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Abstract—Shape matching plays a prominent role in the
comparison of similar structures. We present a unifying
framework for shape matching that uses mixture-models to
couple both the shape representation and deformation. The
theoretical foundation is drawn from information geometry
wherein information matrices are used to establish intrinsic
distances between parametric densities. When a parame-
terized probability density function is used to represent a
landmark-based shape, the modes of deformation are auto-
matically established through the information matrix of the
density. We first show that given two shapes parameterized
by Gaussian mixture models, the well known Fisher infor-
mation matrix of the mixture model is also a Riemannian
metric (actually the Fisher-Rao Riemannian metric) and
can therefore be used for computing shape geodesics. The
Fisher-Rao metric has the advantage of being an intrinsic
metric and invariant to reparameterization. The geodesic—
computed using this metric—establishes an intrinsic de-
formation between the shapes, thus unifying both shape
representation and deformation. A fundamental drawback
of the Fisher-Rao metric is that it is not available in
closed-form for the Gaussian mixture model. Consequently,
shape comparisons are computationally very expensive. To
address this, we develop a new Riemannian metric based on
generalized φ-entropy measures. In sharp contrast to the
Fisher-Rao metric, the new metric is available in closed-
form. Geodesic computations using the new metric are
considerably more efficient. We validate the performance
and discriminative capabilities of these new information
geometry based metrics by pairwise matching of corpus
callosum shapes. We also study deformations of fish shapes
that have various topological properties. A comprehensive
comparative analysis is also provided using other landmark
based distances, including the Hausdorff distance, the
Procrustes metric, landmark based diffeomorphisms, and
the bending energies of the thin-plate (TPS) and Wendland
splines.

Index Terms—Information geometry, Fisher informa-
tion, Fisher-Rao metric, Havrda-Charvát entropy, Gaussian
mixture models, shape analysis, shape matching, landmark
shapes.

I. INTRODUCTION

Shape analysis is a key ingredient to many com-
puter vision and medical imaging applications that seek
to study the intimate relationship between the form

and function of natural, cultural, medical and biologi-
cal structures. In particular, landmark-based deformable
models have been widely used [1] in quantified studies
requiring size and shape similarity comparisons. Shape
comparison across subjects and modalities require the
computation of similarity measures which in turn rely
upon non-rigid deformation parameterizations. Almost
all of the previous work in this area uses separate models
for shape representation and deformation. The principal
goal of this paper is to show that shape representations
beget shape deformation parameterizations [2], [3]. This
unexpected unification directly leads to a shape compar-
ison measure.

A brief, cross-cutting survey of existing work in shape
analysis illustrates several taxonomies and summaries.
Shape deformation parameterizations range from Pro-
crustean metrics [4] to spline-based models [5], [6],
and from PCA-based modes of deformation [7] to land-
mark diffeomorphisms [8], [9]. Shape representations
range from unstructured point-sets [10], [11] to weighted
graphs [12] and include curves [13], surfaces [14] and
other geometric models. These advances have been in-
strumental in solidifying the shape analysis landscape.
However, one commonality in virtually all of this previ-
ous work is the use of separate models for shape repre-
sentation and deformation. For example, this decoupling
between shape representation and deformation is evident
in the spline-based, planar landmark matching model

E(f) =
K∑
a=1

‖va − f(ua)‖2 + λ‖Lf‖2 (1)

Minimizing (1) results in a non-rigid mapping f that
takes landmarks ua on to va. However, the mapping f
did not come about from the landmarks, which are just
points in R2; furthermore the class of admissible maps
is controlled by our choice of the differential operator
L. The framework presented in this article directly ad-
dresses this issue of decoupling the representation from
deformation yielding a model that enables us to warp
landmarks without the use of splines. This is expanded



upon in Section II.
In this paper, we use probabilistic models for shape

representation. Specifically, Gaussian mixture models
(GMM) are used to represent unstructured landmarks for
a pair of shapes. Since the two density functions are from
the same parameterized family of densities, we show
how a Riemannian metric arising from their information
matrix can be used to construct a geodesic between the
shapes. We first discuss the Fisher-Rao metric which is
actually the Fisher information matrix of the GMM. To
motivate the use of the Fisher-Rao metric, assume for the
moment that a deformation applied to a set of landmarks
creates a slightly warped set. The new set of landmarks
can also be modeled using another mixture model. In the
limit of infinitesimal deformations, the Kullback-Leibler
(KL) distance between the two densities is a quadratic
form with the Fisher information matrix playing the role
of the metric tensor. Using this fact, we can compute a
geodesic distance between two mixture models (with the
same number of parameters).

A logical question arose out of our investigations
with the Fisher information matrix: Must we always
choose the Fisher-Rao Riemannian metric when trying
to establish distances between parametric, probabilistic
models? (Remember in this context the parametric mod-
els are used to represent shapes.) The metric’s close
connections to Shannon entropy and the concomitant
use of Fisher information in parameter estimation have
cemented it as the incumbent information measure. It has
also been proliferated by research efforts in information
geometry, where one can show its proportionality to
popular divergence measures such as Kullback-Leibler.
However, the algebraic form of the Fisher-Rao metric
tensor makes it very difficult to use when applied to
multi-parameter spaces like mixture models. For in-
stance, it is not possible to derive closed-form solutions
for the metric tensor or its derivative. To address many of
these computational inefficiencies that arise when using
the standard information metric, we introduce a new
Riemannian metric based on the generalized notion of
a φ-entropy functional. We take on the challenge of im-
proving (computationally) the initial Fisher-based model
by incorporating the notion of generalized information
metrics as first shown by Burbea and Rao [15].

The rich differential geometric connections associated
with representing shapes as mixture models enables a
flexible shape analysis framework. In this approach,
several of the drawbacks often associated with contem-
porary methods are remedied, i.e. shape matching under
this model:
• Provides a unified model for shape representation

and deformation—no spline model needed for de-
forming landmark shapes.

• Does not place constraints on shape topology, i.e.

shapes are not required to be simple curves.
• Allows mixture model representations of shapes

to be analyzed on the manifold of densities, thus
respecting the natural geometry associated with the
representation.

• Utilizes a generalized method to develop new in-
formation metrics—the new metric we develop has
significant computational savings over the Fisher-
Rao metric and for the first time provides a closed-
form metric for parametric Gaussian mixtures.

