.
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1 Introduction

Labeling and matching problems abound in computer vision and pattern recognition (CVPR) . Itis
not an exaggeration to state that some form or the other of the basic problems of template matching
and data clustering has remained central to the CVPR and neural networks (NN) communities for
about three decades [1]. Due to the somewhat disparate natures of these communities, different
frameworks for formulating and solving these two problems have emerged and it is not immedi-
ately obvious how to go about reconciling some of the differences between these frameworks so
that they can benefit from each other.

In this paper, we pick two such frameworks, deterministic annealing [2] and relaxation label-
ing [3] which arose mainly in the neural networks and pattern recognition communities respec-
tively. Deterministic annealing has its origins in statistical physics and more recently in Hopfield



networks [4]. It has been applied with varying degrees of success to a variety of image matching
and labeling problems. In the field of neural networks, deterministic annealing developed from
its somewhat crude origins in the Hopfield-Tank networks [4] to include fairly sophisticated treat-
ment of constraint satisfaction and energy minimization by drawing on well established principles
in statistical physics [5]. Recently, for both matching [6] and classification [7] problems, a fairly
coherent framework and set of algorithms have emerged. These algorithms range from using the
softmax [8] or softassign [9] for constraint satisfaction and dynamics that are directly derived from
or merely mimic the Expectation-Maximization (EM) approach [10].

The term relaxation labeling (RL) originally referred to a heuristic dynamical system devel-
oped in [11]. RL specified a discrete time dynamical system in which class labels (typically in im-
age segmentation problems) were refined while taking relationships in the pixel and label array
into account. As interest in the technique grew, many bifurcations, off shoots and generalizations
of the basic idea developed; examples are the product combination rule [12], the optimization
approach [13], projected gradient descent [3], discrete relaxation [14], and probabilistic relaxation
[15]. RL in its basic form is a discrete time update equation that is suitably (and fairly obviously)
modified depending on the problem of interest—image matching, segmentation, or classification.
The more principled deviations from the basic form of RL replaced the discrete time update rule
by gradient descent and projected gradient descent [3, 13] on energy functions. However, recently
it has been shown [16] that the original heuristic RL dynamical system minimizes the labeling
energy function. It is now fairly clear that both continuous time projected gradient descent and
discrete time RL dynamical systems can be used to minimize the same labeling energy function.

Much of this development prefigured or ran parallel to the evolution of deterministic anneal-
ing (DA) dynamical systems with at least one major difference. While the concerns of continuous
time versus discrete time dynamics were common to both RL and DA approaches, within the
DA approaches a fundamental distinction was drawn between matching and labeling problems
[17]. This distinction was almost never emphasized in RL. In labeling problems, a set of labels
have to be assigned to a set of nodes with the constraint that a node should be assigned only
one label. A variety of problems not necessarily restricted to CVPR require labeling constraints;
some examples are central and pairwise clustering [7, 18], consistent labeling [3], and graph col-
oring. In matching problems on the other hand, a set of model nodes have to be assigned to a
set of data nodes with the constraint that each model node should be assigned to one and only
one data node and vice versa. A variety of problems require matching constraints; some examples
are quadratic assignment [2, 19], TSP [20, 9], graph matching [21, 22], graph partitioning (with
minor differences) [20, 23] and point matching [24, 25]. The original neural network approaches
used a penalty function approach at fixed temperature [4]. With the importance of deterministic
annealing and exact constraint satisfaction becoming clear, these approaches quickly gave way to
the softmax [26, 20, 23, 27, 28], softassign [29, 9, 22], Lagrangian relaxation [29, 30] and projected
gradient descent [31, 32, 33, 34] approaches usually performed within deterministic annealing.

Here, we return to the original relaxation labeling dynamical system since ironically, it is in the
RL discrete time dynamical system that we find a closest parallel to recent discrete-time determin-



istic annealing algorithms. Even after restricting our focus to discrete time dynamical systems,
important differences like the manner in which constraint satisfaction is performed, relaxation
at a fixed temperature and the nature of the update mechanism remain. A new approach—self
annealing—is presented to unify relaxation labeling and deterministic annealing. We show that
the self annealing dynamical system which is derived from a corresponding energy function cor-
responds to deterministic annealing with a linear schedule. Also, the original RL update equation
can be derived from the self annealing dynamical system via a Taylor series approximation. This
suggests that a close three-way relationship exists between DA, RL and self annealing with self
annealing acting as a bridge between DA and RL.

2 Deterministic Annealing

Deterministic annealing arose as a computational shortcut to simulated annealing. Closely related
to mean field theory, the method consists of minimizing the free energy at each temperature setting.
The free energy is separately constructed for each problem. The temperature is reduced accord-
ing to a pre-specified annealing schedule. Deterministic annealing has been applied to a variety
of combinatorial optimization problems—winner-take-all (WTA), linear assignment, quadratic
assignment including the traveling salesman problem, graph matching and graph partitioning,
clustering (central and pairwise), the Ising model etc.—and to nonlinear optimization problems
as well with varied success. In this paper, we focus on the relationship between deterministic an-
nealing and relaxation labeling with emphasis on matching and labeling problems. The archetypal
problem at the heart of labeling problems is the winner-take-all and similarly for matching prob-
lems, it is linear assignment that is central. Consequently, our development dwells considerably
on these two problems.

