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Abstract— In this paper, we propose a fast, convergent
OS-type (ordered-subset) reconstruction algorithm for

emission tomography (ET) by taking into account the
Hessian information in the ML Poisson objective. Most
importantly, our proposed algorithm does not have a
relaxation parameter and it is fundamentally not based
on EM-ML algorithm in ET . Our new algorithm is
based on an expansion of the ML objective using a
second order Taylor series approximation w.r.t. the
projection of the source distribution. Defining the
projection of the source as an independent variable, we
construct a new objective function in terms of the source
distribution and the projection. This new objective
function contains the Hessian information of the likelihood.
After using a separable surrogate transformation of the
new Hessian-based objective, we derive an ordered subsets,
positivity preserving algorithm which is guaranteed to
asymptotically reach the maximum of the original ET
likelihood. Preliminary results show that this new
algorithm is faster than our previous COSEM algorithm
after some initial iterations and compatible with RAMLA.
However, in contrast to RAMLA, and similar to COSEM,
the new algorithm does not require any user-specified
relaxation parameters.

I. Introduction

Emission tomography in nuclear medicine, including
PET and SPECT, is a useful diagnostic tool for
investigating functions in an organ of interest in-
vivo. To obtain a tomographic image of the injected
radiotracer distribution in the body, one needs to
apply a recontruction algorithm to collected data.
Statistical reconstructin methods are capable of modelling
photon noise and system phsyics more accurately than
the traditional FBP method, and thus have drawn
much attention in recent years. However, statistical
reconstruction has the drawback of being slow when used
for clinical studies as comparied to the FBP. To improve
the speed of the statistical reconstruction, many fast
reconstruction algorithms have been proposed in the past
few years. Among them, the OS-type (ordered subsets)
algorithms are the most popular approaches since the
introduction of the OSEM algorithm in 1994[?].

We can rougly classify the OS-type algorithms for
maximum likelihood-based (ML) reconstruction into three
broad categories; i) heuristic OS-EM type algorithms
which are not provably convergent, ii) convergent ordered
subsets algorithms requiring a user-specified relaxation
schedule and iii) convergent OS incremental EM type
algorithms (COSEM). Our previous work on fast,
provably convergent ML-EM algorithms is based on the
third (COSEM) category above. Since EM algorithms
(OS, incremental or otherwise) typically do not take into
account the Hessian information in the ML objective, we
now embark upon a new, fourth category of provably
convergent, fast ordered subsets algorithms; iv) fast,
convergent OS Hessian-based algorithms which do not
have a relaxation parameter and which are fundamentally
not based on EM.

To derive our new method, we expand the ML objective
using a second order Taylor series approximation w.r.t.
the projection of the source distribution. Defining the
projection of the source as an independent variable,
we construct a new objective function in terms of
the source distribution and the projection. This new
objective function contains the Hessian information of
the likelihood. After using a separable surrogate
transformation of the new Hessian-based objective, we
derive an ordered subsets, positivity preserving algorithm
which is guaranteed to asymptotically reach the maximum
of the original ET likelihood.

This paper is to introduce and access the performance of
the proposed algorithm. Section II we start on introducing
the negative Poisson likelihood function, and then by
the change of variables under the use of second order
Taylor approximation, the new algorithm is derived step-
by-step. In Section III, we run some empirical simulations
to illustrate the speed of the proposed algorithm in
comparison to ML-EM, COSEM and RAMLA. Section
IV contains the discussion and the conclusion.
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II. Theory

A. A new SP objective function for emission tomography

The emission tomography negative log-likelihood
objective function is

EML(f) =
∑

ij

Hijfj −
∑

i

gi log
∑

j

Hijfj . (1)

We would like to transform this objective in a manner
similar to Fessler’s recent OS-SPS work. In this previous
work, a second order Taylor-series expansion is used to
construct a surrogate for EML. In the present work,
we also use a second order Taylor series expansion but
instead of constructing a surrogate, we construct a new
complete data SP objective function. This leads directly
to a new C-SP algorithm which is similar in spirit to the
EM algorithm. This approach also naturally allows us to
construct COS-SP and ECOS-SP algorithms.

B. Change of variables

We wish to introduce a new variable {σi} which will
subsequently be identified with {∑j Hijfj}. To achieve

this, we take a second order Taylor series approximation
of (1) at the location {σi =

∑

j Hijfj}

E2(f , σ) =
∑

i

{

σi − gi log σi + (1 − gi

σi

)(
∑

j

Hijfj − σi)

+
gi

2σ2
i

(
∑

j

Hijfj − σi)
2
}

. (2)

The second order Taylor series expansion in (2) has the
property that at {σi =

∑

j Hijfj}, E2(f , σ) = EML(f).

We wish to use (2) as the kernel of a new objective function
which is to be minimized w.r.t. both f and σ. Since (2)
does not necessarily have a minimum at {σi =

∑

j Hijfj},
we augment (2) to obtain a new objective function

E3(f , σ) =
∑

i

[σi − gi log σi + (1 − gi

σi

)(
∑

j

Hijfj − σi)

+
gi

2σ2
i

(
∑

j

Hijfj − σi)
2 + ci

(
∑

j Hijfj − σi)
2

σi

∑

j Hijfj

]. (3)

There are two ways of choosing {ci}. We briefly describe
both approaches.

