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Abstract. Inter-subject non-rigid registration of cortical anatomical struc-
tures as seen in MR is a challenging problem. The variability of the
sulcal and gyral patterns across patients makes the task of registration
especially difficult regardless of whether voxel- or feature-based tech-
niques are used. In this paper, we present an approach to matching sulcal
point features interactively extracted by neuroanatomical experts. The
robust point matching (RPM) algorithm is used to fine the optimal affine
transformations for matching sulcal points. A 3D linearly interpolated
non-rigid warping is then generated for the original image volume. We
present quantitative and visual comparisons between Talairach, mutual
information-based volumetric matching and RPM on five subjects’ MR
images.

1 Introduction

The recent development of brain imaging technologies (PET, MRI, fMRI) has
provided rich information on the human brain. A potentially fruitful emerging
area of research is human brain mapping [25] which requires a comprehensive
statistical analysis of brain structure and function across diverse populations
and different imaging modalities. A major requirement in brain mapping is that
the imaging data from different subjects and modalities have to be placed in a
common reference frame. Recent efforts have focused on using anatomical MR
as the basis for such registration.

Inter-subject anatomical registration is a difficult task due to the complexity
and variability of brain structures. This is most obvious in the cortical regions.
The folding of the cortical surfaces—the sulci and gyri—vary dramatically from
person to person and, in some cases [25] are not even always present in each sub-
ject. However, the folding pattern is not completely arbitrary. In fact, the sulci
often serve as important cortical landmarks. Furthermore, many cortical areas
have been associated with critical brain functionalities (vision, language, motor
control etc.) with the sulci often representing important functional boundaries.
Cortical registration, despite its enormous difficulty, is hence highly desirable as
a basis for further statistical quantitative analysis.



Our approach is based on matching feature points representing the sulcal
structures. The points were obtained using a tool [17] which allows a neu-
roanatomy expert to interactively trace sulci on a 3D skull-stripped MRI brain
volume. In contrast to just choosing a few landmarks, the tool allows us to rep-
resent sulci using hundreds of 3D points. Also, major sulci can be identified and
easily labeled.

We then match two sets of labeled sulci (extracted from two subjects’” MRI)
using a robust point matching (RPM) algorithm [20]. The method first deter-
mines the best global 3D affine transformation that brings the two sets of sulci
into register. Then piecewise affine transformations are solved for each sulcus
to further refine the registration. Afterward, a linearly weighted 3D volumetric
warping is generated from the piecewise affine mapping.

RPM has been previously developed and used for 2D rigid alignment [20] and
2D affine warping [11]. For the first time, we have developed the technique for
3D affine and piecewise affine warping and applied it to real 3D sulcal features.
Embedded within a deterministic annealing scheme, RPM allows us to jointly
estimate the spatial mapping (affine, piecewise affine) and the point-to-point
sulcal correspondences. Moreover, some sulcal structures in one subject may not
have corresponding homologies in the other. RPM is able to reject a fraction of
such non-homologies as outliers. Unlike other methods of point feature registra-
tion, RPM returns a one-to-one correspondence between sulcal points. Except
for the extraction of the sulci, the whole process is done automatically and the
registration and warping of one pair of brains only takes a few minutes.

2 Review

There are two principal approaches to non-rigid brain registration: voxel-based
methods and feature-based methods.

Voxel-based approaches try to find the optimal transformation such that a
local image intensity similarity measure is maximized. Most methods in this
class allow highly complex transformations which are normally proportional to
the size of the volume. Elastic media models, viscous fluid models [4] or local
smoothness models [6] are introduced as constraints to guide the non-rigid spa-
tial mapping. From these efforts, the need for non-rigid transformations is by
now quite clear. Note, however that these algorithms are driven by local voxel
intensities. Each voxel is treated equally without taking advantage of higher
level geometric information (such as the sulcal and gyral patterns used here). In
these methods, further anatomic validation is necessary to ensure that homolo-
gous sulci are indeed matched. Aware of this lack, landmarks were used as an
initial step in [4]. As [5] also pointed out in their recent work, the voxel inten-
sity approach worked well for deep subcortical structures, but sometimes had
difficulty aligning sulci and gyri. To correct this, in their recent work, [5] used a
chamfer distance measure [3] on sulcal points and combined it with their former
voxel-based matching (ANIMAL) framework. All of these efforts are attempting



to incorporate neuroanatomic geometric feature expertise into their registration
engines.