2.1 The winner take all

The winner-take-all problem is stated as follows: Given a set of numbers T3, ¢ € {1, ..., N}, find

i* = argmax;(T;, i € {1, ...,N}) or in other words, find the index of the maximum number.
Using N binary variables s;, 7 € {1, ..., N}, the problem is restated as:

max Z T;s; (1)

s.to > si=1, ands; € {0,1}, Vi 2)

The deterministic annealing free energy is written as follows:
1
Fyta(v) = — Zﬂvi + A(Z v, — 1)+ 3 Zvi log v;. 3)

In equation (3), v is a new set of analog mean field variables summing to one. The transition from
binary variables s to analog variables v is deliberately highlighted here. Also, § is the inverse



temperature to be varied according to an annealing schedule. ) is a Lagrange parameter satisfying
the WTA constraint. The x log « form of the barrier function keeps the v variables positive and is
also referred to as an entropy term.

We now proceed to solve for the v variables and the Lagrange parameter \. We get (after
eliminating \)

L8 _epBh) 4
; Z]-exp(BTj)’V’ e{l,...,N} (4)

This is referred to as the softmax nonlinearity [8]. Deterministic annealing WTA uses the nonlin-
earity within an annealing schedule. (Here, we gloss over the technical issue of propagating the
solution at a given temperature v#» to be the initial condition at the next temperature 3,+1.) When
there are no ties, this algorithm finds the single winner for any reasonable annealing schedule—
quenching at high 3 being one example of an “unreasonable” schedule.

2.2 The linear assignment problem

The linear assignment problem is written as follows: Given a matrix of numbers Ag;, a,i €

{1, ... ,N}, find the permutation that maximizes the assignment. Using N? binary variables
Sqi, a,1 € {1, ..., N}, the problem is restated as:
max Z AgiSai ()
az
5.t0 > sqi =1, sq =1, and se; € {0,1}, V a,i (6)

The deterministic annealing free energy is written as follows:

Fap(v) = - ZAai'Uai + ZMG(Z Vaz — ]-) + Z Vz(z Vas — ]-) + %Z Vaz logvai- (7)

In equation (7), v is a doubly stochastic mean field matrix with rows and columns summing to
one. (u,v) are Lagrange parameters satisfying the row and column WTA constraints. As in the
WTA case, the z log « form of the barrier function keeps the v variables positive.
We now proceed to solve for the v variables and the Lagrange parameters (u,v). [29, 2]. We
get
v((f) = exp(BA4 — Blpa + vi]) Va,i, a,1 € {1, ... ,N} (8)

The assignment problem is distinguished from the WTA by requiring the satisfaction of two-way
WTA constraints as opposed to one. Consequently, the Lagrange parameters cannot be solved for
in closed form. Rather than solving for the Lagrange parameters using steepest ascent, an iter-
ated row and column normalization method is used to obtain a doubly stochastic matrix at each
temperature [29, 9]. Sinkhorn’s theorem [35] guarantees the convergence of this method. (This
method can be independently derived as coordinate ascent w.r.t. the Lagrange parameters.) With
Sinkhorn’s method in place, the overall dynamics at each temperature is referred to as the soft-
assign [9]. Deterministic annealing assignment uses the softassign within an annealing schedule.



(Here, we gloss over the technical issue of propagating the solution at a given temperature v# to
be the initial condition at the next temperature 3,,+1.) When there are no ties, this algorithm finds
the optimal permutation for any reasonable annealing schedule.

2.3 Related problems

Having specified the two archetypal problems, the winner-take-all and assignment, we turn to
other optimization problems which frequently arise in computer vision, pattern recognition and

neural networks.

2.3.1 Clustering and labeling

Clustering is a very old problem in pattern recognition [1, 36]. In its simplest form, the prob-
lem is to separate a set of NV vectors in dimension d into K categories. The precise statement of
the problem depends on whether central or pairwise clustering is the goal. In central clustering,
prototypes are required, in pairwise clustering, a distance measure between any two patterns is
needed [37, 18]. Closely related to pairwise clustering is the labeling problem where a set of com-
patibility coefficients are given and we are asked to assign one unique label to each pattern vector.
In both cases, we can write down the following general energy function:

msin Elab( = —= Z Oaz ;b7 SaiSby (9)

azb]

5.t0 > sq =1, and s4; € {0,1}, Va,i
a

(This energy function is a simplification of the pairwise clustering objective function used in [37,
18], but it serves our purpose here.) If the set of compatibility coefficients C' is positive definite
in the subspace of the one-way WTA constraint, the local minima are WTAs with binary entries.
We call this the quadratic WTA (QWTA) problem, emphasizing the quadratic objective with a
one-way WTA constraint.

