A Comparative Study of the Effects of Using Higher Order
Mechanical Priors in SPECT Reconstruction

Soo-Jin Lee#, Anand Rangarajan§, and Gene Gindi#¥
#Department of Electrical Engineering, SUNY at Stony Brook

§Department of Computer Science, Yale University

ﬂDepartment of Radiology, SUNY at Stony Brook

Abstract

While the ML-EM reconstruction method in SPECT is un-
stable due to its ill-posed nature, the Bayesian reconstruc-
tion methods overcome this instability by introducing the
prior information. The new prior, the weak plate, is attrac-
tive in that it models spatial structures more accurately
than various forms of smoothness priors used in the past.
Here we argue that more expressive priors able to model
more complicated forms than a piecewise constant source
may be better used in SPECT reconstructions. To eval-
uate quantitative performance of the reconstruction algo-
rithms, in an ensemble sense, bias and variance were used
as a metric. We show that the extension to a higher-order
model significantly improves variance at approximately no
cost in bias error. We also observe and characterize the
behavior of the associated hyperparameters of the prior
distributions in a systematic way.

I. INTRODUCTION

The maximum likelihood (ML) approach using the expec-
tation maximization (EM) algorithm has been useful in
reconstruction for emission tomography. However, due to
the ill-posed nature of the problem, the ML-EM suffers
from instability. In contrast, the Bayesian reconstruction
methods overcome this instability by incorporating prior
information into the reconstruction problem. Early formu-
lations [1, 2, 3] incorporated priors that imposed piecewise
constant spatial constraints on the underlying object. Re-
construction algorithms that use this kind of assumption
perform better, according to most reasonable metrics, than
those that make no such assumption, when tested on such
phantoms. However, the self-consistent loop of piecewise
constant prior and piecewise constant phantom leads one
to question whether these good results generalize to a real-
istic clinical setting where the underlying (patient) source
distribution may not be piecewise constant.

In our preliminary work [4], we showed possibilities of
improving reconstructions by using a more accurate model
than a piecewise constant prior, the weak plate (WP) prior.
Results in [4] show that the WP prior leads to improved es-
timate in terms of simple root mean-squared error (RMSE)

criteria compared to the weak membrane (WM) prior. In
this paper, we evaluate and compare quantitative perfor-
mance of these reconstruction algorithms more systemat-
ically in order to validate possible advantages of a higher
order model. This work follows a methodology in [5] for
bias/variance characterization. Since these reconstruction
algorithms are dependent on two hyperparameters embed-
ded in the prior distributions, we observe and characterize,
in an ensemble sense, the effects of these parameters.

II. BAYESIAN RECONSTRUCTION
WITH MECHANICAL PRIORS

Since our priors encourage the formation of smooth regions
punctuated by a locus of discontinuities, we use an unob-
servable line processes 1 proposed by Geman and Geman
[1] to preserve the discontinuities in the reconstructions.
The MAP approach in the context of Bayesian framework
is then to estimate both the source field f and the discon-
tinuity field 1 simultaneously by maximizing the posterior
probability, given as

Pr(F=f L=1G=g)
— PI'(G:g|F:f,L:l)PI‘(F:f,L:l) (1)
Pr(G=g) ’
where f, 1, and g are 2-D vector fields for the source in-
tensities, line processes, and projection data respectively,
and F, L, G are the associated random fields. Given the
posterior distribution in (1), maximizing the posterior dis-

tribution is equivalent to minimizing — log of the posterior

probability and the MAP estimation reduces to

(f,1) = arg I?iln[— log Pr(G = g|F = f) — log Pr(F = f,L = 1)],
(T,

’

where the two terms on the right side are the likelihood
and the prior, respectively. For the likelihood, Poisson
statistics are applied in a conventional way.

