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1 Introduction

The EM algorithm has achieved considerable notoriety in the last decade especially in the com-
puter vision, neural networks and medical imaging research communities. We would like to dispel
some widely held myths about the EM algorithm while retaining some of its better qualities. In
particular, we would like to show that there is no guarantee that

1. the EM algorithm is fast, or that

2. the EM algorithm can automagically escape local minima.

Some of the positive qualities of the EM algorithm which go a long way toward explaining its
wide acceptance are

1. very few free parameters to tune unlike gradient descent and conjugate gradient algorithms
which require line search parameters to be set, and

2. automagical constraint satisfaction of certain constraints like positivity and specific linear
constraints.

We have chosen mixture models as applied to point feature registration to showcase the EM algo-
rithm. In general, mixture models are a good place to use the EM algorithm.

2 Mixture models for point feature registration

In Figure 1, we show an example of the point feature registration problem. Two point sets are
depicted with the point set on the left having many more points than the point set on the right.
While this example is somewhat artificial, it has been chosen to illustrate the kind of problem that
can be modeled using mixture densities. The motivation behind choosing this particular example
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Figure 1: Point feature registration problem. Left: Finely sampled point set. Right: Coarsely
sampled point set which can act as a set of cluster centers for the point set on the left.

is as follows: the point set on the right of Figure 1 can serve as a set of point cluster centers
for the more finely sampled point set on the left. Imagine that a 2D affine spatial mapping can
bring the point set on the left into a reasonably good registration with the point set on the right.
(While this can be disputed, it is not really germane to our primary focus here, namely, the EM
algorithm.) To obtain a good registration, we would have to solve for the affine mapping as well
as the correspondences between the point features on the left and those on the right. Since the
number of points in the left point set far outnumber the number of points in the right point set, we
can think of correspondence as really a clustering problem where we have to determine the cluster
memberships of every point in the left point set to a “cluster center” point in the right point set.
In this way, a correspondence problem can be converted into a clustering problem.

Mixture models are convenient frameworks for couching clustering problems. In particular,
Gaussian mixtures are very popular since they allow one to have a cake and eat it too. Familiar
Gaussian distribution techniques can still be used in Gaussian mixtures while the fallacy of using
Gaussian distributions to model multi-modal distributions is neatly sidestepped. Essentially, the
basic idea behind Gaussian mixtures is the assumption that the data are generated from a fixed
number of classes

�
with �������	��
������������� ����� being the a priori class probabilities. In the case of

point feature matching, let ����������
��������������� ��� denote the oversampled point set (the left point
set in Figure 1), �� ����!�"
#������������ ����� denote the cluster center point set (the point set on the right
in Figure 1) and $&%'��(�) denote the affine spatial mapping. The mixture density of � is written as:

* $+�-,  .��%'��(	�!/0���1)32
45
�7698

:;
�<698

�=� * $+�>�!,  ?�@��%A��(	�!/B��) (1)

where
* $+�>�!,  ?�@��%A��(	�	/B�@)C2 

D �E, /B�F,HGIKJ<L�M
��NA$O�P�?NQ%R ?�SNT(�)VUW/AX 8� $+�>�?N#%R ?�SN#(�) �

and �=�ZY\[]�V^��_
Q����������`� ��� and a
:
�<698 ����2b�� Each point � in point set � is denoted as �>� and is

parameterized as $&c�d 8�e� ��c�dgf e� ) U with a similar parameterization for cluster center points in  .�F/S� is
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covariance matrix corresponding to the � ��� cluster center point.
Point feature matching (within the mixture density context) is now recast as a maximum like-

lihood (ML) problem. The registration parameters $&%'��(�) as well as the unknown mixture param-
eters / and � are estimated by minimizing the following negative log-likelihood energy function:

$&% � ��( � �!/ � ��� � )C2��	��
�������� � � ��� � N�����
 * $+�-,  .��%'��(	�!/0���1) (2)

subject to :;
�<698

�=�R2 ��=�=��Y []� ^��>
 ������������ � � � (3)

The motivation behind explicitly introducing a covariance matrix / in the point feature matching
mixture model above is in being able to model the degree to which the over sampled points in �
will not lie on top of their corresponding cluster centers in  even after a “perfect” registration.
The covariance matrix / is able to introduce directions in

D��
in which some of the points in �

will depart from their chosen cluster centers in  .�

3 The EM Algorithm for mixture densities

Minimizing the negative log likelihood energy function in (2) is not straightforward. For instance,
we could run gradient descent on all the variables %'��(	�!/0��� while enforcing the constraints in (3)
via gradient projection methods. The strength of the EM algorithm lies in its ability to provide an
extremely simple sequence of iterates that are guaranteed to find a local minimum of (2). Gradient
projection methods, line searches etc. are completely unnecessary.