For the first time, we have gone beyond objective functions that are linear in the binary vari-
ables s to objective functions quadratic in s. This transition is very important and entirely orthog-
onal to the earlier transition from the WTA constraint to the permutation constraint. Quadratic
objectives with binary variables obeying simplex like constraints are usually much more difficult
to minimize than their linear objective counterparts. Notwithstanding the increased difficulty of
this problem, a deterministic annealing algorithm which is fairly adept at avoiding poor local

minima is:
def  OFEnp(v
qai = (9’()(“ Z Caz ;b7 Ubg (10)
’U(ﬁ) _ exp(ﬂqai) (11)

“ Ty exp(Bani)

The intermediate ¢ variables have an increased significance in our later discussion on relaxation
labeling. The algorithm consists of iterating the above equations at each temperature. Central and
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pairwise clustering energy functions have been used in image classification and segmentation or
labeling problems in general [18].

2.3.2 Matching

Template matching is also one of the oldest problems in vision and pattern recognition. Conse-
quently, the subfield of image matching has become increasingly variegated over the years. In our
discussion, we restrict ourselves to feature matching. Akin to labeling or clustering, there are two
different styles of matching depending on whether a spatial mapping exists between the features
in one image and the other. When a spatial mapping exists (or is explicitly modeled), it acts as a
strong constraint on the matching [24]. The situation when no spatial mapping is known between
the features is similar to the pairwise clustering case. Instead, a distance measure between pairs of
features in the model and pairs of features in the image are assumed. This results in the quadratic
assignment objective function—for more details see [22]:

. 1
msln E'gm(s) = —5 Z Cai;bjsaisbj
aibj

5.t0 Y sai =1, sai =1, and s4; € {0,1}, V a,i (12)

If the quadratic benefit matrix {C;; } is positive definite in the subspace spanned by the row and
column constraints, the minima are permutation matrices. This result was shown in [2]. Once
again, a deterministic annealing free energy and algorithm can be written down after spotting the
basic form (linear or quadratic objective, one-way or two-way constraint):

_ def OEgm(v)

Gai = _Tai = %: Cuaisbj Vg (13)
v = exp(Bgai — Blita + vi)) (14)

The two Lagrange parameters p and v are specified by Sinkhorn’s theorem and the softassign.
These two equations (one for the ¢ and one for the v) are iterated until convergence at each tem-
perature. The softassign quadratic assignment algorithm is guaranteed to converge to a local
minimum provided the Sinkhorn procedure always returns a doubly stochastic matrix [19].

We have written down deterministic annealing algorithms for two problems (QWTA and QAP)
while drawing on the basic forms given by the WTA and linear assignment problems. The com-
mon features in the two deterministic annealing algorithms and their differences (one-way versus
two-way constraints) [17] have been highlighted as well. We now turn to relaxation labeling.

3 Relaxation labeling

Relaxation labeling as the name suggests began as a method for solving labeling problems [11].
While the framework has been extended to many applications [38, 39, 40, 41, 16, 15] the basic



feature of the framework remains: Start with a set of nodes ¢ (in feature or image space) and a
set of labels A. Derive a set of compatibility coefficients (as in Section 2.3.1) r for each problem of
interest and then apply the basic recipe of relaxation labeling for updating the node-label (i to \)
assignments:

g’ (V) = YO wp” () (15)
in

(n) (n)
(n41)yy — _Pi AL+ ag; “(N))
P W Lt g™ ()

Here the p’s are the node-label (i to \) label variables, the g are intermediate variables similar to the

(16)

q’s defined earlier in deterministic annealing. o is a parameter greater than zero used to make the
numerator positive (and keep the probabilities positive.) The update equation is typically written
in the form of a discrete dynamical system. In particular, note the multiplicative update and the
normalization step involved in the transition from step n to step (n + 1). We have deliberately
written the relaxation labeling update equation in a quasi-canonical form while suggesting (at
this point) similarities most notably to the pairwise clustering discrete time update equation. To
make the semantic connection to deterministic annealing more obvious, we now switch to the old
usage of the v variables rather than the p’s in relaxation labeling.

) = > Cai;ij[(,;b) 17)
7b
(ni1) _ v (1+ agly)
" Sy (1+ agy)

As in the QAP and QWTA deterministic annealing algorithms, a Lyapunov function exists [42, 43]

(18)

v

for relaxation labeling.

We can now proceed in the reverse order from the previous section on deterministic annealing.
Having written down the basic recipe for relaxation labeling, specialize to WTA, AP, QWTA and
QAP. While the contraction to WTA and QWTA may be obvious, the case of AP and QAP are
not so clear. The reason: two-way constraints in AP are not handled by relaxation labeling. We
have to invoke something analogous to the Sinkhorn procedure. Also, there is no clear analog to
the iterative algorithms obtained at each temperature setting. Instead the label variables directly
and multiplicatively depend on their previous state which is never encountered in deterministic
annealing. How do we reconcile this situation so that we can clearly state just where these two
algorithms are in accord? The introduction of self annealing promises to answer some of these
questions and we now turn to its development.