We begin in the next section (§I-A) by providing further
motivation for our approach and cover a few related
methods (the remaining are cited throughout the text).
In Section II, discusses the probabilistic representation
model for landmark shapes. We show how it is possible
to go from a landmark representation to one using
GMMs. We look at the underlying assumptions and their
consequences which play a vital role in interpreting the
analysis. Section III illustrates the theory and intuition
behind how one directly obtains a deformation model
from the representation. It provides a brief summary of
the necessary information geometry background needed
to understand all subsequent analysis. We illustrate con-
nections between the Fisher information and its use as a
Riemannian metric to compute a shortest path between
two densities. We then motivate generalizations by dis-
cussing Burbea and Rao’s work on obtaining differential
metrics using the φ-entropy functional in parametric
probability spaces. The use of a specific φ-function leads
to an α-order entropy first introduced by Havrda and
Charvát [16]. This can in turn be utilized to develop a
new metric (α-order entropy metric) that leads to closed-
form solutions for the Christoffel symbols when using
a Gaussian mixture models (GMM) for coupling shape
representation and deformation. This enables almost an
order of magnitude performance increase over the Fisher-
Rao based solution. Section IV validates the Fisher-
Rao and α-order entropy metrics by using them to
compute shape distances between corpus callosum data
and provides extensive comparative analysis with several
other popular landmark-based shape distances.

A. Motivation and Related Work

There are a number of advantages when mixture
models are used to represent shape landmarks or shape
point-sets in general. The first is the alleviation of the
correspondence problem. Other benefits of the mixture
representation include the inherent robustness to noise
and localization error of the shape features and land-
marks. A shape distance is obtained by computing a
distance between probability density functions. And,
in a manner that is highly reminiscent to comparing
distance transforms of shapes, the probability density
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functions can be compared at every point in R2 for two
dimensional shapes. In the literature, we find several in-
stances of using divergence measures [17], [18], [11] and
closed-form L2 distances between mixture models [19]
as stand-ins for shape distance measures. In all of these
previous approaches, the objective function minimized
is a combination of a distance measure between mixture
densities and a spline regularization of the non-rigid
warping. The spline driven non-rigid warping attempts
to make a shape mixture density as close as possible to
a fixed shape mixture density. These approaches can be
succinctly summarized as minimizing

E(f) = D(p(x|Θ(1)), p(x|Θ(2)(f))) + λ‖Lf‖2 (2)

where Θ(1) is the set of parameters of the first (fixed)
shape’s mixture model and Θ(2)(f) is the set of (warped)
parameters of the second shape’s mixture model. The
choice of spline—a thin-plate spline or Wendland spline
for example—is determined by the choice of the dif-
ferential operator L. This set of approaches aims to
discover the best non-rigid warping function f (whose
spatial smoothness properties are determined by the
choice of L) that takes p(x|Θ(2)(f)) as close as possible
to p(x|Θ(1)). (When a diffeomorphism is sought, the
second term is modified to accommodate an infinitesimal
generator of a group of transformations.) As previously
mentioned, the mixture density distance measure can be
a divergence measure like the popular Kullback-Leibler
(or Jensen-Shannon) measures [20] or a more straight-
forward closed-form L2 distance. And when we examine
this notion of shape distance from a wider perspective,
these distances are not that different from those obtained
using distance transforms [21] or distribution functions
[22].

Turning our focus to the spline-based regularization
term, we observe an interesting disconnect especially
from the vantage point of information geometry. In
equation (2), we have the combination of a distance
measure D between two mixture density functions and a
spline-based regularization term ‖Lf‖2. These two terms
are independent of each other and this is reflected in the
fact that we can choose any distance measure (Kullback-
Leibler, L2 etc.) and any spline (thin-plate, Wendland,
Gaussian radial basis etc.) resulting in a cross-product
of choices. This decoupling of shape representation
(mixture model in this case) and shape deformation
is also present in other (non-probabilistic) landmark
diffeomorphism frameworks [9], [8]. For example, in [8],
the landmark diffeomorphism objective function takes
the form

E ({Θ(t), ft}) =
∑K
a=1

∫
‖dφadt − ft(Θ(t))‖2dt

+λ
∫
‖Lft‖2dt

(3)

where ft(Θ(t)) is a velocity field and Θ(t) is the set
of landmark positions at time t. But, and in a preview
of the central idea in this paper, there is a strong rela-
tionship between the two terms. The distance measure
D gives us a scalar measure of the similarity between
two mixture densities and the regularization operator L
forces f to be spatially smooth in order to generate
transformations close to identity. From the information
geometry perspective, there is a geodesic path from the
second shape’s probability density p(x|Θ(2)) to the first
shape’s probability density p(x|Θ(1)).

Why can’t we unify the two terms—distance mea-
sure and spatial smoothness—and directly find the
geodesic on a suitably defined probabilistic manifold
that gives the shortest possible path between p(x|Θ(1))
and p(x|Θ(2))? If this can be achieved, there would be
no reason to have two separate terms, one for a shape
distance measure and one for a regularization of the
non-rigid deformation. Instead, by computing a geodesic
between the two probability densities, all we would
need to do is move from p(x|Θ(1)) to p(x|Θ(2)) on
the shortest path connecting the two shapes. This gives
the distance measure (length of geodesic) and the warp
(intermediate points along the geodesic) all without the
need for a spline-based spatial mapping regularization
term. The distance measure D would be modified to
be a geodesic objective function serving the dual role of
shape distance and shape regularization.

II. THE REPRESENTATION MODEL: FROM
LANDMARKS TO MIXTURES

In this section we describe the use of probabilistic
models, specifically mixture models, for shape represen-
tation. Suppose we are given two planar shapes, S1 and
S2, consisting of K landmarks

S1 = {u1,u2, . . . ,uK}, S2 = {v1,v2, . . . ,vK} (4)

where ua = [u1
a, u

2
a]T ,va = [v1

a, v
2
a]T ∈ R2,∀a ∈

{1, . . . ,K}. Typical shape matching representation mod-
els consider the landmarks as a collection of points
in R2 or as a vector in R2K . A consequence with
these representations is that if one wishes to perform
deformation analysis between the shapes, a separate
model needs to be imposed, e.g. thin-plate splines [23]
or landmark diffeomorphisms [8], to establish a map
from one shape to the other. (In landmark matching,
the correspondence between the shapes is assumed to be
known.) In Section III, we show how the probabilistic
shape representation we present in the current section
provides an intrinsic warping between the shapes—thus
unifying both shape representation and deformation.

Mixture model representations have been used to solve
a variety of shape analysis problems, e.g. [18], [24].
We select the most frequently used mixture-model to
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represent our shapes by using a K-component Gaussian
mixture model (GMM) where the shape landmarks are
the centers (i.e. the ath landmark position serves as the
ath mean for a specific bi-variate component of the
GMM). This parametric, GMM representation for the
shapes is given by [25]

p(x|Θ) =
1

2πσ2K

K∑
a=1

exp{−‖x− φa‖
2

2σ2
} (5)

where Θ is the set consisting of all landmarks, φa =
[θ(2a−1), θ(2a)]T , x = [x(1), x(2)]T ∈ R2 and equal
weight priors are assigned to all components, i.e 1

K .
(Note: the planar landmarks ua or va are mapped to the
corresponding GMM component mean φa.) Though we
only discuss planar shapes, it is mathematically straight-
forward to extend to 3D. Also, the number of landmarks
can be selected either manually or through the use of
model selection [26], depending on the application.