At the heart of all EM algorithms is an incomplete/complete data parameterization. In the case of
the mixture model, note that the log likelihood in (2) does not specify which cluster center point
� in  is most closely associated with a given point � in � � If such a set of cluster memberships
were known, the task of estimating the spatial mapping parameters would be trivial: use the
cluster memberships to associate each point � in � with a point � in  and solve a simple least-
squares energy function to get $&%'��(�)<� Denote the set of hidden cluster memberships by ����� ����� 

������1��� � � ��� 
���������1��� ��� � Now, after summoning all your esthetic and artistic sensibilities, write
down the complete data mixture likelihood:

* $ � ��� ,  .��%A��(	�!/R���9)B2
45
�+618

:5
�<698

! �=� * $+�>�!,  ?�@��%A��(	�	/B�@)#"%$'&)( (4)

where :;
�<698

�#���92 �� ^=�.
#�������������� � ���	�+*,�#� �W
 []����
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From the constraints on � � we can show that

;
� $ �

* $#� ��� ,  .��%A� (	�!/0���9) 2 * $O� ,  .��%A��(	�!/R���9)!� (5)

To see how (5) obtains, consider the following simple example. Let
� 2 D

and � 2  in (5). Then,
we need to show that

;
� $ �

! ��8 * $+��8 ,  18�� %A��(	�!/ 8�) " $ G G
! � f * $O� 8�,  f ��%A��(	�	/ f ) " $

I
G 2 ��8 * $O� 8 ,  98���%A��(	�!/ 8�)�� � f

* $+��8 ,  f ��%'��(	�!/ f )!�

(6)
The constraints on � for this simple example are � 8�8�� � f 832 �� and ���Q��8 
���[]�� � � ^���
 ���� D ��� �
There are only two possible configurations of � that support these constraints, ���-8�8���� f 8

� 2
�����[ � and ��� 8�8 ��� f 8

� 2 ��[]�� � � When we sum over the left of (6), we are really summing over
these two configurations. It should be obvious that the right side of (6) obtains. The general case
is a straightforward extension of this example. For a general unspecified

�
clusters, the number of

configurations supporting the constraints is
� � just in the above case of

� 2 D � The configuration
space summation is also independent of the � index. Equation 5 shows that we get the original
incomplete date likelihood in (1) by summing over all the configurations of � in the complete
data likelihood in (4). This completes the first arc of the EM algorithm, namely, the specification of
a complete but hidden data variable which when summed over (or integrated out) in a complete
data likelihood yields the original incomplete data likelihood.

We begin the second arc of the EM algorithm with Bayes’ theorem:

* $O� ,  .��%A��(	�!/R���9)B2
* $ � ��� ,  E� %A��(	�!/0���1)
* $ � , � �  E� %A��(	�!/0���1) � (7)

From (4) and (7), we get

* $ � , � �  E� %A��(	�!/0���1)B2
45
�7698

:5
�<698

! �=� * $+�>�!,  ?�@��%A��(	�	/B��)
a
:
� 698 � � * $+�>�	,  � ��%A��(	�	/ � ) " $ &)( � (8)

To obtain (8), we have used the constraints on � � Recall from (2) that our main goal is to maximize
the left side of (7). Rewriting (7) as a log-likelihood, we get

N�����
 * $+�-,  .��%'��(	�!/0���1)32 N � ��
 * $#� ���-,  .��%'��(	�!/0���1)�� � ��
 * $ � , � �  E��%'��(	�!/0���1)<� (9)

The basic idea in EM is not to minimize the left side of (9) but instead to minimize a quantity
related to the expression on the right. The reason why we cannot just minimize the expression on
the right is because we do not know � � ( � is a hidden data variable.)
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The EM trick:

Assume a series of updates for the variables of interest $&%A� (	�!/0���9)!� Imagine we are at step � and
that we currently have $H% d � e ��( d � e �!/ d � e ��� d � e )<� The EM trick consists of taking conditional expec-
tations of both sides of (9) w.r.t. * $ � , � �� .��% d � e ��( d � e �!/ d � e ��� d � e )<� This is called the E-step. The left
hand side of (9) after we take conditional expectations is

