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ABSTRACT
For over 30 years, the static Hamilton-Jacobi (HJ) equation,
specifically its incarnation as the eikonal equation, has been
a bedrock for a plethora of computer vision models, includ-
ing popular applications such as shape-from-shading, medial
axis representations, level-set segmentation, and geodesic
processing (i.e. path planning). Numerical solutions to this
nonlinear partial differential equation have long relied on
staples like fast marching and fast sweeping algorithms—
approaches which rely on intricate convergence analysis, ap-
proximations, and specialized implementations. Here, we
present a new variational functional on a scalar field com-
prising a spatially varying quadratic term and a standard
regularization term. The Euler-Lagrange equation corre-
sponding to the new functional is a linear differential equa-
tion which when discretized results in a linear system of
equations. This approach leads to many algorithm choices
since there are myriad efficient sparse linear solvers. The
limiting behavior, for a particular case, of this linear differ-
ential equation can be shown to converge to the nonlinear
eikonal. In addition, our approach eliminates the need to
explicitly construct viscosity solutions as customary with di-
rect solutions to the eikonal. Though our solution framework
is applicable to the general class of eikonal problems, we
detail specifics for the popular vision applications of shape-
from-shading, vessel segmentation, and path planning. We
showcase experimental results on a variety of images and
complex mazes, in which we hold our own against state-of-
the art fast marching and fast sweeping techniques, while
retaining the considerable advantages of a linear systems
approach.
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1. INTRODUCTION
Variational methods have been a mainstay of computer

vision since its inception. Surface reconstruction, optical
flow, edge detection and shape from shading (SFS) were
given variational treatments prior to the introduction of
other frameworks such as Gibbs-Markov random fields and
combinatorial optimization. In most of the above applica-
tions, variational methods have begun with a functional de-
fined on the field of interest (scalar fields in the case of sur-
face reconstruction and SFS and vector fields in the case
of optical flow) followed by the familiar trope of the Euler-
Lagrange differential equation and corresponding discretized
system of equations (on regular or irregular grids as the case
may be). Regardless of the application, variational methods
tended to incorporate both data and regularization costs
with the terms ranging from straightforward quadratic en-
ergies to more complex formulations. In the present work,
we bring a fresh perspective on the variational origins of
the eikonal equation. We show how to circumvent directly
working with the nonlinear eikonal, instead solving the re-
sulting linear Euler-Lagrange equation from our functional.
We exhibit how adoption of this framework will lead to very
efficient numerical algorithms, allowing us to simply employ
sparse linear solvers. In addition, in our framework, viscos-
ity solutions [5, 1] are generated as a natural by-product of
the linear solution, which is in sharp contrast to contem-
porary eikonal solvers that superfluously append a viscosity
term. Our variational formulation also opens the door for
new and innovative ways to incorporate problem dependent
constraints for eikonal-related applications.

Level-set methods have seen wide application in computer
vision over the past twenty years. Level-sets and related
Hamilton-Jacobi (usually eikonal) solvers have permeated
segmentation, path planning, mesh processing and active
contours. While the Hamilton-Jacobi differential equation



is typically derived in physics via a canonical transforma-
tion of a variational Lagrangian, in the above applications,
Hamilton-Jacobi and eikonal solvers have been directly used
without taking recourse to the physics route. In the process
of adapting to an application domain such as vision, the ori-
gins of the eikonal equation in optics and light propagation
are de-emphasized with the algorithmic aspect showcased
instead. Today, fast marching and fast sweeping eikonal
solvers have become the staple of level-set methods in gen-
eral and vision applications in particular.