The variance σ2 can capture uncertainties that arise
in landmark placement and/or natural variability across
a population of shapes. Incorporating full component-
wise elliptical covariance matrices provides the flexibil-
ity to model structurally complicated shapes. The equal
weighting on the component-wise priors is acceptable
in the absence of any a priori knowledge. Figure 1
illustrates this representation model for three different
values of σ2. The input shapes consists of 63 landmarks
drawn by an expert from MRI images of the corpus
callosum and 233 landmarks manually extracted from
image of fish. The variance is a free parameter in our
shape matching algorithm and in practice it is selected
to control the size of the neighborhood of influence
for nearby landmarks. As evident in the figure, another
interpretation is that larger variances blur locations of
high curvature present in the coprus callosum curves.
Thus, depending on the application we can dial-in the
sensitivities to different types of local deformations.
Even though it may seem that as σ2 increases we lose
detailed resemblance to the original shape, it is still valid
to compare two shapes with large variance since their
representation as mixtures is still unique with respect to
the locations of the GMM components. Also recall that
the variance allows us to handle errors in the landmark
locations. Due to these desirable properties, the choice
of the variance is currently a free parameter in our
algorithm and is isotropic across all components of the
GMM. So far we have only focused on the use of
GMMs for landmarks. However, they are also well suited
for dense point cloud representation of shapes. In such
applications, the mean and covariance matrix can be
directly estimated from the data via standard parameter
estimation techniques.

The real advantage in representing a shape using a
parametric density is that it allows us to perform rich

geometric analysis on the density’s parameter space.
The next section covers how this interpretation in the
theoretical setting of information geometry allows us to
use the same representation model to deform shapes.

III. THE DEFORMATION MODEL: RIEMANNIAN
METRICS FROM INFORMATION MATRICES OF

MIXTURES

We now address the issue of how the same landmark
shape representation given by (5) can also be used to
enable the computation of deformations between shapes.
The overarching idea will be to use the parametric
model to calculate the information matrix which is a
Riemannian metric on the parameter space of densities.
If any two shapes are represented using the same family
of parametric densities, the metric tensor will allow us to
take a “walk” between them. The next section expands
on our use of the terminology intrinsic and extrinsic to
describe the analysis under our probabilistic framework.
We then use the Fisher-Rao metric to motivate some
key ideas from information geometry used in subsequent
parts of the paper. Immediately following, we discuss
how to apply the the popular Fisher-Rao metric to shape
matching and develop the fully intrinsic deformation
framework. Next, we show how it is possible to derive
other information matrices starting from the notion of
a generalized entropy. The last subsection puts forth a
possible solution on how movement of landmarks on the
intrinsic space can be used to drive the extrinsic space
deformation, a necessity for applying these methods to
applications such as shape registration.

A. Intrinsic Versus Extrinsic Analysis

In the context of using mixture models to represent
and deform shapes, we will often use the words intrinsic
and extrinsic. These terms are analogous to their use
in differential geometry where intrinsic describes anal-
ysis strictly derived from the surface properties of the
manifold and extrinsic refers to the use of the space
ambient to the manifold. In the present framework, the K
landmarks of a single shape correspond to the centers of
a K-component GMM which in turn give the coordinates
of a single point on the manifold of mixture densities.
Similarly, another shape with K landmarks will also
have the same interpretation as a point on the manifold.
Thus our technique, as described in the next section,
enables you to directly use this representation to obtain
a warp from one shape onto the other shape without
requiring one to arbitrarily introduce a deformable model
such as a spline. Since we always stay on the manifold
and use the intrinsic property of the metric tensor to
obtain our path between densities, which is also the warp
between shapes, we refer to this as intrinsic analysis.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 1. Examples of the probabilistic representation model. (a) Original shape consisting of 63 landmarks (K = 63) . (b-d) Overhead view
of K-component GMM using σ2 = 0.1, σ2 = 0.5, and σ2 = 1.5 respectively. (e) Original shape consisting of 233 landmarks (K = 233).
(f-h) Overhead view of K-component GMM using σ2 = 0.001, σ2 = 0.01, and σ2 = 0.025 respectively.

Our reference to warping of the extrinsic space arises
from the fact that often shape data are realized as point
sets, not just landmarks. For a pair of point-set shapes,
landmarks can be extracted by a variety of methods
such as manual assignment or clustering. Once we have
landmarks representations of the shapes, an intrinsic
warp can be established as described above. However,
this warp only describes the movement of the landmarks
from one shape onto the other. How does one move the
shape points, i.e. the extrinsic space consisting of points
surrounding the landmarks, based on the movement
of the landmarks? Though not the focal point of this
paper, for completeness we provide one possible solution
in sub-section III-E. To warp these extrinsic points it
will be necessary to introduce a external regularizer but
the formulation is commensurate with our theme, using
the GMM to drive the warping. Figure 2 illustrates a
fish shape consisting of several thousand points (light
gray) from which we have extracted 233 landmarks
(black points)—the extrinsic points are surrounding the
landmarks while the landmarks are used as the intrinsic
coordinates. Echoing our claim: for landmark matching
our framework is completely intrinsic, providing a path
(consequently a warp) from one landmark shape onto
another without the need of a spline regularizer. Only
if the application dictates the need to warp the extrinsic
space do we employ the use of a spline model and even
then, the warps are still driven by movement along the
intrinsic path determined by the intermediate landmark
shapes.

B. Backgrounder on Information Geometry

It was Rao [27] who first established that the Fisher
information matrix satisfies the properties of a metric on
a Riemannian manifold. This is the reasoning behind our
nomenclature of Fisher-Rao metric whenever the Fisher

Figure 2. Intrinsic versus extrinsic. The original fish data consists of
49K points (due to image resolution these show up as light gray outline,
see zoomed in eye for clearer depiction). The 233 landmarks are
illustrated by solid black points. The landmarks are used for intrinsic
analysis since they are used as the means of 233 component GMM.
See §III-E for method to move the extrinsic points (surrounding the
landmarks) based on the landmark movement.

information matrix is used in this geometric manner. The
Fisher information matrix arises from multi-parameter
densities, where the (i, j) entry of the matrix is given
by

gij(θ) =
∫
p(x|θ) ∂

∂θi
log p(x|θ) ∂

∂θj
log p(x|θ)dx.