4 Self annealing

Self annealing has one goal, namely, the elimination of a temperature schedule. As a by-product
we show that the resulting algorithm bears a close similarity to both deterministic annealing and
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relaxation labeling. The self annealing update equation for any of the (matching or labeling) prob-
lems we have discussed so far is derived by minimizing [44]

F(v,0) = E(v) + éd(v,o) (19)

where d(v, o) is a distance measure between v and an “old” value o. (The explanation of the “old”
value will follow shortly.) When F' is minimized w.r.t v, both terms in (19) come into play. Indeed,
the distance measure d(v, o) serves as an “inertia” term with the degree of fidelity between v and
o determined by the parameter o.. For example, when d(v,0) is |jv — o||?, the update equation
obtained after taking derivatives w.r.t. v and o and setting the results to zero is

(n)

o, = v,
OE
Ov;  |ymp(ntD)
This update equation reduces to “vanilla” gradient descent provided we approximate agg;) gt D)

OE (v)
by 61]i v:v(") :

stricted to just quadratic error measures. Especially, when positivity of the v variables is desired,

o becomes a step-size parameter. However, the distance measure is not re-

a Kullback-Leibler (KL) distance measure can be used for d(v, o). In [44], the authors derive many
linear on-line prediction algorithms using the KL divergence. Here, we apply the same approach
to the QWTA and QAP.

Examine the following QAP objective function using the KL divergence as the distance mea-

sure:

+Z :ua(z: Vai — ]-) + ZVZ(Z Vai — ]-) (21)

We have used the generalized KL divergence d(z,y) = 3Z;(;log {+ — i + ;) which is guaranteed

1 1 Vai
Fiagap(v,0) = 3 > Cuaipjvaivej + - > (Uai log = — vai + Uai)
aibj at

to be greater than or equal to zero without requiring the usual constraints >, z; = >, v; = 1. This
energy function looks very similar to the earlier deterministic annealing energy function (12) for
QAP. However, it has no temperature parameter. The parameter « is fixed and positive. Instead
of the entropy barrier function, this energy function has a new KL measure between v and a new
variable o. Without trying to explain the self annealing algorithm in its most complex form (QAP),
we specialize immediately to the WTA.

1 i
Fiawta(v,0) = — ZTv + A(Z v; — 1)+ - (Z v; log Z— — v + ai) . (22)

Equation (22) can be alternately minimized w.r.t. » and o (using a closed form solution for the
Lagrange parameter \) resulting in
(n)

oD = U (:;Xp(o‘ ) Lol >0, Vi, ie{l, ... N} (23)
2 vy exp(aT})




The new variable o is identified with vl(")

in (23). When an alternating minimization (between v
and o) is prescribed for Fy,wta, the update equation (23) results. Initial conditions are an important
factor. A reasonable choiceisv) = 1/N+¢;, o =49, Vi, i € {1, ..., N} but other initial conditions
may work as well. A small random factor ¢ is included in the initial condition specification. To
summarize, in the WTA, the new variable o is identified with the “past” value of v. We have not
yet shown any relationship to deterministic annealing or relaxation labeling.

We now write down the quadratic assignment self annealing algorithm:

Pseudo-code for self annealing QAP

Initialize vg; to % + &4i, Tai tO Vg4
Begin A: Do A until integrality condition is met or number of iterations > I 4.

Begin B: Do B until all v,; converge or number of iterations > Ip
Qai < b Caihj Vb
Vai < Oai €XP (Gai)
Begin C: Do C until all v,; converge or number of iterations > I¢

Update v,; by normalizing the rows:

Vai
v
(l'L § : Vai

Update v4; by normalizing the columns:

Vai

Vai < Ea Vai
End C

End B

Oai < Vai

End A

This is the full blown self annealing QAP algorithm with Sinkhorn’s method and the softassign
used for the constraints but more importantly a built in delay between the “old” value of v namely
o and the current value of v. The main update equation used by the algorithm is

(n 1
logv + E Cu b]'Ub] —vi+ —logog (24)
o

Convergence of the self annealing quadratic assignment algorithm to a local minimum can be
easily shown when we assume that the Sinkhorn procedure always returns a doubly stochastic
matrix. Our treatment follows [19]. A discrete-time Lyapunov function for the self annealing
quadratic assignment algorithm is (21). (The Lagrange parameter terms can be eliminated since
we are restricting v to be doubly stochastic.) The change in energy is written as

def n n
AFsagap = Fragap(v ( )70) _Fsaqap(v( +1)a0)



(n)

__ZCM] mym 4 1 Z () 14

Cai

atbj
(n+1) ( +1) 1 (n+1) yntt)
+= ZCa,b] o " =) ot log —#— (25)
azb] « at Tai

The Lyapunov energy difference has been simplified using the relations },; vo; = N. Using the
update equation for self annealing in (24), the energy difference is rewritten as

(n)

VU,
AFsaqap = ZO‘“ b Avgi Avyj + — Zv log n +1) >0 (26)
azb] at
where Avg; & o _ 4" The first term in (26) is non-negative due to the positive definiteness

of {Ca;;} in the subspace spanned by the row and column constraints. The second term is non-
negative by virtue of being a Kullback-Leibler distance measure. We have shown the convergence
to a fixed point of the self annealing QAP algorithm.