We use the familiar Gibbs distribution to model prior
information concerning the piecewise smoothness of the
image:

Pr(F=f L=1)= %P exp(—Ep(f,1)),

where Zp is a normalization factor and Ep(f,1) is the prior
energy derived from the mechanical models (E¥ (f,1) for



WM and EE(f,1) for WP), given as [6]

EM(£]) = /\Z{V“ (=) +vha-u))}
-I-az @ +1)) (2)
Ep(f]) = )‘Z{VZJ —li,j)}JraZli,j; (3)
ij
where V), = def f2(i,5) and Vh def 2(i,7) for WM, and

Vij def w(i )+ 212,04, 5) + f2.(i,§) for WP. The binary

variable [ is line process (for WM, [¥ and [* are verti-
cal and horizontal line processes, respectively), and A and
« are positive parameters. In (2), f, and fj are the first
derivatives along the vertical and the horizontal directions,
respectively. The term V; ; in (3) is quadratic variation for
thin plate [6]. The terms involving V;"; and VZ';“J in (2)
and V;; in (3) encourage smoothness except where dis-
continuities occur (i.e. [ = 1) and include a penalty «
for the creation of discontinuities. Note that while the
WM encourages smoothness only in constant regions, the
WP encourages smoothness in ramplike regions as well. A
fundamental limitation of the WM is that it has the un-
fortunate effect of turning a ramp into stepped terraces
[6].

As it stands, the energy functions above are difficult to
minimize, since they contain mixed binary and continuous
variables. Although the use of binary variables can be cir-
cumvented by integrating out the line processes, the new
energy functions are non-convex and non-differentiable,
thereby ruling out gradient-based descent methods. In [3],
it is shown that the desired energy function can be ap-
proached by a sequence of energy functions indexed by a
control parameter § — a continuation method. Readers
are referred to [3] for more details on the derivation of a
deterministic annealing algorithm.

To make the optimization tractable, we integrate out the
line processes and embed the optimization within the fa-
miliar incomplete /complete data formulation of the Gener-
alized EM (GEM) MAP algorithm [2]. The corresponding
M-step objective function for WP is

def Z Z lHtGZ]fZ] -

ij 10
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where ¢;9 is the number of detected counts in the detector
bin indexed by ¢ at angle @, and Hyg ;; is the contribution
of a photon emitted from f;; to detector bin ¢ at angle
#. The prior energy for WM is represented by the two
terms involving V;%; and V;"; [3]. Unfortunately, closed-
form solution for f;; cannot be directly obtained by set-
ting %{f;ﬂm = 0, as the differentiation results in an
expression transcendental in fij- One possible solution to

this problem is to consider the transcendental term to be a
new, albeit dependent (on f; j), variable and to descend on
each such variable separately. In [3], we defined the new
variable as

4 def 1
YT Lt exp(—=B(AVi; — )

With the new variables, M(f|f"; ) becomes M(f, z|f’"; B).
For the maximization step, we apply a coordinate-wise de-
scent method by keeping f; ; frozen while descending on

(4)

z;; and keeping z; ; frozen while descending on f; ;. The
update equations for WP are:
fij =
-3, Hw;lj—2>\X3)+\/(Ew Hoig,i5—2AX3)2+8A X2 X, 5)
IAX+
where
X g el
ElefG klfkl
Xy Y 1001 — 2 )+ (1= zijq1) +3(1— zi,_1)
+(1 = 2zig1) +3(1 = zi—15) +2(1 — 21 1)
Xy & 2(fij+1+ fij—1) +2(figrj + fic1j)
F2(fijer + fixr; — fivrj+1) (1 — 2 5)
+(2fij41 = fig+2)(L = zij41)
H(2fij-1— fij-2)
F2(fijo1 = firrj—1 + fixr ) (1 — zi5-1)
+(2fiy15 — firz )1 — zig15)
H(2fi—15 — fic2j)
+2(fic1j — fimrj+1 + fij+) (A — ziz1j)

+(2fic1j + fijo1 = firj—0)(L = zim1 o).