(6)
The Fisher-Rao metric tensor (6) is an intrinsic measure,
allowing us to analyze a finite, n-dimensional statistical
manifold M without considering how M sits in an
R2n+1 space [28]. In this parametric, statistical manifold,
p ∈M is a probability density with its local coordinates
defined by the model parameters. For example, a bi-
variate Gaussian density can be represented as a single
point on 4-dimensional manifold with coordinates θ =
(µ(1), µ(2), σ(1), σ(2))T , where as usual these represent
the mean and standard deviation of the density. (The su-
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perscript labeling of coordinates is used to be consistent
with differential geometry references.) For the present
interest in landmark matching, dim(M) = 2K because
we only use the means of a GMM as the manifold
coordinates for a K landmark shape. (Recall that σ is a
free parameter in the analysis).

The exploitation of the Fisher-Rao metric on statistical
manifolds is part of the overarching theory of informa-
tion geometry [29], [30]. It can be shown that many
of the common metrics on probability densities (e.g.
Kullback-Leibler, Jensen-Shannon, etc.) can be written
in terms of the Fisher-Rao metric given that the densi-
ties are close [30]. For example, the Kullback-Leibler
(KL) divergence between two parametric densities with
parameters θ and θ + δθ respectively, is proportional to

D (p(x|θ + δθ)||p(x|θ)) ≈ 1
2

(δθ)T gδθ. (7)

In other words, the KL divergence is equal to, within a
constant, a quadratic form with the Fisher information
matrix g playing the role of the Hessian. The use of
the information matrix to measure distance between
distributions has popularized its use in several applica-
tions in computer vision and machine learning. In [31]
the authors have used it to provide a more intuitive,
geometric explanation of model selection criteria such
as the minimum description length (MDL) criterion. To
our knowledge, there are only few other other recent
uses of the Fisher-Rao metric for computer vision related
analyses. Maybank [32], utilizes Fisher information to
analyze projective transformations of the line. Mio et
al. [33], apply non-parametric Fisher-Rao metrics for
image segmentation. Lenglet et al. [34] successfully
demonstrated the use of the Fisher-Rao metric on mul-
tivariate normal densities in the analysis of diffusion
tensor imaging data. Finally, Srivastava et al. [35] have
studied applications of the non-parametric Fisher-Rao
metric to curve-based shape classification. In their non-
parameteric framework they have cleverly used the

√
p

representation which enables all analyses (geodesics,
means, etc.) to take place on the unit hypersphere.

Information geometry incorporates several other dif-
ferential geometry concepts in the setting of probability
distributions and densities. Besides having a metric, we
also require the construct of connections to move from
one tangent space to another. The connections are facili-
tated by computing Christoffel symbols of the first kind,

Γk,ij
def= 1

2

{
∂gik
∂θj + ∂gkj

∂θi −
∂gij
∂θk

}
, which rely on the

partial derivatives of the metric tensor. It is also possible
to compute Christoffel symbols of the second kind which
involve the inverse of the metric tensor. Since all analysis
is intrinsic, i.e. on the surface of the manifold, finding
the shortest distance between points on the manifold
amounts to finding a geodesic between them. Recall

Figure 3. Intrinsic shape matching. Two landmark shapes represented
as mixture models end up as two points on the probabilistic manifold.
Using the metric tensor gi,j it is possible to obtain a geodesic between
the shapes.

that in the context of shape matching, points on the the
manifold are parametric densities which in turn represent
landmark shapes. Figure 3 illustrates this overall idea.
The two shapes are represented using mixture models,
the parameters of which map to points on the manifold.
The goal is to use the metric tensor to find a geodesic
between them. Walking along the geodesic will give us
intermediate landmark shapes and the geodesic length
will give us an intrinsic shape distance.

C. Fisher-Rao Metric for Intrinsic Shape Matching

To discover the desired geodesic between two GMM
represented landmark shapes (4), we can use the Fisher-
Rao metric (6) to formulate an energy between them as

s =
∫ 1

0

gij θ̇
iθ̇jdt (8)

where the standard Einstein summation convention
(where summation symbols are dropped) is assumed and
θ̇i = dθi

dt is the parameter time derivative. Technically (8)
integrates the square of the infinitesimal length element,

but has the same minimizer as
∫ 1

0

√
gij θ̇iθ̇jdt [36]

(which is the true geodesic distance). Note we have
introduced a geodesic curve parameter t where t ∈ [0, 1].
The geodesic path is denoted θ(t) and at t = 0 and at
t = 1 we have the end points of our path on the manifold,
for instance

θ(0) def=



θ(1)(0)
θ(2)(0)
θ(3)(0)
θ(4)(0)

...
θ(2K−1)(0)
θ(2K)(0)


=



u
(1)
1

u
(2)
1

u
(1)
2

u
(2)
2
...

u
(1)
K

u
(2)
K


. (9)

6



θ(1) is defined similarly and as shown they represent the
landmarks of the reference and target shape respectively.
The functional (8) is minimized using standard calculus
of variations techniques leading to the following Euler-
Lagrange equations

δE
δθk

= −2gkiθ̈i +
{
∂gij
∂θk

− ∂gik
∂θj

− ∂gkj
∂θi

}
θ̇iθ̇j = 0.

(10)
This can be rewritten in the more standard form

gkiθ̈
i + Γk,ij θ̇iθ̇j = 0 (11)

This is a system of second order ODEs and not analyti-
cally solvable when using GMMs. One can use gradient
descent to find a local solution to the system with update
equations

θkτ+1(t) = θkτ (t)− α(τ+1)
δE

δθkτ (t)
,∀t (12)

where τ represents the iteration step and α the step size.
It is worth noting that one can apply other optimization
techniques to minimize (8). To this end, in [37], the
authors have proposed an elegant technique based on
numerical approximations and local eigenvalue analysis
of the metric tensor. Their proposed method works well
for shapes with a small number of landmarks but the
speed of convergence can degrade considerably when
the cardinality of the landmarks is large. This due
to requirement of repeatedly computing eigenvalues of
large matrices. Alternate methods, e.g. quasi-Newton
algorithms, can provide accelerated convergence while
avoiding expensive matrix manipulations. In the next
section we investigate a general class of information
matrices which also satisfy the property of being Rie-
mannian metrics. Thus the analysis presented above to
find the geodesic between two shapes holds and simply
requires replacing the Fisher-Rao metric tensor by the
new gi,j .