Given this history of variational and level-set methods in
computer vision, the bar has been raised considerably for
the introduction of new frameworks and algorithms. The
motivation and need for new methodologies must be first
addressed, followed (hopefully) by a payoff via new algo-
rithms. We motivate the new energy minimization frame-
work by starting with a simple, variational problem, widely
known in computer vision. Given a set of discrete locations
xk, k ∈ {1, . . . ,K}, we create a scalar field φ0(x) which is
highly peaked at the given set of locations (typically referred
to as source points) and is close to zero elsewhere. (The field
φ0(x) can be thought of roughly as a set of delta functions
with the twist of being square integrable.) Now, consider the
reconstruction of a new field φ(x) which is close to φ0(x) in
the `2 sense while also being smooth in terms of an appropri-
ate Sobolev norm. Perhaps the simplest energy functional
(variational principle) is

I [φ] =

∫
Ω

|φ(x)− φ0(x)|2dx+ λ2

∫
Ω

‖∇φ(x)‖2dx (1)

where Ω is the domain and λ a regularization parameter.
Assuming certain technical conditions hold, the solution to
the above energy function can be written in terms of the sum
of isotropic Green’s functions at the source points. At small

values of λ, the solution φ(x) ≈ γ
∑K
k=1 G( ‖x−xi‖

λ
), with

γ being a normalization constant, rapidly and isotropically
decays to zero away from the source points. Isotropic decay
implies that the field φ(x) carries information related to the
distance from a source. In the limit as λ → 0, at a point
x ∈ Ω, φ(x) carries information regarding the distance to
the closest source location. This observation permits us to
assign φ(x) a distance function-like role.

One of the hallmarks of the eikonal equation ‖∇S(x)‖ =
c(x) is its versatility. The interesting applications of the
eikonal—shape from shading, path planning etc.—corresp-
ond to different choices of the forcing function. When ‖∇S‖
= 1, the scalar field S(x) is the actual distance function
(given a set of source locations at which S(x) is zero). As
we later show, the variational principle in (1) results in a
scalar field which is similar to S(x). Given this relationship
of the eikonal to the energy function in (1) for the setting
of the forcing function to one, is there an energy functional
incorporating c(x) with properties similar to the eikonal?

In this work, we design a new energy functional—similar
to (1) above—whose solution has many of the properties of
the eikonal. The new variational form, with a data term
modulated by c(x), results in Euler-Lagrange differential
equation which is linear in φ(x). Due to the presence of c(x)
though, we can no longer use a Green’s function approach
to solve the resulting linear differential equation—an inho-
mogeneous, screened Poisson equation. Instead, we directly
discretize the screened Poisson on a standard grid and use
sparse, linear system solvers to obtain the solution. Despite

the eikonal being a nonlinear differential equation, and our
screened Poisson a linear one, we show a very close relation-
ship between the two approaches and demonstrate the effect
of the free parameter λ in obtaining viscosity-like solutions.
We showcase the application of the new energy minimization
framework and sparse linear solver in path planning, shape
from shading and vessel segmentation.

2. A NEW VARIATIONAL PRINCIPLE
AKIN TO THE EIKONAL

We return to the “distance function” variational principle
in (1). Given a set of discrete locations xk, k ∈ {1, . . . ,K}
and a scalar field φ0(x) highly peaked at the source loca-
tions, the desired scalar field φ(x) can be recovered by solv-
ing the Euler-Lagrange equation corresponding to the vari-
ational problem

−λ2∇2φ+ φ(x) = φ0(x), (2)

a linear (inhomogeneous, screened Poisson) differential equa-
tion. Recall that φ0(x) is somewhat similar to a set of
delta functions located at the source points [with the dif-
ference being the square integrability of φ0(x)]. To tease
out the similarity to distance functions, consider the fol-

lowing pair of transformations: φ(x) = exp
{
−S(x)

λ

}
and

φ0(x) = exp
{
−S0(x)

λ

}
with S(x) and S0(x) arbitrary. (We

have abused notation somewhat by using S(x) in the trans-
formation in order to highlight the close relationship of φ(x)
to distance transforms.) While these transformations re-
quire mathematical justification—especially so since they
imply the non-negativity of φ(x) and φ0(x)—we bypass these
issues for now. Taking appropriate derivatives and substi-
tuting the results in (2), we get

‖∇S‖2 − λ∇2S = 1− exp

{
−S0(x)− S(x)

λ

}
. (3)

Assuming bounded derivatives and provided S(x) < S0(x)
almost everywhere, the above nonlinear differential equation
can be approximated at small values of λ as

‖∇S(x)‖ ≈ 1, (4)

the constant forcing function version of the eikonal equation.
The solution S(x) to eq. (4) is a distance transform over the
set of discrete source locations and satisfies