5 Self annealing and deterministic annealing

Self annealing and deterministic annealing are closely related. To see this, we return to our favorite
example—the winner-take-all (WTA). The self annealing and deterministic annealing WTAs are
now brought into accord: Assume uniform rather than random initial conditions for self anneal-
ing. vl(o) = 1/N, Vi, 1 € {1, ...,N}. With uniform initial conditions, it is trivial to solve for
o)
o = %, Vi, ic{l, ... N} 27)
The correspondence between self annealing and deterministic annealing is clearly established by
setting 8, = no, n = 1,2, . .. We have shown that the self annealing WTA corresponds to a
particular linear schedule for the deterministic annealing WTA.
Since the case of AP is more involved than WTA, we present anecdotal experimental evidence
that self annealing and deterministic annealing are closely related. In Figure 1, we have shown the

Eai ”iz‘)
N

for the inverse temperature 5 with the initial inverse temperature 5y = « and the linear increment

evolution of the permutation norm (1 — and the AP free energies. A linear schedule is used
Br also set to a. The correspondence between DA and SA is nearly exact for the permutation
norm despite the fact that the free energies evolve in a different manner. The correspondence is
exact only when we match the linear schedule DA parameter « to the self annealing parameter
a. It is important that SA and DA be in lockstep, otherwise we cannot make the claim that SA
corresponds to DA with an emergent linear schedule.

The self annealing and deterministic annealing QAP objective functions are quite general. The
QAP benefit matrix Cg;;p; is preset based on the chosen problem—inexact, weighted, graph match-
ing, or pairwise clustering. The deterministic annealing pseudo-code follows (we have already
written down the self annealing pseudo-code in the previous section):
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Figure 1: Left: 100 node AP with three different schedules. The agreement between self and
deterministic annealing is obvious. Right: The evolution of the self and deterministic annealing
AP free energies for one schedule.

Pseudo-code for deterministic annealing QAP

Initialize 3 to By, vai to ﬁ + &ai
Begin A: Do A until 8 > 3¢

Begin B: Do B until all v,; converge or number of iterations > Ip
Qai < b Cairhj Vb
Vai <= exP (8gai)

Begin C: Do C until all v,; converge or number of iterations > I¢

Update v,; by normalizing the rows:

Vai < z:v-a:)ai
Update v4; by normalizing the columns:

Vgs va; -
End C ’
End B
B Beth

End A

Note the basic similarity between the self annealing and deterministic annealing QAP algo-
rithms. In self annealing, a separation between past (o) and present (v) replaces relaxation at a
fixed temperature. Moreover, in the WTA and AP, self annealing results in an emergent linear
schedule. A similar argument can be made for QAP as well but requires experimental validation
(due to the presence of bifurcations). We return to this topic in Section 7.
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Self Annihilation

Self annealing results in an emergent linear schedule for the WTA and AP. In Section 2 and in the
preceding discussion of the relationship between self annealing and deterministic annealing, we
glossed over the important issue of symmetry breaking.

The problem of resolving ties or symmetries arises in both the WTA and AP and in graph iso-
morphism (a special case of QAP) [30]. Examine the special case of the WTA objective function (1)
with at least two T; being equal maxima. Neither the DA update equation (4) nor the SA update
equation (23) is capable of breaking symmetry. To break symmetry in DA, it is necessary to add a
self amplification term —% 3, v which is functionally equivalent to adding the term % 3, v;(1 — v;)
(to the WTA) [30]. A similar situation obtains for AP as well. Here, two or more competing permu-
tations may maximize the AP energy and again it is necessary to break symmetry. Otherwise, we
obtain a doubly stochastic matrix which is an average over all the equally optimal permutations.
A self amplification term of the same form as in the WTA can be added to the energy function in
order to break symmetry in DA.

Self annihilation is a different route to symmetry-breaking than self amplification. The basic
idea is to make the entropy term in SA become negative, roughly corresponding to a negative
temperature [34]. We illustrate this idea with the WTA. Examine the SA self annihilation WTA

energy function shown below:

1 .
Fsannwta(va U) = - ZT’zvz + A (Z Uy — ]-> + E Z (vi log % —v; + 501) (28)

In (28), the KL divergence between vand the “old” value ¢ has been modified. Nevertheless, the
new WTA objective function can still be minimized w.r.t. v and ¢ and the earlier interpretation of
o as the “old” value of v still holds. Minimizing (28) by differentiating w.r.t. v and ¢ and setting
the results to zero, we get:

5 .
OF 0 = p= Y exp(aT;)

Ov; >, 0;5 exp(aTy)