D. Beyond Fisher-Rao: φ-Entropy and α-Order Entropy
Metrics

Rao’s seminal work and the Fisher information matrix’s
relationship to the Shannon entropy have entrenched it
as the metric tensor of choice when trying to establish
a distance metric between two parametric models. How-
ever, Burbea and Rao went on to show that the notion of
distances between parametric models can be extended to
a large class of generalized metrics [15]. They defined
the generalized φ-entropy functional

Hφ(p) = −
∫
χ

φ(p)dx (13)

where χ is the measurable space (for our purposes R2),
and φ is a C2-convex function defined on R+ ≡ [0,∞).

(For readability we will regularly replace p(x|θ) with p.)
The metric on the parameter space is obtained by finding
the Hessian of (13) along a direction in its tangent space.
The directional derivative of (13) in the direction of ν is
given by

DνHφ = d
dtHφ(p+ tν)|t=0, t ∈ R

= −
∫
φ′ (p) νdx

, (14)

which we differentiate once more to get the Hessian

D2
νHφ = −

∫
φ′′ (p) ν2dx . (15)

Assuming sufficient regularity properties on θ =
{θ1, . . . , θn}, the direction in the tangent space of this
parameter set can be obtained by taking the total differ-
ential of p(x|θ) w.r.t θ

dp(θ) =
n∑
k=1

∂p

∂θk
dθk . (16)

This results in the Hessian being defined as

∆θHφ(p) = −
∫
χ

φ′′(p)[dp(θ)]2dx , (17)

where we have replaced ν with dp, and directly leads to
the following differential metric satisfying Riemannian
metric properties

ds2φ(θ) = −∆θHφ(p) =
n∑

i,j=1

gφi,jdθ
idθj , (18)

where
gφi,j =

∫
χ

φ′′(p)(
∂p

∂θi
)(
∂p

∂θj
)dx . (19)

(We refer the reader to [15] for more detailed derivations
of the above equations.) The metric tensor in (19) is
called the φ-entropy matrix. By letting

φ(p) = p log p, (20)

equation (13) becomes the familiar Shannon entropy and
(19) yields the Fisher information matrix. One major
drawback of using the Fisher-Rao metric is that the
computation of geodesics is very inefficient as they
require numerical calculation of the integral in (6).

We now discuss an alternative choice of φ that directly
leads to a new Riemannian metric and enables us to
derive closed-form solutions for (19). Our desire to find
a computationally efficient information metric was moti-
vated by noticing that if the integral of the metric could
be reduced to just a correlation between the partials
of the density w.r.t θi and θj , i.e.

∫
∂p
∂θi

∂p
∂θj dx, then

the GMM would reduce to separable one dimensional
Gaussian integrals for which the closed-from solution
exists. In the framework of generalized φ−entropies, this
idea translated to selecting a φ such that φ′′ becomes a
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constant in (19). In [16], Havrda and Charvát introduced
the notion of a α-order entropy using the convex function

φ(p) = (α− 1)−1(pα − p), α 6= 1 . (21)

As limα→1 φ(p), (21) tends to (20). To obtain our desired
form, we set α = 2 which results in 1

2φ
′′ = 1. (The one-

half scaling factor does not impact the metric properties.)
Thus, the new metric is defined as

gαi,j =
∫
χ

(
∂p

∂θi
)(
∂p

∂θj
)dx (22)

and we refer to it as the α-order entropy metric tensor.
The reader is referred to the Appendix in [3] where
we provide some closed-form solutions to the α-order
entropy metric tensor and the necessary derivative cal-
culations needed to compute (22). Though we were
computationally motivated in deriving this metric, it will
be shown via experimental results that it has shape
discriminability properties similar to that of the Fisher-
Rao and other shape distances. Deriving the new metric
also opens the door for further research into applications
of the metric to other engineering solutions. Under
this generalized framework, there are opportunities to
discover other application-specific information matrices
that retain Riemannian metric properties.

E. Extrinsic Deformation

The previous sections illustrated the derivations of
the probabilistic Riemannian metrics which led to a
completely intrinsic model for establishing the geodesic
between two landmark shapes on a statistical manifold.
Once the geodesic has been found, traversing this path
yields a new set of θ′s at each discretized location of
t which in turn represents an intermediate, intrinsically
deformed landmark shape. We would also like to use the
results of our intrinsic model to go back and warp the
extrinsic space.

Notice that the intrinsic deformation of the land-
marks only required our θ′s to be parametrized by time.
Deformation of the ambient space x ∈ R2, i.e. our
shape points, can be accomplished via a straightforward
incorporation of the time parameter on to our extrinsic
space, i.e.

p(x(t)|θ(t)) =
1
K

K∑
a=1

1
2πσ2

exp{− 1
2σ2
‖x(t)−φa(t)‖2}.

(23)
We want to deform the x(t)’s of extrinsic space through
the velocities induced by the intrinsic geodesic and si-
multaneously preserve the likelihood, i.e. p(x(t)|θ(t)) =
p(x(t+δt)|θ(t+δt)), of all these ambient points relative
to our intrinsic θ’s. Instead of enforcing this condition
on L = p(x(t)|θ(t)), we use the negative log-likelihood

− log L of the mixture and set the total derivative with
respect to the time parameter to zero:

d log L
dt

= (∇θ1 log L)T θ̇1 + (∇θ2 log L)T θ̇2

+∂ log L
∂x1(t)u+ ∂ log L

∂x2(t) v = 0 (24)

where u(t) = dx1

dt and v(t) = dx2

dt represent the prob-
abilistic flow field induced by our parametric model.
The notation ∇θ1 is used to reflect the partial derivative
w.r.t. the first coordinate location of each of the K
components of the mixture density and similarly ∇θ2 are
the partials w.r.t. the second coordinate for each of the K
components. Note that this formulation is analogous to
the one we find in optical flow problems [38]. Similar to
optical flow, we introduce a thin-plate spline regularizer
to smooth the flow field∫ [

(∇2u)2 + (∇2v)2
]
dx. (25)

We note that is also possible to use the quadratic
variation instead of the Laplacian as the regularizer. On
the interior of the grid, both of these satisfy the same
biharmonic but the quadratic variation yields smoother
flows near the boundaries.