N � � ��
 * $O� ,  .��%A��(	�!/R���9)3Y�� � � � ���	��
 � � ����
 � ��	��
 � ������
 2
N ;
� $ �

* $#� , � �� .��% d � e ��( d � e �!/ d � e ��� d � e ) � ��
 * $O� ,  E� %A��(	�!/0���1)<�

Since � does not appear in the left side of (9), we get

N � ����
 * $+�-,  .��%'��(	�!/0���1) Y�� � � � ������
#� � ����
 � ������
 � ���	��
 2 N � ��
 * $O� ,  .��%A��(	�!/0� �9)

since a � $ �
* $ � , � �� .��% d � e ��( d � e �!/ d � e ��� d � e ) 2b by definition. The conditional expectation has left

the negative log likelihood unchanged. The right hand side of (9) has two terms: The first term
after we take conditional expectations is

� N � ��
 * $#� ���-,  .��%'��(	�!/0���1) Y���� ��� � �	��
 � � ����
 � � ����
 � � �	��
 2
N ;
� $ �

* $ � , � �� .��% d � e ��( d � e �!/ d � e ��� d � e ) � ��
 * $ � ��� ,  .��%A��(	�!/R���9)!� (10)

The second term after we take conditional expectations is

� ��� 
 * $ � , � �� .��%A��(	�!/R���9)SY � � � � ���	��
 � � ����
 � ��	��
 � ������
 2;
� $ �

* $#� , � �� .��% d � e ��( d � e �!/ d � e ��� d � e ) � ��
 * $#� , � �� .��%'��(	�!/0���1)<� (11)

Let’s dispense with the second term once and for all. The EM algorithm is based on minimizing a
quantity related to the right hand side of (9) instead of the negative log-likelihood on the left hand
side. There are two terms on the right hand side of (9). Set aside the first term for the moment. The
second term is (11) above. Do not get confused by the presence of both $&% d � e ��( d � e �!/ d � e ��� d � e ) and
the unknown $&%'��(	�!/0���1)<� We are at step � in a sequence of updates and the variables in the second
term are $H%A��(	�	/0���9)!� The second term can be safely ignored because of the Kullback-Leibler (KL)
distance measure. The KL distance is a non-negative distance between two probability distribu-
tions. Without deriving the distance, we baldly state that

;
� $ �

* $#� , � �� .��% d � e ��( d � e �!/ d � e ��� d � e ) � ��

* $#� , � �� .��% d � e � ( d � e �!/ d � e ��� d � e )* $#� , � �� .��%A��(	�!/R���9)

� [ (12)
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with the equality sign holding if and only if * $#� , � �� .��%'��(	�!/0���1)32 * $ � , � �  E��% d � e ��( d � e �!/ d � e � � d � e )
(Cover and Thomas, 1991). Continue to focus on the second term above. Since we are at step �C�
the initial condition for the second term is

� d � e�������	��
������� 2 ;
� $ �

* $#� , � �� .��% d � e ��( d � e �!/ d � e ��� d � e ) � ��
 * $#� , � �� .��% d � e ��( d � e �!/ d � e ��� d � e )!� (13)

At the $ � �  )���� step, we would have $H% d ��� 8 e � ( d ��� 8�e �!/ d ��� 8 e ��� d ��� 8 e )<� The corresponding energy of
the second term at the $ � �� )���� step is

� d ��� 8�e�������	��
������� 2 ;
� $ �

* $#� , � �� .��% d � e � ( d � e �!/ d � e ��� d � e ) � ��
 * $#� , � �� .��% d ��� 8�e ��( d ��� 8 e �!/ d ��� 8 e ��� d ��� 8 e )!�

(14)
The change in energy for the second term is

� d � e����������
�������SN � d ��� 8�e�������	��
�������Q2 ;
� $ �

* $ � , � �� .��% d � e ��( d � e �	/ d � e ��� d � e ) � ��

* $#� , � �� .��% d � e ��( d � e �!/ d � e ��� d � e )* $ � , � �  E� % d ��� 8 e � ( d ��� 8�e �!/ d ��� 8 e ��� d ��� 8 e )