Update equations for WM appear in [3].

III.

We first tested the four reconstruction algorithms — GEM
MAP with the WM prior, GEM MAP with the WP
prior, and ML-EM with two different stopping rules. The
first ML-EM reconstructions (EM-1) stopped at minimum
RMSE and the second ML-EM (EM-2) stopped after min-
imum RMSE based on the starting point of deterioration
of the smoothness in the reconstructed images. For the
WM and WP reconstructions, the annealing schedule ran
through 12 to 16 values with a doubling at each new value
of 3. The entire simulation was terminated when z; ; < 0.9
or z; ; > 0.1.

The algorithms were tested on two phantoms (A and
B for convenience). Phantom A (Fig. 1(a)) was derived
from digitized rhesus monkey autoradiograph of the rCBF
SPECT agent °°"Tc-ECD. The intent here is that such
an autoradiograph contains edge structure for more realis-
tic than a simple piecewise constant phantom. Phantom B
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Figure 1: Anecdotal reconstructions for phantoms A and B. (a),(g):
Phantoms. (b)(h),(c)(1),(d)(j): EM-2,WM, and WP reconstructions,

respectively, for case of attenuation simulation and compensation

only. (e)(k),(f)(1): WM and WP reconstructions respectively, for
case of attenuation, scatter, and detector response simulation and
compensation.

(Fig. 1(g)) is a 2-D Hoffman brain phantom which is piece-
wise constant.

For projection data from 128 x 128 phantoms with 0.2cm
pixels, we used 128 projection angles over 360° with 192 de-
tector bins with 0.2cm intervals. Each projection ray was
attenuated by the constant attenuation factor of 0.12cm™1.
For measure of quantitative performance of the reconstruc-
tion algorithms in an ensemble sense, we generated two
sets of 40 independent Poisson noise realizations of projec-
tion data for each phantom. One set simulated the effects
of attenuation only and the second set included additional
simulations for scatter and detector response with 11mm of
full width at half maximum (FWHM). The total number of
detector counts for phantoms A and B were approximately
732K and 300K, respectively.

Fig. 1 shows anecdotal reconstructed images from the
four reconstruction algorithms. The ML-EM reconstruc-
tions look relatively noisy and the WM reconstructions
look artificially patchy, a result not unexpected since WM
tends to favor piecewise constant reconstructions. By ex-
tension to a higher order model, the WP reconstructions
avoid the artifice of WM reconstructions. Fig. 2 shows
profiles along two lines on phantom A. Both EM plots are
noisy, the result for EM-1 (fewer iterations) is smoother

WP —
135 (h) Phantom - i
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Figure 2: Profile plots for an anecdotal reconstruction of Phan-
tom A. The dotted line indicates the phantom, and the solid line the
reconstruction. (a) Phantom with profile lines shown. (b),(c),(d):
Profiles along line 1 for EM-1, WM, WP, respectively. (e),(f),(g),(h):
Profiles along line 2 for EM-1, EM-2, WM, WP, respectively.

than that for EM-2 but incurs a bias error. The WM
reconstruction illustrates the tendency towards piecewise
constant regions. The WM has reconstructed a ramp as
a step edge typifying the kinds of ensemble accuracy and
precision errors. Comparison of the WP result in Fig. 2(h)
shows that the noise errors typical of EM (Figs. 2(e) and
(f)) and edge approximation and hot spot errors typical of
WM Fig. 2(g) have both been corrected.