The overall extrinsic space deformation can be mod-
eled using the following energy functional

E(u, v) =
∫ (

λ
[
(∇2u)2 + (∇2v)2

]
+
[
d log L
dt

]2)
dx

(26)
where λ is a regularization parameter that weighs the
error in the extrinsic motion relative to the departure
from smoothness. The minimal flow fields are obtained
via the Euler-Lagrange equation of (26). As formulated,
the mapping found through the thin-plate regularizer
is not guaranteed to be diffeomorphic. This can be
enforced if necessary and is currently under investigation
for future work. In this section, we have shown that
selecting the representation model (23) immediately gave
the likelihood preserving data term used to drive the
warping of extrinsic shape points thus continuing our
theme of unified shape representation and deformation.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

Even though we cannot visualize the abstract statisti-
cal manifold on which we impose our two metrics, we
have found it helpful to study the resulting geodesics
of basic transformations on simple shapes (Figures 4
and 6). In all figures, the dashed, straight line represents
the initialization path and the solid bell-shaped curve
shows the final geodesic between shapes. Figure 4 shows
a straight-line shape consisting of 21 landmarks that
has been slightly collapsed like a hinge. Notice that the
resulting geodesic is bent indicating the curved nature

8



(a) (b)
Figure 4. Bending of straight line with 21 landmarks. The dashed line is the initialization and the solid line the final geodesic. (a) Curvature
of space under Fisher information metric evident in final geodesic. (b) The space under α-order entropy metric is not as visually curved for
this transformation.

(a) (b)
Figure 6. Rotation of square represented with four landmarks. The dashed line is the initialization and the solid line the final geodesic. The
circular landmarks are the starting shape and square landmarks the rotated shape. (a) Fisher information metric path is curved smoothly. (b)
α-entropy metric path has sharp corners.

of the statistical manifolds. Even though the bending
in Figure 4(b) is not as visually obvious, a closer look
at the landmark trajectories for a couple of the shape’s
landmarks (Figure 5) illustrates how the intermediate
landmark positions have re-positioned themselves from
their uniform initialization. It is the velocity field re-
sulting from these intermediate landmarks that enables
a smooth mapping from one shape to another [11].
Figure 6 illustrates geodesics obtained from matching
a four-landmark square to one that has been rotated
210◦ clockwise. The geodesics obtained by the Fisher-
Rao metric are again smoothly curved, illustrating the
hyperbolic nature of the manifold with this specified
information matrix [39] whereas the α-order entropy
metric displays sharper, abrupt variations. In both cases,
we obtained well-behaved geodesics with curved geom-

etry.

As we have noted, one of the strengths of this
framework is that it does not topologically constrain
the shapes, allowing us to obtain warps and similar-
ity measures between shapes that exhibit features such
as interior structures and disconnected components. To
showcase this desirable feature we matched six fish
shapes shown in Figure 7. For each vertical pair of
fish, we extracted equal number of landmarks. The
landmark locations for each fish serve as the means
of the a Gaussian mixture. Since each fish has now
been converted to its mixture density representation,
we can apply our framework to find geodesics between
the pairs. Once the geodesic is found, we can obtain
the warp that takes one shape onto another by taking
intermediate points (each of which is a valid mixture
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Figure 8. Deformation analysis using fish from Fig. 7 using α-order entropy metric. Top row shows intermediate warps between (a) and (d),
σ2 = 0.5. Middle row shows intermediate warps between (b) and (e), σ2 = 0.25. Bottom row shows intermediate warps between (c) and (f),
σ2 = 0.25. The deformations do not require a spline model.

Figure 9. Deformation analysis using fish from Fig. 7 using landmark diffeomorphisms [8]. All shapes computed with λ = 10. Top row shows
intermediate warps between (a) and (d). Middle row shows intermediate warps between (b) and (e). Bottom row shows intermediate warps
between (c) and (f). These deformations require a spline model.

Figure 5. Intermediate landmark trajectories under the α-order entropy
metric tensor. These are the second and third landmarks from the
middle in Figure 4(b). The trajectories show that even though the final
geodesic looks similar to the straight line initialization, the intermediate
landmark positions have changed which results in different velocities
along the geodesic.
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Figure 7. Fish shapes with differing topologies. For each vertical pair
we extracted equal number of landmarks: (a)&(d) 233, (b)&(e) 253,
and (c)&(d) 214.
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Figure 10. Nine corpus callosum shapes used for pairwise matching,
63 landmarks per shape.

density) along the geodesic. We are able to accomplish
this without the use of a spline model because the shapes,
under the density representation, are on the manifold of
mixture densities; obtaining intermediate shapes amounts
to treating the mean components of the intermediate
mixtures as the landmarks of the shapes. In Figure 8, we
show eight intermediate shapes for each matching pair
from Figure 7. The geodesics were computed with the
α-order entropy metric. We compare these deformations
to ones produced using the landmark diffeomorphism
technique [8]. This is a fairly recent technique with
the metric arising from the minimum energy of fitting
iterated splines to the infinitesimal velocity vectors that
diffeomorphicaly take one shape onto the other. It is
worth noting that in [8], the authors implemented a dis-
crete approximation to their proposed energy functional.
In order to avoid any numerical approximation issues
and experimental variability, our implementation obtains
a gradient descent solution directly on the analytic Euler-
Lagrange equations for their functional. Notice that the
intermediate deformations, in comparison to our method,
are very similar; however, the key differentiator is that
landmark diffeomorphisms require the use of splines
to obtain these intermediate warps whereas our method
does not. (Note: We selected the λ parameter in landmark
diffeomorphisms such that it would yield intermediate
deformations similar to the ones obtained with our
method for a particular value of σ. For both methods,
varying their respective parameters can yield different
intermediate deformations.)

For applications in medical imaging, we have eval-
uated both the Fisher-Rao and α-order entropy metrics
on real data consisting of nine corpora callosa with 63-
landmarks each as shown in Figure 10. These landmarks
were acquired via manual marking by an expert from
different MRI scans. As with all landmark matching
algorithms, correspondence between shapes is known.
We performed pairwise matching of all shapes in order
to study the discriminating capabilities of the metrics.

Since both the Fisher-Rao and α-order entropy metric are
obtained from GMMs, we tested both metrics with three
different values of the free parameter σ2. In addition
to the two proposed metrics, we performed comparative
analysis with several other standard landmark distances
and similarity measures. The distance metrics included
are Procrustes [4], [40], symmetrized Hausdorff [41] and
landmark diffeomorphisms [8]. The first two distance
metrics have established themselves as a staple for shape
comparison while the third is more recent and was
used in the previous discussion for deformation analysis.
The shape similarity measures (which are not metrics)
incorporated in the study use the bending energy of
spline-based models to map the source landmarks to
the target. We used two spline models: the ubiquitous
thin-plate spline (TPS) [5] which has basis functions
of infinite support and the more recently introduced
Wendland spline [42] which has compactly supported
bases. For the sake for brevity, we will refer to all
measures as metrics or distances with the understanding
that the bending energies do not satisfy the required
properties of a true metric.