OF

Oo;

It is fairly straightforward to show that ¢ = v is a minimum. Substituting the relation ¢ = v in the
self annihilation objective function, we get:

F. (v,0(w)==> Twi+ MY vi—1 +(1_5)Z(v'logv'—v') (30)
sannwta ) - 2% - 2 a 2 2 2

7

The crucial term in the above energy function is the summation over (1 —6)v; logv,;. For § # 1, this
term is not equal to zero if and only if v; # 0 or 1. For § > 1 this term is strictly greater than zero
for v; € (0,1). Consequently, in a symmetry breaking situation, the energy can be further reduced
by breaking ties while preserving the constraint that ), v; = 1. The update equation after setting
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Figure 2: Self annealing: 50 node AP with ties. Left: permutation norm. Right: AP energy

o =wis: 5
(n)
v; exp(aT;)
(n+1) _ ( ()} . co” >0 ¥, ie{l,... N} (31)
=, () exp(at;)
Once again assuming uniform initial conditions for v, we solve for v{™ to obtain:
sn—1
exp o (5= ) T
(n) _ [ (‘”) ] Vi, ie{l,...,N}. (32)

v, = n

SERREE
The above closed-form solution for v at the nth step in the self annihilation update does not have
a limiting form as n — oo for § > 1. For § = 1, we obtain the emergent linear schedule of the

previous section. Examining the self annihilation energy function (30), we may assign the final

temperature to be —@ which is the equivalent negative temperature. The reason we call this
process self annihilation is that for any v; € (0,1), v? < v, for § > 1.
We now demonstrate the ability of self annihilation to perform symmetry breaking. In Fig-

ure 1, we showed the evolution of the AP self annealing algorithm when there were no ties. The
2
Ly Vi ) decreases as expected and the AP energy (3°,; Aaivai) increases to

permutation norm (1 — =4
the maximum value. Next, we created a situation where there were multiple maxima and reran

the SA algorithm. This result shown in Figure 3 demonstrates the inability of SA to break sym-
metry. However, when we set § = 1.1, the algorithm had no difficulty in breaking symmetry

(Figure 3).

The tradeoff in using self annihilation is between local minima and speed of convergence to
an integer solution. Symmetry breaking can usually be performed in linear problems like WTA
and AP by adding some noise to the WTA set T or to the AP benefit matrix A. However, self

annihilation is an attractive alternative due to the increased speed with which integer solutions

are found.

13



N
=
1)
3

@
S

=4
o
T
=)

o
o

X
X
X
x
x
X
X
x
x
x
x
X
x
X
X
X

AP energy
a
3

o
IS

permutation norm

-100-

o
w
T

o
)
T

X
X
X
x
x
x
X
x
x
x
x
x
x
x
X

-1501

o
[

L L L L L L L L L L L —2 L L L L L
10 20 30 40 50 60 70 80 90 100 110 000 20 40 60 80 100 120
iteration number iteration number

o
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energy
6 Self annealing and relaxation labeling

Rather than present the RL update equation in its “canonical” labeling problem form, we once
again return to the winner-take-all problem where the similarities between self annealing and RL
are fairly obvious. The RL WTA update equation is

LD _ o™ (1+ o)
Z o (L4 o)’
Equations (23) and (33) are very similar. The main difference is the 1 + o7 factor in RL instead

of the exp(aTj) factor in self annealing. Expanding exp(aT;) using the Taylor-MacLaurin series

o'>0, ¥, ie{1, ... N} (33)

gives
f(a) =exp(aTy) =1+ o1} + Ra(a) (34)

where -
R(a) < 22D
If the remainder R>(c) is small, the RL WTA closely approximates self annealing WTA. This will
be true for small values of a.. Increased divergence between RL and self annealing can be expected
as a is increased—faster the rate of the linear schedule, faster the divergence. If T; < —2, the non-
negativity constraint is violated leading to breakdown of the RL algorithm.

Instead of using a Taylor series expansion at the algorithmic level, we can directly approximate
the self annealing energy function. A Taylor series expansion of the KL divergence between the

(35)

current (v) and previous estimate evaluated at v = o yields:
BRI W Y Ot o)
zi:(v,logg—i—vz-i—a,,)Nzi:2—(7i+zi:()[(v,—oz)] (36)
This has the form of a x? distance [44]. Expanding the self annealing energy function upto second

order (at the current estimate o), we get:

(vi —04)”

Bonoha) == ST+ (Su-1) 4 1y Coo @
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Figure 4: From self annealing to relaxation labeling

This new energy function can be minimized w.r.t. v. The fixed points are:

OFE i Oy
=0 = -Ti+rx+ 2% -0
ov; o;
E
0 =0 = o0 =uv (38)
Oo;
which after setting o = »(" leads to
o™ = ™ (14 o (T = V)] (39)