C. Choosing {ci} to ensure a global minimum at {σi =
∑

j Hijfj}
In the first approach, we pick {ci} such that E3(f , σ)

has a global minimum at {σi =
∑

j Hijfj}. This is NOT

equivalent to convexity of the objective function w.r.t. σ.

The chosen criterion is ∂E3

∂σi
≥ 0 for σi >

∑

j Hijfj . It can

be shown that the resulted ci only depends on gi and not

on
∑

j Hijfj as: gi(3 − 2
√

2) ≤ ci ≤ gi(3 − 2
√

2). Since a

lower value of {ci} is preferable, we choose ci = gi(3−2
√

2)

as the optimum solution that guarantees that ∂E3

∂σi
≥ 0 for

σi >
∑

j Hijfj .

D. Choosing c to ensure that the modified objective

function is convex

In the second approach, {ci} is chosen such that E3(f , σ)
in (3) is a convex objective function w.r.t. σ.

We require that ∂2E3

∂σ2
i

≥ 0 for σi > 0. It can be shown

that the resulted ci is in the range by gi(3− 2
√

2) ≤ ci ≤
gi(3 − 2

√
2). We choose ci = gi(2 −

√
3). For this setting

of ci,
∂2E3

∂σ2
i

= 0 for σi =
√

3
∑

j Hijfj and nowhere else.

The payoff in choosing the (x−y)2

xy
form of the additional

term is that ci only depends on gi and not on
∑

j Hijfj .

E. Objective function w.r.t. f

We now examine the objective function as a function
of f . Since the new objective consists of terms such as

(
∑

j Hijfj − σi)
2 and 1

∑

j
Hijfj

, we need to perform yet

another change of variables so that we can update all f

in parallel (while imposing positivity constraints). The
objective function w.r.t. f alone is

EPS(f) =
∑

i

[(1 − gi

σi

)
∑

j

Hijfj +
gi

2σ2
i

{(
∑

j

Hijfj)
2

−2
∑

j

Hijfjσi} + ci(

∑

j Hijfj

σi

+
σi

∑

j Hijfj

− 2)]. (4)

The two terms in (4) which act as obstacles to a fully
independent, parallel update of all f are the terms

involving (
∑

j Hijfj)
2 and 1

∑

j
Hijfj

. We now detail

two change of variables transformations to overcome this
problem:

(
∑

j

Hijfj)
2 = min

ρ

∑

j

(Hijfj)
2

ρij

(5)

subject to the constraint
∑

j ρij = 1. Transforming this

into a constrained optimization problem, we get

Esumsq(f, ρ, µ) =
∑

j

(Hijfj)
2

ρij

+ µi(
∑

j

ρij − 1). (6)

When we minimize (6) w.r.t. ρ subject to the simplex
constraint

∑

j ρij = 1, we get

(
∑

j

Hijfj)
2 = min

ρ

∑

j

(Hijfj)
2

ρij

+ µi(
∑

j

ρij − 1). (7)

The solution for ρ at the minimum is

ρij =
Hijfj

∑

j Hijfj

. (8)
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Similarly, we can transform terms containing 1
∑

j
Hijfj

.

This can also be transformed into a constrained
optimization problem via

1
∑

j Hijfj

= min
τ

∑

j

τ2
ij

Hijfj

+ νi(
∑

j

τij − 1) (9)

provided we satisfy the simplex constraint
∑

j τij = 1.

The solution for τ at the minimum is

τij =
Hijfj

∑

j Hijfj

. (10)

Considering ρ and τ to be legitimate independent
variables, we can write the transformed final objective
function as

Efinal(f , σ, ρ, τ, µ, ν) =
∑

i

[

σi − gi log σi + (1 − gi

σi

)(
∑

j

Hijfj − σi)

+
gi

2σ2
i

{
∑

j

(Hijfj)
2

ρij

+ µi(
∑

j

ρij − 1) − 2
∑

j

Hijfjσi + σ2
i }

+ci{
∑

j

τ2
ijσi

Hijfj

+ νiσi(
∑

j

τij − 1) +

∑

j Hijfj

σi

− 2}
]

.(11)

Grouping terms in (11) which depend on f , we get

Ej(fj) =
∑

i

[ciτ
2
ijσi

Hijfj

− {2gi − ci

σi

− 1}Hijfj +
giH2

ijf
2
j

2σ2
i ρij

]

. (12)

This objective function is convex w.r.t. fj and hence has
a unique minimum. Taking the derivative w.r.t. fj and
setting the result to zero, we get

∂Ej

∂fj

= 0 ⇒ −
∑

i

ciτ
2
ijσi

Hijf
2
j

−
∑

i

{2gi − ci

σi

− 1}Hij

+
∑

i

giH2
ijfj

σ2
i ρij

= 0. (13)