The results of pairwise matching of all nine shapes is
listed in Table I, containing the actual pairwise distances.
The distances show a global trend among all of the
metrics. For example, shape 1 and 8 have the smallest
distance under all the metrics except α-order entropy
metric with σ2 = 0.1 and the thin-plate spline bending
energy. However, shape 8 is the second best match under
both these, clearly illustrating a similar performance
to the others. Also, almost all the metrics rank pair
(4,7) as the worst match. The single discrepancy comes
from the Hausdorff metric. However, it lists (4,7) as the
penultimately worst match which globally is in overall
agreement with the others. We then used each of these
metrics to perform hierarchical clustering, Figure 11,
on the nine shapes. Figure 11 clearly shows a global
trend in the groupings among the different metrics. One
can interpret this agreement as a reflection of obvious
similarities or dissimilarities among the shapes.

The interesting properties unique to each of these
metrics arise in the differences that are apparent in the
local trend. We attribute a majority of these local rank
differences due to the inherent sensitivities of each met-
ric. These sensitivities are a direct consequences of how
they are formulated. For example, it is well known that
the Hausdorff metric is biased to outliers due to the max-
min operations in its definition. The bending energy of
the spline models is invariant to affine transformations
between shapes and its increase is a reflection of how
one shape has to be “bent” to the other. The differences
among the spline models can be attributed to the compact
(Wendland) versus infinite (TPS) support of the basis
functions. We refer the reader to the aforementioned
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references for more through discussions of the respective
metrics and their formulations.

Though we are in the early stages of investigating
the two new metrics and their properties, these results
clearly validate their use as a shape metric. The choice of
σ2 = {0.1, 0.5, 1.5} impacted the local rankings among
the two metrics. As Figure 1 illustrated, σ2 gives us the
ability to “dial-in” the local curvature shape features.
When matching shapes, selecting a large value of σ2

implies that we do not want the matching influenced by
localized, high curvature points on the shape. Similarly,
a low value of σ2 reflects our desire to incorporate such
features. As a illustration of this, consider the first three
dendrograms in the top row of Figure 11. The first two
dendrograms were computed using the Fisher-Rao metric
with variance parameter σ2 = {0.1, 0.5} resulting in
shape 6 being ranked as the next best match to pair
(1,8). When we set σ2 = 1.5, shape 3 now becomes
the next best match to (1,8). Hence, we see σ2 impacts
the shape distance. However, it affects it in such a way
that is discernibly natural – meaning that the ranking
was not drastically changed which would not coincide
with our visual intuition. The differences between Fisher-
Rao and α-order entropy metric arise from the struc-
tural differences in their respective metric tensors gi,j .
The off-diagonal components (corresponding to intra-
landmarks) of the α-order entropy metric tensor are zero.
This decouples the correlation between a landmark’s
own x− and y−coordinates, though correlations exist
with the coordinates of other landmarks. Intuitively this
changes the curvature of the manifold and shows up
visually in the shape of the geodesic [3] which in turn
impacts the distance measure.

The α-order entropy metric provided huge computa-
tional benefits over the Fisher-Rao metric. The Fisher-
Rao metric requires an extra O(N2) computation of the
integral over R2 where we have assumed an N point dis-
cretization of the x- and y-axes. This computation must
be repeated at each point along the evolving geodesic
and for every pair of landmarks. The derivatives of the
metric tensor which are needed for geodesic computation
require the same O(N2) computation for every landmark
triple and at each point on the evolving geodesic. Since
our new φ-entropy metric tensor and derivatives are
in closed-form, this extra O(N2) computation is not
required. Please note that the situation only worsens in
3D where O(N3) computations will be required for the
Fisher-Rao metric (and derivatives) while our new metric
(and derivatives) remain in closed-form. It remains to
be seen if other closed-form information metrics can
be derived which are meaningful in the shape matching
context.

The comparative analysis with other metrics illustrated
the utility of Fisher-Rao and α-order entropy metrics

as viable shape distance measures. In addition to their
discriminating capabilities, these two metrics have sev-
eral other advantages over the present contemporaries.
The representation model based on densities is inherently
more robust to noise and uncertainties in the landmark
positions. In addition we showcased the ability of these
metrics to deform shapes with various topologies —
thus enabling landmark analysis for anatomical forms
with interior points or disjoint parts. Most importantly,
the deformation is directly obtained from the shape
representation, eliminating an arbitrary spline term found
in some formulations. The robustness and flexibility of
this model, has good potential for computational medical
applications such as computer-aided diagnosis and bio-
logical growth analysis. As a general shape similarity
measure, our metrics are yet another tool for general
shape recognition problems.

V. CONCLUSIONS

In this paper, we have presented a unified framework
for shape representation and deformation. Previous ap-
proaches treat representation and deformation as two
distinct problems. Our representation of landmark shapes
using mixture models enables immediate application of
information matrices as Riemannian metric tensors to
establish an intrinsic geodesic between shape pairs. To
this end, we discussed two such metrics: the Fisher-
Rao metric and the new α-order entropy metric. To
our knowledge, this is the first time these information
geometric principles have been applied to shape anal-
ysis. In our framework, shapes modeled as densities
live on a statistical manifold and intrinsic distances
between them are readily obtained by computing the
geodesic connecting two shapes. Our development of
the α-order entropy was primarily motivated by the
computational burdens of working with the Fisher-Rao
metric. Given that our parameter space comes from
Gaussian mixture models, the Fisher-Rao metric suffers
serious computational inefficiencies as it is not possible
to get closed-form solutions to the metric tensor or the
Christoffel symbols. The new α-order entropy metric,
with α = 2, enables us to obtain closed-form solutions
to the metric tensor and its derivatives and therefore
alleviates this computational burden. We also illustrated
how to leverage the intrinsic geodesic path from the
two metrics to deform the extrinsic space, important to
applications such as registration. Our techniques were
applied to matching corpus callosum landmark shapes,
illustrating the usefulness of this framework for shape
discrimination and deformation analysis. Test results
show the applicability of the new metrics to shape
matching, providing discriminability similar to several
other metrics. Admittedly we are still in the early stages
of working with these metrics and have yet to perform

12



statistical comparisons on the computed shape geodesic
distances. These metrics also do not suffer from topo-
logical constraints on the shape structure (thus enabling
their applicability to a large class of image analysis and
other shape analysis applications).

Our intrinsic, coupled representation and deformation
framework is not only limited to landmark shape anal-
ysis where correspondence is assumed to be known.
The ultimate practicality and utility of this approach
will be realized upon extension of these techniques to
unlabeled point sets where correspondence is unknown.
Existing solutions to this more difficult problem have
only been formulated via models that decouple the shape
representation and deformation, e.g. [10]. Though the
metrics presented in this work result from second order
analysis of the generalized entropy, it is possible to
extend the framework to incorporate other probabilistic,
Riemannian metrics. For example, one can perform
intrinsic analysis on the manifold of von Mises mixture
densities which is particularly useful for unit vector data
[43].