There are many similarities between (39) and (33). Both are multiplicative updating algorithms
relying on the derivatives of the energy function. However, the important difference is that the
normalization operation in (33) does not correspond to the optimal solution to the Lagrange pa-
rameter A in (39). Solving for A in (39) by setting >°, v; = 1, we get

vl(n_'_l = vl(n) (14 oT;) — aZij](rn) (40)
i

By introducing the Taylor series approximation at the energy function level and subsequently

solving for the update equation, we have obtained a new kind of multiplicative update algorithm,

closely related to relaxation labeling. The positivity constraint is not strictly enforced in (40) as

in RL and has to be checked at each step. Note that by eschewing the optimal solution to the

Lagrange parameter A in favor of a normalization, we get the RL algorithm for the WTA. The two

routes from SA to RL are depicted in Figure 4. A dotted line is used to link the x-squared energy

function to the RL update equation since the normalization used in the latter cannot be derived
from the former.

Turning to the problem of symmetry breaking, RL in its basic form is not capable of resolving

ties. This is demonstrated in Figure 5 2O:n AP. Just as in SA, self annihilation in RL resolves ties. In

2
LogiVai)
N

Figure 6, the permutation norm (1 — can be reduced to arbitrary small values.
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Comparison at the WTA and AP levels is not the end of the story. RL in its heyday was applied
to image matching, registration, segmentation and classification problems. Similar to the QAP for-
mulation, the benefit matrix Cg;;5; was introduced and preset depending on the chosen problem.
Because of the bias towards labeling problems, the all important distinction between matching
and labeling was blurred. In model matching problems (arising in object recognition and image
registration), a two way constraint is required. Setting up one-to-one correspondence between
features on the model and features in the image requires such a two-way assignment constraint.
On the other hand, only a one way constraint is needed in segmentation, classification, clustering
and coloring problems since a) the label and the data fields occupy different spaces and b) many
data features share membership under the same label. (Despite sharing the multiple membership
feature of these labeling problems, graph partitioning has a two-way constraint because of the
requirement that all multiple memberships be equal in number—an arbitrary requirement from
the standpoint of labeling problems arising in pattern recognition.) Pseudo-code for the QAP RL
algorithm is provided below.

Pseudo-code for relaxation labeling QAP
Initialize vq; to % + &ai, Oai 10 Vai
Begin A: Do A until integrality condition is met or number of iterations > 1 4.
Qai < 2bj CaibjVbj
Vai < 04i(1 + @qai)

Update vq; by normalizing the columns:

Vai

Vai Ea Vai

Oqi € Vgi

End A

Due to the bias towards labeling, RL almost never tried to enforce two-way constraints either
using something like the Sinkhorn procedure in discrete time algorithms or using projected gra-
dient descent in continuous time algorithms [31, 34]. This is an important difference between SA
and DA on one hand and RL on the other.

Another important difference is the separation of past and present. Due to the close ties of both
self and deterministic annealing to simulated annealing, the importance of relaxation at a fixed
temperature is fairly obvious. Otherwise, a very slow annealing schedule has to be prescribed to
avoid poor local minima. Due to the lack of a temperature parameter in RL, the importance of
relaxation at fixed temperature was not recognized. Examining the self annealing and RL QAP
algorithms, it is clear that RL roughly corresponds to one iteration at each temperature. This issue
is orthogonal to constraint satisfaction. Even if Sinkhorn’s procedure is implemented in RL—and
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all that is needed is non-negativity of each entry of the matrix 1+ aQ ,,—the separation of past (o)
and present (v) is still one iteration. Put succinctly, step B is allowed only one iteration.

A remaining difference is the positivity constraint. We have already discussed the relationship
between the exponential and the RL term (1 + oT}) in the WTA context. There is no need to repeat
the analysis for QAP—note that positivity is guaranteed by the exponential whereas it must be
checked in RL.

In summary, there are three principal differences between self annealing and RL: (i) The pos-
itivity constraint is strictly enforced by the exponential in self annealing and loosely enforced in
RL, (ii) the use of the softassign rather than the softmax in matching problems has no parallel in RL
and finally (iii) the discrete time self annealing QAP update equation introduces an all important
delay between past and present (roughly corresponding to multiple iterations at each tempera-
ture) whereas RL (having no such delay) forces one iteration per temperature with consequent
loss of accuracy.

7 Results

We conducted several hundred experiments comparing the performance of deterministic anneal-
ing (DA), relaxation labeling (RL), and self annealing (SA) discrete-time algorithms. The chosen
problems were quadratic assignment (QAP) and quadratic winner-take-all (QWTA).

In QAP, we randomly generated benefit matrices ' (of size N x N x N x N) that are positive
definite in the subspace spanned by the row and column constraints. The procedure is as follows:
Define a matrix r = T ~ — enek /N where ey is the vector of all ones. Generate a matrix R by
taking the Kronecker product of » with itself (R o ®r). Rewrite C as a two-dimensional N? x N2
matrix é. Project ¢ into the subspace of the row and column constraints by forming the matrix RéR.
Determine the smallest eigenvalue Apin (RER). Then the matrix ¢ e e Amin(RER)Iy2 + € (Where
€ is a small, positive quantity) is positive definite in the subspace spanned by the row and column
constraints.