Equation (13) can be simplified into the following cubic
equation form:

f3
j + a2f

2
j + a0 = 0 (14)

where

a2
def
=

−∑

i{ 2gi−ci

σi
− 1}Hij

∑

i

giH
2
ij

σ2
i
ρij

, and a0
def
=

−∑

i

ciτ
2
ijσi

Hij

∑

i

giH
2
ij

σ2
i
ρij

. (15)

If an OS update is used, one can show that the
coefficients a2 and a0 in (15) can be further simplified

as

a2 =
Dj − (2 − c)

∑

l LB
(k,l)
j

∑

l
1

f
(k,l)
j

LB
(k,l)
j

, and (16)

ao =
−c

∑

l(f
(k,l)
j )2LB

(k,l)
j

∑

l
1

f
(k,l)

j

LB
(k,l)
j

. (17)

where the sensitivity is Dj
def
=

∑

i Hij , and the limited

backprojection LB
(k,l)
j

def
=

∑

i∈Sl

giHij
∑

n
Hinf

(k,l)
n

. Since ci =

cgi where c = 2 −
√

3 or c = 3 − 2
√

2 depending on
which solution is used, in order to compute a2 and a0,

we only require the limited backprojection LB
(k,l)
j which

is exactly the same computational requirement as in the
EM algorithm.

F. Real solutions to the cubic

Define Q
def
= −a2

2

9 and R
def
= −a0

2 − a3
2

27 . Then the original

cubic is transformed to04

(fj +
a2

3
)3 + 3Q(fj +

a2

3
) − 2R = 0. (18)

The cubic discriminant is defined as

D
def
= Q3 + R2 =

a0

2
(
a0

2
+

a3
2

27
). (19)

We distinguish between the cases D > 0 and D ≤ 0.
If D > 0, there is only one real solution to the cubic
equation. If D ≤ 0, multiple real solutions are present. If
D = 0 (rare), all solutions are real and at least two are
equal.

Case 1: D > 0

f̂j = −a2

3
+ (R +

√
D)

1
3 + (R −

√
D)

1
3 . (20)

Case 2: D < 0. Define

θ
def
= cos−1(

R
√

−Q3
). (21)

Then the three real roots are

f̂
(1)
j = −a2

3
+ 2

√

−Q cos(
θ

3
), (22)

f̂
(2)
j = −a2

3
+ 2

√

−Q cos(
θ + 2π

3
), (23)

f̂
(3)
j = −a2

3
+ 2

√

−Q cos(
θ + 4π

3
). (24)

We know a priori that only one real root can be positive.
Regardless of whether D > 0 or D < 0, the one real,
positive root is picked as the update for fj .
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III. Results

In this section, we anecdotally explore 2D reconstructions
using the ML-EM, COSEM, RAMLA, and the proposed
algorithms, and illustrate the speed-enhancing property
by displaying the log-likelihood plots vs. iteration
number.

To test the proposed algorithm, a noisy sinogram using
a 2D 64×64 phantom is generated. The phantom consists
of a disk background, two hot lesions and two cold lesions
with contrast ratio of 1:4:8 (cold:background:hot). The
projection data had dimensions of 64 angles by 96 detector
bins. Poisson noise of 300K counts is simulated as well
as uniform attenuation of water, and no other physical
or geometrical blurring effects or background events are
modeled here.

The sinogram is then reconstructed using the above
mentioned algorithms, with the same subset of 4 except
for ML-EM reconstruction. All reconstructions used a
constant image as the initial estimate. The reconstructed
images for each algorithm at 30th iteration are shown in
Fig.1.
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Fig. 1. 30 itertaions of all reconstructions.

We also plot the log-likelihood vs. iteration of each
reconstruction in Fig.2 for ML-EM (’+’), COSEM(’4’),
RAMLA (’◦’), and the proposed algorithm (HORSE?).
As expected, the reconstructions of COSEM and RAMLA
show relative order-of-magnitude acceleration over the
ML-EM reconstruction, while COS-SP is slow in the
beginning, but gets faster than EM (after 3th iteration),
and than COSEM (after 4 iterations), and compatible
with RAMLA (after 6 iterations).

IV. Discussion

We have proposed a new, provably convergent, OS-
type and Hessian-based algorithm which does not have
a relaxation parameter and which is fundamentally not
based on EM. Preliminary results show that this new
algorithm is faster than our previous COSEM algorithm
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Fig. 2. The log-likelihood plots of all reconstructions. Every one
has same IC (constant), and thus same log-likelihood in the first
iteration (should be the “0-th” iteration.) Here, 4 subsets are used.

For HORSE, c = 2 −

√

3 = 0.2679. In the beginning, HORSE is
slower than all (even EM), but got faster later.

after some intial iterations while is compatible with
RAMLA. However, in contrast to RAMLA, and similar
to COSEM, the new algorithm does not require any user-
specified relaxation parameters.

For the future work, we will extend the proposed
algorithm into a MAP case by including a prior.

Run COSEM few iterations and turn to HORSE later...
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