The immediate next step is to move beyond landmarks
and model shape point-sets using Gaussian mixture
models thereby estimating the free parameter σ2 directly
from the data. It is also possible to incorporate the full
covariance matrix enabling the mixture density repre-
sentation to have richer descriptive power for point-set
shapes. Our future work will focus on extending this
framework to incorporate diffeomorphic warping of the
extrinsic space and investigation into other information
metrics—especially ones that leverage the

√
p represen-

tation [30], [44], [35] since this results in geodesics on
hyperspheres. Extensions to 3D shape matching are also
possible.
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Pairs Fisher-Rao (10−2 ) α-Order Entropy (10−3 ) Diffeomorphism(10−2 ) Procrustes(10−2 ) Hausdorff(10−2 ) Wendland(10−2 ) TPS(10−2 )

σ2 = .1 σ2 = .5 σ2 = 1.5 σ2 = .1 σ2 = .5 σ2 = 1.5

1 vs. 2 142.25 27.17 5.85 4.67 4.64 0.54 45.05 11.73 27.15 128.39 7.72

1 vs. 3 62.22 14.59 3.80 2.06 2.66 0.40 17.72 7.74 11.83 45.08 1.47

1 vs. 4 375.07 87.04 20.31 13.73 16.29 2.27 114.17 18.95 50.29 203.60 10.60

1 vs. 5 119.75 26.72 6.79 4.09 5.07 0.80 42.80 11.49 25.52 131.52 8.28

1 vs. 6 54.15 9.83 2.02 2.15 2.22 0.26 17.97 7.19 13.85 65.04 4.77

1 vs. 7 206.41 52.81 14.76 7.63 10.96 1.88 81.49 16.53 57.06 227.29 13.28

1 vs. 8 24.07 3.08 0.53 1.05 0.62 0.06 8.20 4.73 5.69 50.89 3.05

1 vs. 9 161.57 32.19 7.36 6.65 8.05 1.07 58.49 13.27 26.54 192.29 12.92

2 vs. 3 106.46 20.92 5.86 3.65 3.82 0.65 39.63 11.21 17.32 123.01 6.48

2 vs. 4 571.37 136.56 29.39 19.65 23.83 3.02 182.93 23.54 117.74 351.38 17.62

2 vs. 5 367.50 86.10 21.29 11.00 14.41 2.16 123.99 19.72 72.76 312.08 16.74

2 vs. 6 73.74 15.88 4.44 2.52 3.24 0.55 34.84 10.31 15.19 110.61 5.55

2 vs. 7 150.02 44.22 15.18 5.03 8.86 1.96 80.38 16.47 71.46 254.76 11.72

2 vs. 8 136.85 27.96 6.39 3.95 4.56 0.60 53.75 12.68 23.35 169.20 9.42

2 vs. 9 94.52 20.60 5.02 3.74 5.59 0.87 43.67 11.53 28.81 147.21 10.52

3 vs. 4 610.51 153.60 38.20 21.85 28.07 4.27 201.91 25.17 93.71 348.10 11.13

3 vs. 5 231.03 53.58 12.41 6.92 8.57 1.12 67.43 14.55 33.53 153.21 6.80

3 vs. 6 34.58 6.21 1.18 1.28 1.16 0.11 9.54 5.17 7.41 28.71 2.74

3 vs. 7 92.02 21.34 5.44 3.67 4.68 0.75 39.61 11.28 19.74 100.58 6.74

3 vs. 8 59.26 13.33 3.27 1.86 2.24 0.32 18.32 7.69 12.11 47.59 2.06

3 vs. 9 119.42 22.62 4.71 5.18 5.75 0.69 40.40 10.96 29.79 116.41 9.39

4 vs. 5 208.30 59.56 19.19 7.54 13.18 2.70 92.67 17.85 32.92 200.05 12.84

4 vs. 6 435.13 110.01 27.50 15.85 21.45 3.32 147.27 21.96 64.50 311.83 23.36

4 vs. 7 682.10 193.47 54.20 25.14 37.77 6.59 229.74 28.60 104.18 499.73 34.32

4 vs. 8 325.84 79.77 19.83 11.48 14.97 2.30 105.93 18.71 61.59 224.42 16.66

4 vs. 9 512.94 132.76 33.98 18.76 26.97 4.17 172.52 23.82 72.78 374.71 25.14

5 vs. 6 163.69 37.42 8.72 4.56 5.68 0.76 56.41 13.01 28.47 157.91 10.74

5 vs. 7 311.52 78.63 19.60 8.88 12.34 1.79 91.71 17.46 74.11 233.17 13.85

5 vs. 8 86.32 20.26 5.17 2.58 3.50 0.56 31.57 9.99 20.78 89.38 4.07

5 vs. 9 270.52 63.21 16.13 7.75 11.11 1.63 81.30 16.31 42.61 224.62 12.78

6 vs. 7 82.06 22.30 6.80 2.58 4.06 0.79 38.31 11.13 23.74 105.01 5.70

6 vs. 8 28.72 5.96 1.21 0.86 1.14 0.14 13.81 6.22 7.76 40.29 3.33

6 vs. 9 43.65 10.11 2.71 1.90 2.80 0.44 21.81 8.04 12.75 59.11 4.05

7 vs. 8 145.55 40.08 11.83 4.62 7.85 1.45 67.70 14.50 38.37 151.59 6.87

7 vs. 9 85.01 21.31 6.45 2.62 3.98 0.70 31.97 10.11 28.22 95.40 5.19

8 vs. 9 103.71 23.95 5.87 3.68 5.62 0.80 47.65 11.84 20.90 126.93 9.24

Table I
PAIRWISE SHAPE DISTANCES. ALL OF THE CORPORA CALLOSA WERE MATCHED WITH EACH OTHER. FISHER-RAO AND α-ORDER

ENTROPY METRICS WERE COMPUTED WITH THREE DIFFERENT VALUES OF σ2 = {0.1, 0.5, 1.5} TO ASSESS THE IMPACT OF THE FREE
PARAMETER ON SHAPE DISTANCE. SHAPES 1 AND 8 HAVE THE SMALLEST DISTANCE UNDER ALMOST ALL THE DISTANCES, WHILE 4

VERSUS 7 IS THE WORST. (SEE TEXT FOR MORE DISCUSSIONS.)
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Figure 11. Hierarchical clustering with different metrics. Notice that varying σ on the Fisher-Rao and α-Order Entropy metric does not
significantly impact global grouping of the shapes (see first three columns of rows one and two). Almost all the metrics agree that shape 1 and
8 are the best match, while shape 4 is the most dissimilar.
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