Four algorithms were executed on the QAP. Other than the three algorithms mentioned pre-
viously, we added a new algorithm called exponentiated relaxation (ER). ER is closely related to
SA. The only difference is that the inner B loop in SA is performed just once (/p = 1). ERis
also closely related to RL. The main difference is that the positivity constraint is enforced via the
exponential. Since the QAP has both row and column constraints, the Sinkhorn procedure is used
in ER just as in SA. However, RL enforces just one set of constraints. To avoid this asymmetry in
algorithms, we replaced the normalization procedure in RL by the Sinkhorn procedure, thereby
avoiding unfair comparisons. As long as the positivity constraint is met in RL, we are guaranteed
to obtain doubly stochastic matrices. There is overall no proof of convergence, however, for this
“souped up” version of RL.

The common set of parameters shared by the four algorithms were kept exactly the same:
N = 25, ¢ = 0.001, Sinkhorn norm threshold A = 0.0001, energy difference threshold ey, = 0.001,

permutation norm threshold py,, = 0.001, and initial condition v* = eyel /N. The stopping
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Figure 7: Median of 100 experiments at each value of a. Left: (a) QAP. Right (b) QWTA. The
negative of the QAP and QWTA minimum energies is plotted on the ordinate.

criterion chosen was pin, = 0.001 and row dominance [29]. In this way, we ensured that all four
algorithms returned permutation matrices. A linear schedule with 5y = o and 3, = a was used
in DA. The parameter « was varied logarithmically from log(a) = —2 to log(«) = 1 in steps of 0.1.
100 experiments were run for each of the four algorithms. The common benefit matrix ¢ shared
by the four algorithms was generated using independent, Gaussian random numbers. ¢ was then
made symmetric by forming # The results are shown in Figure 7(a).

The most interesting feature emerging from the experiments is that there is an intermediate
range of « in which self annealing performs at its best. (The negative of the QAP minimum energy
is plotted on the ordinate.) Contrast this with ER and RL which do not share this feature. We
conjecture that this is due to the “one iteration per temperature” policy of both these algorithms.
RL could not be executed once the positivity constraint was violated but ER had no such problems.
Also, notice that the performances of both SA and DA are nearly identical after o = 0.2. The
emergent linear schedule derived analytically for the WTA seems to be valid only after a certain
value of a.

Figure 7(b) shows the results of QWTA. The behavior is very similar to the QAP. In QWTA the
benefit matrices were projected onto the subspace of only one of the constraints (row or column).
In other respects, the experiments were carried out in exactly the same manner as QAP. Since there
is only one set of constraints, the canonical version of RL [11] was used. Note that the negative of
the minimum energy is consistently higher in QWTA than QAP; this is due to the absence of the
second set of constraints.

Next we studied the behavior of self annealing with changes in problem size. In Figure 8(a), the
problem size is varied from N = 2 to N = 25 in steps of one. We normalized the QAP minimum
energy at log(a) = —2 for all values of N. Not only is the overall pattern of behavior more or less
the same, in addition there is an impressive invariance to the choice of the broad range of «. This
evidence is also anecdotal.

Finally, we present some evidence to show that there is a qualitative change in the behavior of
the self annealing algorithm roughly around o = 0.15. The energy plot in Figure 8(b), the contour
and “waterfall” plots in Figure 9 indicate the presence of different regimes in SA. The change in
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the permutation norm with iteration and « is a good qualitative indicator of this change in regime.
Our results are very preliminary and anecdotal here. We do not as yet have any understanding of
this qualitative change in behavior of SA with change in a.

8 Discussion

We have for the most part focused on the three way relationships between SA, DA and RL discrete
time dynamical systems. One of the reasons for doing so was the ease with which comparison
experiments could be conducted. But there is no reason to stop here. Continuous time projected
gradient dynamical systems could just as easily have been derived for SA, RL and DA. In fact,
continuous time dynamical systems were derived for RL and DA in [3] and in [31, 45] respectively.
In a similar vein, SA continuous time projected gradient descent dynamical systems can also be
derived. It would be instructive and illuminating to experimentally check the performances of
these continuous time counterparts as well as other closely related algorithms such as iterated
conditional modes (ICM) [46] and simulated annealing [47, 48] against the performances of the
discrete time dynamical systems used in this paper.

9 Conclusion

We have demonstrated that self annealing has the potential to reconcile relaxation labeling and
deterministic annealing as applied to matching and labeling problems. Our analysis also suggests
that relaxation labeling can itself be extended in a self annealing direction until the two become
almost indistinguishable. The same cannot be said for deterministic annealing since it has more
formal origins in mean field theory. What this suggests is that there exists a class of hitherto
unsuspected self annealing energy functions from which relaxation labeling dynamical systems
can be approximately derived. It remains to be seen if some of the other modifications to relaxation
labeling like probabilistic relaxation can be related to deterministic annealing.
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