To evaluate the reconstructions more quantitatively,
we computed bias and standard deviation (STD) images
(Figs. 3). A bias image, b; j, and a standard deviation im-

K R
age, s; j, are defined as b; ; = %Ek:l ( Z»kj _fi,j) and

5i5 = ﬁzfﬂ (AZ’“J — ﬁj)Z’ respectively, where f’fj
is the k%" reconstruction of phantom f at location (i, j)
and ﬁ-’j is the mean of ﬁ-’j over K = 40 independent noise
trials. Despite the unsatisfactory WM anecdotal images,
the bias for WM compares favorably with that of EM and
WP. The STD images for EM show noise growing with sig-
nal intensity as expected. For the WM prior, the variance
is high in both ramplike and steplike edge regions. This
effect appears to be due to the fact that the WM prior
results in unstable estimates of edge location. For compa-
rable performance in bias, the WP prior produces excellent
variance results as seen in Figs 3.
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Figure 3: Bias-standard deviation for phantoms A and B obtained
from 40 independent noise realizations. The first two rows include the
effects of attenuation only and the second two rows include additional
effects of scatter and detector response.

We measured regional bias and STD for each recon-
struction algorithm in the 15 preselected ROI’s shown in
Fig. 4(a). Note that the boxed regions (9, 10, 11, 12, and
15) have higher contrast than the circled regions. We de-
fined regional bias, b%, and STD, s, as b# = L Ei,jER b; ;

m

R _ [1 2 :
and s7° = 4/ Ez’,jeR Si respectively, where R denotes

a region and m is the number of pixels in the region.
Figs. 4(b),(c) illustrate clearly the bias and variance trade-
off for EM-1 and EM-2. Comparison of Figs. 4(d),(e)
shows that for (boxed) high contrast region, the WM vari-
ance is much higher than that for WP, but for (circled)
smooth regions, WM compares favorably. Comparison of
Figs. 4(c),(d),(e) shows that for comparable performance
in bias, the WP exhibits superior performance in variance
in regions including edge structure.

To observe the sensitivity of the parameters A and «
for the WM and WP priors, we used a coarser version
(64 x 64) of phantom A with the same number of detector
counts. This phantom was designated C. We tested WM
and WP priors with two different stopping rules. The first
WM and WP reconstructions (WM-1 and WP-1, respec-
tively) stopped at minimum RMSE and the second WM
and WP (WM-2 and WP-2, respectively) stopped when
zij < 09 or z; > 0.1. We first searched recursively
for the parameter pairs (;\, &) for WM-1 and WP-1 which
yielded the reconstruction with the least RMSE. Having
found (), &) for each algorithm, we generated 20 x 20 dif-
ferent parameter pairs around (5\, @). Fig. 5 shows contour
plots drawn along the equi-RMSE’s. Notice that the plots
in Fig. 5 are unimodal. It is interesting to note that the
region for the least RMSE for WM-1 is far from that for
WM-2 (Figs. 5(a),(b)). In fact, the parameter o for WM-
2 approached infinity to produce the reconstruction with
the least RMSE. In contrast, the WP exhibits the consis-
tent parameter values for the least RMSE (Figs. 5(¢),(d)).
Comparison of Figs. 5(b),(d) shows that small changes
in the parameters for the WM incur larger variations in
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Figure 4: Regional bias-standard deviation plots for phantom A.
(a) The phantom with region borders superposed. In (b)-(e), the
abscissa indexes the region number, and plotted points with error
bars indicate bias £ one standard deviation.

RMSE than the WP case.

To characterize the effects of the parameter A for the
WM and WP priors, we used phantom C and generated
40 independent noise realizations of projection data with
attenuation. We generated a set of A’s for each recon-
struction algorithm: {A_4,A_3,...,; Ao, ..., A3, Aa}, where
Xiy1 = 2); for i € [—4,3]. The parameter pair A and &
obtained above were used for Ay and «, respectively. Since
standard definitions for regional bias (b%) and standard
deviation (sf!) do not adequately account for the spatial
structure on the reconstructed images, we used the vector
fields (array of points in ROI) fr and fr for the regions
on the phantom and on the estimate, respectively. The
new definitions for regional bias and standard deviation
using these vector fields are: bf = fi — fi for regional