Feature-based methods, as the name implies, capitalize on the information
from different identifiable brain structures. Features which represent important
brain structures are extracted. The features run the gamut of landmark points
[2], curves [22] or surfaces [24, 8]. Subsequently, these methods attempt to solve
for the correspondence and transformation between the features. The spatial
transformations resulting from feature matching are then propagated to the
whole volume. Underlying the philosophy of feature matching is that homologous
features always provide an effective anchor for registration. However, enthusi-
asm for these methods is usually tempered not only by the difficulty of feature
extraction but also by the difficulty of simultaneously determining the corre-
spondences or homologies and the spatial mapping. The first problem—feature
extraction—usually calls for some residual manual intervention while the second
problem—automated matching—involves the computationally demanding task
of determining the correspondences and the spatial mapping. As our method
basically belongs to this category, we discuss previous methods in some detail
and compare them to ours.

Bookstein [2] pioneered the usage of landmark points for registration and
shape analysis. The thin-plate-spline is used as the spatial mapping between the
two landmark point sets to generate a elastic transformation in which the bend-
ing energy is minimized. Since this method basically relies on a few landmark
points, the accuracy of their locations is essential. The homologies between all
landmark points is deemed known (in advance). In contrast, in our approach,
the correspondences and the spatial mapping are co-determined from hundreds
of sulcal feature points. In addition, the anatomical variability between subjects
can create many outliers, i.e., sulcal points which do not match. Since we are us-
ing hundreds of points to represent the structural information, it is statistically
much more robust and the noise or point “jitter” which may be caused by various
sources such as the tracing process or sampling error, should not significantly
affect the final result.

In [24], 3D active surfaces are used to extract the surfaces of lateral ventri-
cle and outer cortex which are developmentally fundamental for the brain. An
initial surface is first constructed from some fiducial points and is then relaxed
towards the edges until a final balance is reached between the edge attraction
force and the surface smoothness measure. To better represent the deep corti-
cal structures (sulci), parametric mesh surfaces are also interactively extracted.
A point-to-point mapping between the two surfaces is then calculated and a
linearly weighted 3D volumetric warping is generated. [8] has a similar frame-
work where surface curvature maps at different scales are used for different brain
structures. More consideration is given to the inhomogeneity within the brain.
A more sophisticated elasticity model makes the algorithm more flexible at the
ventricles and more powerful to account for some abnormal cases where, for ex-
ample, tumors are involved. Both methods emphasize the importance of sulcal
alignment and not surprisingly, the validation in [24] has shown that anatom-



ically homogeneous points can be accurately aligned. As our method is based
on matching cortical structures, it is quite similar to both of these approaches.
However, we use point-sets as a representation for the sulci rather than surfaces.
The major sulci are labeled which imposes strong constraints on the match-
ing. Moreover, the non-rigid matching of 3D surfaces (parameterized by surface
normals for example) is a difficult problem. The parameterization of cortical
structures as point-sets allows us to easily utilize Procrustes methods of shape
analysis [12, 18] (by equating the atlas with the Procrustes mean). Eigenanalysis
of the error covariance matrix (around the Procrustes mean atlas) also yields
valuable information regarding the dominant modes of deformation present in a
population [7].

We have presented a detailed review of competing approaches to solving
point correspondence problems elsewhere [20]. Here we briefly discuss chamfer
distances [3, 5] and the iterated closest point (ICP) matching algorithm [1]. The
chamfer distance has been used in cortical registration by [22] and [5]. The main
problem with the chamfer distance is that it uses a brittle nearest neighbor
measure to assign correspondence. Nearest neighbor methods used in chamfer
matching and ICP are problematic in the vicinity of outliers since they generate
local minima [19]. Unlike the chamfer matching in [5] where a distance image
is calculated from the Euclidean distance from each voxel to its nearest sulcal
point feature, we directly use the sulcal point feature locations for the match-
ing. Finally, we should mention the work presented in [13] where a maximum
clique approach is taken to matching relational sulcal representations. Maximum
cliques is a very difficult NP-complete problem [10] which in this case increases
the likelihood of getting stuck in local minima. Also, it is difficult to explicitly
model non-rigid spatial mappings in the maximum clique approach [13]. Conse-
quently, the “engine” that does the work has to be pure sulcal correspondences
making the problem more difficult.