�

But the change in energy is just a special case of the KL distance in (12) with the $ � �  )���� step
$&% d ��� 8 e ��( d ��� 8�e �!/ d ��� 8 e ��� d ��� 8 e ) inserted in place of the unspecified $&%'��(	�!/0���1)<� Therefore the change
in energy of the second term from step � to step � �  is guaranteed to be greater than zero for any up-
date $&% d ��� 8�e ��( d ��� 8 e �!/ d ��� 8�e ��� d ��� 8 e ) as long as $&% d ��� 8�e ��( d ��� 8 e �	/ d ��� 8�e ��� d ��� 8�e ) �2 $H% d � e ��( d � e �!/ d � e � � d � e )
by virtue of the energy difference being a Kullback-Leibler distance measure. This kind of argument is
present in all EM algorithms. We can safely dispense with the energy term in (11). Therefore,
minimizing the negative log-likelihood N � ��
 * $O� ,  .��%A��(	�!/R���9) is the same as minimizing the first
term (10). At the end of the E-step, we have

� ������ � � ��� � N � ��
 * $O� ,  E� %A��(	�!/0� �9)B2 � ������ � � ��� � N ;
� $ �

* $#� , � �� .��% d � e ��( d � e �!/ d � e ��� d � e ) � ��
 * $#� ��� ,  .��%A� (	�!/0���9)!�

(15)
This is not as horrendous as it seems (especially for the mixture model). From (4), we know that
* $#� ��� ,  .��%'��(	�!/0���1)"2"!

4
�7698 !

:
��618 ! �=� * $+�>�	,  �����%A� (	�!/B�@)#" $ &)( � Therefore the corresponding negative

log- likelihood N�����
 * $ � ��� ,  E� %A��(	�!/0� �9) 2 N�a
:
�<698 a

4
�7698 �Q� ��� ��
 ! �=� * $+�>�	,  �����%'��(	�!/B�@)#" � The condi-

tional expectation in (15) reduces to

N ;
� $ �

* $ � , � �  E� % d � e ��( d � e �!/ d � e ��� d � e ) � ��
 * $#� ���-,  .��%'��(	�!/0���1)32

N ;
� �

� �#��� Y � � � � � �	��
#� � ����
#� ������
 � ������
 � ��
 ! �=� * $O�P�!,  ?��� %A��(	�!/B��) " (16)
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The conditional expectation � �Q� �3Y � � � � ������
#� � ����
 � ������
#� ���	��
 can be easily evaluated from the density
function in (8). Since the density function is basically a simple extension to a Bernoulli probability,
we state without proof that

� �Q� �WY � � � � ������
 � � �	��
#� ��	��
 � ������
 2 � d � e� * $+�>�!,  ?�@��% d � e ��( d � e �!/Ad
� e� )

a
:
� 698 � d

� e� * $O�P�!,  � ��% d � e ��( d � e �!/Ad
� e� )

� (17)

With the update for � �Q� �WY in place we can turn to the updates of the rest of the variables. This is
pretty straightforward. All we have to do is differentiate the right side of (16) w.r.t. each variable
and solve. We get

� d ��� 8�e� 2 a
4
�7698 � � � � Y � � � � ������
#� � �	��
 � ������
 � ���	��


� �

/ d ��� 8�e� 2
4;
�+618

� �#���WY�� � � � � ����
 � � ����
 � � ����
 � � ����
 $+�>��NT% d � e  ?� NT( d � e )�$+�>��NQ% d � e�� � NT( d � e )VU (18)

followed by a straightforward least-squares update for the spatial mapping parameters $H%A��(�)!� The
least-squares update is obtained by differentiating (16) w.r.t. $H%A��(�) and solving for them. The EM
algorithm then consists of a pair of updates. First the complete date is updated in (17) followed by
the update of the remaining parameters in (18) [including the least-squares update for the spatial
mapping parameters $H%A��(�)<� ]

4 Discussion

The EM algorithm is clearly an elegant algorithm—especially for mixture densities. As we have
seen, there are no step-size parameters to be set or gradient projections to be evaluated. The
algorithm is guaranteed to find a local minimum by virtue of following a descent direction of the
original mixture negative log-likelihood. We began with a complex looking mixture log-likelihood
(2) and we ended with a pair of updates of the complete data (actually conditional expectation of
the complete data) followed by updates of the remaining parameters [(17) and (18)]. The algorithm
has the flavor of grouped coordinate-descent and indeed it is just that. [This was first shown by
Hathaway (Hathaway, 1986).] The caveat is that there is no guarantee that grouped coordinate-
descent is a fast algorithm. It turns out that the EM algorithm has some of the properties of a
good Quasi-Newton method when applied to mixtures (Redner and Walker, 1984). However,
in other applications—for instance tomographic reconstruction—the EM algorithm is very slow
and inefficient (Mumcuoglu et al., 1994). Finally, EM algorithms have to be derived from first
principles for new log-likelihoods and there is no guarantee that we will always obtain a simple
algorithm (as simple as the case in mixtures).
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