bias, and sf = \/% Ele || ££ — fg ||? for regional stan-

dard deviation, where fgr = + Ele f5. Fig. 6 shows plots
for standard deviation (sff) vs. norm of bias (|| b%® ||)
of the representative four regions. For relatively constant
regions, both bias and variance for the WM and WP re-
constructions decreased until A passed some critical value,
at which point bias for both WM and WP started to in-
crease (Figs. 6(a),(b)). For regions with edge structure,
while the WP exhibited relatively small variance at most
of the bias levels, variance for the WM increased signifi-
cantly after some critical values (Figs. 6(c),(d)). This effect
demonstrates that the WM mislocalizes edges in ramplike
regions and large A incurs large bias and variance errors in
those regions.
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Figure 5: Contour plots for sensitivity of the parameters A (ab-
scissa) and o (ordinate). Each contour level indicates the equi-error
within a range. The darkest areas correspond to the parameters
for the least RMSE’s. (a),(c): Plots for WM and WP, respectively,
stopped at the minimum RMSE. (b),(d): Plots for WM and WP,
respectively, stopped when z; ;j < 0.9 or z; ; > 0.1.
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Figure 6: The effects of several different values for A in WM and
WP reconstructions. The four representative regions in phantom C —
(a) high activity region (grey matter), (b) low activity region (white
matter), (c) low contrast (ramplike) region, and (d) high contrast
region (anatomical boundary) — were measured in terms of regional
bias and standard deviation. The abscissa indicatesregional standard
deviation sf, and the ordinate norm of regional bias, || bT ||.

IV. CONCLUSIONS

We have considered quantitative performance measure-
ments for Bayesian reconstruction algorithms with me-
chanical models as priors. Regional bias and variance
analyses show that for comparable bias, the WP exhibits
superior performance in variance in most of the regions,
including edge structure. Observations for sensitivity of
the parameters A and a show that small changes in the
parameters for the WM incur larger variations in RMSE
than those for the WP. Comparisons of the effects of the
smoothing parameter A demonstrate that the WP exhibits
small variance at most of the bias levels. An overall con-
clusion is that the extension to a higher-order model signif-
icantly improves variance at approximately no cost in bias
error for the types of “functionally correct” phantoms.

REFERENCES

[1] S. Geman and D. Geman, “Stochastic Relaxation, Gibbs
Distributions and the Bayesian Restoration of Images”,
IEEE Trans. on Pattern Analysis and Machine Intelligence,
PAMI-6(6), pp. 721-741, November 1984.

[2] T. Hebert and R. Leahy, “A Generalized EM Algorithm for
3-D Bayesian Reconstruction for Poisson Data using Gibbs
Priors”, IEEE Trans. on Medical Imaging, MI-8(2), pp.
194-202, June 1989.

[3] G. Gindi, A. Rangarajan, M. Lee, P. J. Hong, and G. Zubal,
“Bayesian Reconstruction for Emission Tomography via De-
terministic Annealing”, In H. Barrett and A. Gmitro, edi-
tors, Information Processing in Medical Imaging, pp. 322—
338, Springer—Verlag, 1993.

[4] S. J. Lee, A. Rangarajan, and G. Gindi, “Weak Plate Me-
chanical Models in Bayesian Reconstruction for Emission
Tomography”, In Proc. IFEE Nuclear Science Symposium
and Medical Imaging Conference, volume 3, pp. 1533-1537,
November 1993.

[5] Z. Zhou, R. M. Leahy, and E. U. Mumcuoglu, “A Com-
parative Study of the Effects of Using Anatomical Priors
in PET Reconstruction”, In Proc. IEEE Nuclear Science
Symposium and Medical Imaging Conference, volume 3, pp.
1749-1753, November 1993.

[6] A. Blake and A. Zisserman, “Visual Reconstruction”, Arti-
ficial Intelligence, MIT Press, Cambridge, MA, 1987.