3 Robust Sulcal Matching

3.1 Softassign and Deterministic Annealing

There are two important factors that make RPM different from other point
matching methods. These two factors mostly account for RPM’s robustness,
which proved to be well suited for matching of the complex sulcal patterns.

The first is the softassign technique. Let’s suppose we have two point sets
{Xi,i=1,2,...,N1} and {Y},j =1,2,..., N2}, where N;and N, are the num-
bers of points in each set. (X; = (1, X}, X2, X3)T. We are using homogeneous
coordinates with a 4x4 affine spatial mapping so that the whole transformation
could be simply written as AX; .) The point matching problem is then equivalent
to solving the following optimization problem:

N1 Nz Nl N2

min B(M, 4) =min 33 Myl Xi - AV —a Y Y My ()
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subject to: Y0 Mi; = 1,Vj € {1,..., No}, Y2 My = 1,¥i € {1,..., N1},
where M;; € {0,1}. A represents the set of transformation parameters we are
trying to solve. M is the binary correspondence matrix [20,11] with an extra
row and an extra column introduced to account for outliers. The second term
in (1) controls the degree of robustness. Greater the value of «, less points are
rejected as outliers and vice-versa.

Obviously, the transformation parameters, represented by A, belong to the
set of continuous variables; on the other hand, the correspondence matrix M is
binary. The softassign technique provides a way to solve the optimizaton problem
with two such variables of different natures. Instead of forcing M;; to be binary,
we relax it to be continuous in the interval [0, 1], but with the row and column
sum constraints still intact. In addition to being just a numerical technique, it
also give us a new way of treating correspondence. Now, one point does not
necessarily just correspond to only one other point; it could have multiple mem-
berships with all others with one membership being much larger than the rest.
This property is clearly desirable if you have one point in one set lying in between
two points in the other set. It does not have to choose immediately which one
it belongs to but instead keeps a degree of “fuzziness” while preferring the clos-
est one a little bit more. This also suggests that during the registration process
when the transformation is optimized gradually, the correspondence member-
ships would change continuously and gradually as well without jumping around
in the space of permutation matrices (and outliers). In more formal terms, mak-
ing the correspondences fuzzy smoothes the energy function ridding it of poor
local minima [19]. The fuzzy correspondence matrix still has to satisfy the row
and column constraints. It turns out that the Sinkhorn balancing procedure of
alternating row and column normalizations is an ideal vehicle to satisfy the row
and column constraints [20]. The softassign essentially keeps all correspondences
positive and then uses Sinkhorn’s theorem to ensure that all rows and columns
sum to one (except for the outlier row and column).

Another classic point matching method is the ICP algorithm [1,9]. ICP uses
a nearest neighbor heuristic to set binary correspondences. The algorithm it-
erates between the spatial mapping and the nearest neighbor correspondences
until convergence. As in the chamfer distance [3], the brittleness of the nearest
neighbor measure can create local minima in many cases [19]. Some efforts have
been made to improve ICP’s robustness by including an adaptive thresholding
[9]. Also, there is no guarantee that ICP will return one-to-one correspondences.
While correspondence does not have to be a pre-requisite for registration, it
does play a more significant role in the creation of probabilistic atlases [15]; the
atlas formation step requires averages and covariance matrices to be computed
over all the corresponding points in a training set. We expect the one-to-one
correspondence returned by RPM to play a significant role in the formation of
probabilistic atlases.

Deterministic Annealing [27,28] is the other important technique used in
RPM, which is a good companion to softassign. It is closely related to simu-
lated annealing except that all operations are deterministic. The temperature



parameter T' in deterministic annealing specifies the degree of fuzziness of the
correspondence matrix—higher the temperature, greater the fuzziness. At each
temperature, the initial condition from the previous temperature is used and
a straightforward deterministic descent is performed on the energy function.
The process is repeated at lower and lower temperatures until M becomes al-
most binary. The method is more robust than classical gradient methods in
that more configurations are allowed at higher temperature, and this makes the
energy function smoother and less vulnerable to local minima. At very low tem-
peratures, RPM is very similar to ICP with the added benefit of one-to-one
correspondence.

3.2 The Spatial Mapping—3D Affine Transformations

With the above background regarding softassign and deterministic annealing in
place, it is reasonably straightforward to develop the method for a 3D affine
spatial mapping. The complete form of the energy function is:

min max E(A, M)
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Even though there are six terms, only the first two will be directly involved when
we are going to solve for the transformation A (actually A + I where I is the
identity transformation). The transformation A is now in 3D. The first term is
the error measure. Assume for the moment that the correspondence M is known.
The second term is the regularization on A. Basically we are assuming that the
affine transformation should be close to identity. The degree of deviation from
identity depends on A. Typically, we begin with a high value of A and quickly
decrease it, with the consideration being that at first the correspondences are
still far from the right answer and the transformation should not be too com-
mitted. Though this may add some complexity to the algorithm, we have found
it worthwhile for two reasons. The first is that the algorithm does not seem to
be very sensitive for slightly different choices of A annealing schedules, i.e., as
long as the starting value is high enough so that the transformations are not too
large in the beginning and the final value small enough so that the transforma-
tions won’t always forced too close to identity. The second reason stems from an
observation that because of the extra constraint we put on the transformation,
we could then choose not to use that robustness term —a EQ’;’NZ M;; at all.
Actually, in all our experiments « was set to 0.



With M held fixed, the energy function w.r.t. A is:

N1,N2
Eamine(A)lr = Y My||Xi — (A+ D)Y;j|]” + X trace(A” A) (3)
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which is a standard least squares problem for the matrix A . By taking the

derivative % = 0, we can get the closed-form solution for A.
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We will briefly describe the solution for the correspondence mainly for the
sake of completion. The fourth and fifth terms are the row and column con-
straints expressed via Lagrange parameters. The Sinkhorn algorithm within the
softassign process will automatically satisfy these constraints so we do not need
to explicitly solve for the Lagrange parameters y; and v; [20]. The sixth term is
an entropy term which can also be regarded as a barrier function [14]. Solving
for M;; (keeping the Lagrange parameters u; and v; fixed), we get:

CIXi—(A+DY; |2 —a—p;—v;

Mij =e T ()

Having specified both the spatial mapping in (4) and the correspondences in
(5), we summarize the algorithm in the following pseudo-code.

The Robust Point Matching (RPM) Algorithm

Initialize M, T, A, \
Begin A: Deterministic Annealing. Do A until 7' < Thnal
Begin B: Softassign and Relaxation. Do B until M converges or # of
iterations > I
Qij + 1Xi = (A+DYj|]> —a
M;; + exp(—%)
Begin C: Sinkhorn. Do C until M converges or # of iterations > I

M;; s
M;j + —=xz3r—— (row normalization)
o2 My
j=1
M;; o
M;j; + o (column normalization)

S M
End C

A [ My (G - VY] (D™ My Yy + A
End B
T < T * Tanneal—rate
A < A * Aanneal—rate
End A



3.3 Global/Piecewise Affine Registration and Warping

Given two brains’ sulcal point-sets, the registration is done in two steps. The first step
finds the global affine transformation to account for the overall translation, orientation,
scale and skew. After that, we further allow each sulcus to move locally to refine
the alignment by solving for a piecewise affine transformation for each of them. To
make sure that the sulcus only does local adjustment, the regularization is increased
compared to the first step so that only small transformations are allowed.

We then tried to propagate the transformations found for the sulcal points to the
whole 3D volume to generate a 3D warping. A weighted linear combination of all the
sulci’s piecewise affine transformations is calculated based on the shortest distance
between a voxel and each sulcus. More specifically, we have a total number of N sulci
with each of them (nth) denoted by a set of points, {Xl("), 1=1,2,...} and aset of affine
transformations A™ n=1,2,..., N. For the current voxel Yijk (other than the sulcal
points locations, where the transformation is unknown and need to be calculated ), the
shortest distance to the nth sulcus is found, dE;’g = min; ||Yijk —Xl(")|| ,n=1,2,...,N.
A set of weights is then defines as:

o)
an
wiil = = (6)
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and the final voxel transformation is the weighted summation of all A™ :

N
Aije = 3 Jwif - A® )
n=1

This is done for each voxel to warp the entire volume.

4 Experiments and Results:

4.1 Interactive Sulcus Tracing

The sulcus tracing was done on an SGI graphics platform [17] with a ray-casting tech-
nique that allows drawing in 3D space by projecting 2D coordinates of the tracing onto
the exposed cortical surface. A screenshot of the tool is shown on the left in Fig. 1.
The inter-hemispheric fissure and 10 other major sulci (superior frontal, central, post-
central, Sylvian and superior temporal on both hemispheres) were extracted as point
features. A sulcal point-set extracted from one subject is shown on the right in Fig. 1.

4.2 RPM Applied to Sulcal Point Sets

The original sulcal point-sets normally contain around 3,000 points each. The point-set
is first sub-sampled to have around 300 points by taking every tenth point. The original
MRI volume’s size is 106(X) x 75(Y) x 85(Z, slices). With that in mind, it is reasonable
to assume that the average distances between points before registration should be in
the range of 10 - 100. We set our starting temperature to be roughly in the same scale.
After registration, we would expect the average distance between corresponding points
to be within a few voxels (say, 1 - 10). Our final temperature should be slightly smaller.



Fig. 1. Left: A screenshot of the sulcus tracing tool with some traced sulci on the 3D
MR brain volume. Right: Sulci extracted and displayed as point-sets.

From these considerations, we set the RPM annealing parameters to be the following:
Tinit = 50 , Thnal = 1, Tanneal-rate = 0.95 . The regularization parameter M is set to
force A to be small at first. We use the value of Ain;¢+ = max;;[P;;] (P, as defined in
(4)) and decrease it by Aanneal—rate = 0.8 at the end of every temperature iteration.
As mentioned above, the idea is that the regularization should prevent the affine to
be over determined by the initial fuzzy correspondence at first; once the algorithm
starts moving towards the right correspondence, which usually happens within the
first few iterations, the regularization should be relaxed by decreasing A faster than
the temperature. Actually, we observed that normally any annealing rate between 0.7
and 0.9 works quite well.

Fig. 2 shows one example of RPM in action. The circles and crosses stand for two
sets of sulcal points and the gray links indicate the most significant correspondences
((Mi; > R or §)) between the two point-sets at that moment. The first one is
taken in the middle of the registration procedure in which clearly you can see that
correspondence is still “fuzzy”. The second one is taken towards the end of the process
and the correspondence is close to binary so fewer links are seen.

Softassign Matching Algorithm

Softassign Matching Algorithm
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Fig. 2. Demonstration of the robust point matching process. Left four: 3D point sets
and their three 2D projections in the middle of the matching. 3D point sets are shown
as circles and crosses. Their most significant correspondences are shown as dotted lines.
Right four: Towards the end of the matching.



4.3 A Comparison between Talairach, Voxel-based matching and
RPM.

We applied RPM to five sulcal point-sets and compared it with two other methods
which also use affine (and piecewise-affine) transformations for brain registration.

As we mentioned in the review section, we suspected that the voxel-based methods’
performance would not be as satisfying as feature-based methods for sulcal alignment.
To test this, we compare RPM with a voxel-based affine matching method [23] which
maximizes the mutual information between the two volumes.

By defining a common coordinate system, the Talairach method is a standard tech-
nique for brain alignment. A piecewise affine transformation is applied to 12 rectangular
regions of brains defined by landmark points of anterior and posterior commissures and
extrema of the cortex. We used the Talairach program available as part of the MEDx
package (from Sensor Systems Inc.) to align 5 brains. Sulcal points were traced on the
resulting brain volumes.

The volumes were then matched by the voxel-based method described in [23] and
the resulting spatial mapping was applied to the sulcal points. RPM was separately run
on the sulcal point-sets, and both the result from a simple global affine transformation
and piecewise affine transformations are shown in Fig. 3. Since we register every brain
to the first one, after registration, the minimum distance from each sulcal point in
the current brain to the first is calculated. The mean and variance of such minimum
distances for each sulcus is calculated for quantitative comparison. The results are
shown in Fig. 4.

ewise Affine

Fig. 3. Sulcal points alignment. The alignment results of five brains’ sulcal point-sets
on the left side of the brain are shown together. Denser, closely packed distributions of
sulcal points suggest that they are better aligned. We clearly see the improvement of
RPM over both Talairach and the voxel-based approach, especially for RPM with the
piecewise affine mapping.

The above comparison of Talairach with RPM and voxel-based approaches shows
that RPM can significantly improve upon Talairach in most cases even though it may
have less degrees of freedom. The voxel-based method’s performance is mixed; it gives
bigger error for 5 of the 11 sulci. The significant improvement from the global affine
transformations by allowing piecewise transformations confirmed the belief of the im-
portance of non-rigid transformations.

4.4 3D Warping and Comparison

The three dimensional warping of the brain volumes is calculated from the trans-
formations found for the sulci as described above. The insufficiency of the Talairach
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Fig. 4. The minimum distance measure (as described in text) for each sulcus (sulcal la-
bel: 0 - interhemispheric fissure; 1,2 - central sulcus; 3,4 - Sylvian fissure; 5,6 - superior
temporal sulcus; 7,8 - post-central sulcus; 9,10 - superior frontal sulcus. ) Top figure
shows the comparison between Talairach (dashed line), voxel-based method (light dot-
ted line) and RPM with a global affine transformation (solid line). Bottom figure shows
the first two again with results of RPM with piecewise affine transformation (light line).

alignment for the sulcal structure is clearly seen in Fig. 5. Even though our warping
strategy based on piecewise affine transformations is quite simple, the results show
further improvement upon the global affine transformation.

Two subjects’ brains as well as some of their major sulci are shown in Fig. 4. The
variability of the sulci can be appreciated from this figure.

Fig. 5. Two brain volumes after Talairach alignment with their sulci are shown here.
Left to right: Both sides of one brain A, both sides of another brain B.

By displaying the reference brain’s sulci on the other brain volumes warped using
the Talairach technique, global affine transformation from RPM and piecewise affine
transformations from RPM, we can see the improvement of sulcal structure alignment
by our method. We should also note that the better alignment is accompanied by
increased degree of brain deformation. These are shown in Fig. 5, 6 and 7.



Fig. 6. One brain’s (A) sulci overlay on the other’s (B) volume after Talairach align-
ment for both side.Clear mismatch can been seen at the temporal lobe area near the
Sylvian fissure and the superior temporal sulcus.

Fig. 7. Same except that the volume shown here is deformed by the global affine
transformation found by RPM. An improvement over the previous Talairach result can
be seen. Locally around the Sylvian fissure area, a small misalignment is seen in the
left figure.

5 Discussion and Conclusion

Our simulation and experiments with real data indicate that sulcal point matching is
a fast, robust and accurate tool for the registration of cortical anatomical structures.
We now mention several enhancements that could further improve our point feature-
based non-rigid registration. First, statistical shape models can be computed using the
correspondence information returned by RPM. From these models, more meaningful
deformation modes based on principal components can be constructed. Also, an arc
length-based ordering of the points (akin to curves) can be imposed. This would have
the effect of radically reducing the correspondence search. Finally, using a mixture
model [21], we can extend the matching algorithm to the problem of matching a labeled
sulcal atlas to an unlabled or partially labeled sulcal point-set. This would allow us
to automatically label the sulci extracted from a new brain image. We have reported
preliminary work on matching labeled point-sets to unlabeled features (though not
sulcal point features) elsewhere [16].

Fig. 8. Same as above except that the volume shown is deformed by the 3D warping
based on piecewise affine transformations from RPM. The better global alignment seen
from the figure above is maintained and some further local refinement could also be
seen (again, notice the area around Sylvian fissure in the left figure). We could also see
that the brain’s shape has been noticeably deformed.



Since we are using point-sets, which are quite flexible—i.e., it does not matter if
those points all lie on a curve, a surface or a more complicated geometrical object—
deep cortical structures (for example representations like sulcal ribbons [26]) can be
easily incorporated into our framework. Future work will focus on hierarchical (labeled
and unlabeled) point-set representations of the cortical structures.
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