S(x) = min
k
‖x− xk‖ (5)

over the domain Ω.
Since the above derivation has been heuristic (in the ex-

treme), we now solve the differential equation in (1) assum-

ing the existence of a Green’s function G( ‖x‖
λ

) defined on
the domain Ω. The solution for an arbitrary φ0(x) is

φ(x) =

∫
Ω

G(
‖x− y‖

λ
)φ0(y)dy. (6)

As φ0(x) is closely related to a set of delta functions cen-
tered at the source locations (with the important difference
of being square integrable), we may approximate φ(x) as

φ(x) ≈ γ
K∑
k=1

G(
‖x− xk‖

λ
) (7)



where γ is a constant related to the square integrability of
φ0(x). For positive valued Green’s functions, we see that
φ(x) > 0 everywhere satisfying the assumption above that

φ(x) can be written as exp
{
−S(x)

λ

}
. Given this transfor-

mation, the approximate distance function can be expressed
as

S(x) ≈ −λ log

[
γ

K∑
k=1

G(
‖x− xk‖

λ
)

]
. (8)

For rapid and isotropic decay (at small values of λ) of the
Green’s function away from the source points, S(x) can be
shown to be a good approximation to the true (unsigned)
distance function with the approximation becoming increas-
ingly accurate as λ → 0. Green’s function expressions vary
with dimension requiring separate analyses on a case by case
basis. For dimensions 1 to 3—the cases usually of interest—
the analysis goes through and the above observations hold
[16].

Can the above distance function variational principle be
extended to the general eikonal? More precisely, given the
eikonal equation

‖∇S‖ = c(x), (9)

where c(x) is the forcing function, does there exist an energy
functional (variational principle) similar to (1) above. We
take a closer look at the physical meaning of the eikonal to
aid us in reverse engineering a new variational principle.

In the eikonal, S(x) is related to the time taken to reach
the location x. The forcing function is proportional to the
time spent at that location. The source locations represent
time at the origin with S(x) equal to zero. Then at a given
location x, S(x) is the total time taken to reach that lo-
cation with large values of the forcing function c(x) acting
as impediments, thereby increasing the time taken and vice
versa. In our setup, φ(x) is inversely proportional to S(x).
Therefore, large values of S(x) (time taken) correspond to
small values of φ(x) and vice versa. The input φ0(x) can
be taken to be peaked at the source locations and close to
zero in regions known to be inaccessible [with large values of
S(x)]. Consequently, we see an inverse relationship between
c(x) and φ0(x) as well. From the above, we see that c(x)φ(x)
should be small, except at the source locations where φ(x)
should be close to φ0(x).

Given these observations, consider the following varia-
tional principle—a potential candidate to be akin to the
eikonal:

I[φ] =

∫
Ω

c2(x)|φ(x)−φ0(x)|2dx+λ2

∫
Ω

‖∇φ(x)‖2dx. (10)

The principal difference between (10) and (1) is in the data
term. The forcing function c(x) now modulates the penalty
on the deviation of φ(x) from φ0(x). In particular, note
that large values of c(x) force a closer adherence of φ(x)
to φ0(x) and this tracks our earlier discussion focused on
locations where c(x) is large and φ0(x) close to zero. And,
we emphasize that φ0(x) is a modeling tool at our disposal
with no counterpart in the eikonal.

Without further ado, the Euler-Lagrange equation corre-
sponding to the variational problem in (10) is

−λ2∇2φ+ c2(x)φ(x) = c2(x)φ0(x), (11)

which is similar to the inhomogeneous, screened Poisson
equation in (2). Once again, consider the following pair of

transformations: φ(x) = exp
{
−S(x)

λ

}
and φ0(x) = exp{

−S0(x)
λ

}
with S(x) and S0(x) arbitrary. While we bypass

justification of these transformations, note that φ(x) and
φ0(x) are related to time (taken to reach a point) and can
therefore be expected to be positive. Taking appropriate
derivatives and substituting the results in (11), we get (as
shown in §8),

‖∇S‖2 − λ∇2S = c2(x)− c2(x) exp

{
−S0(x)− S(x)

λ

}
.

(12)
Assuming bounded derivatives and provided S(x) < S0(x)
almost everywhere, the above nonlinear differential equation
can be approximated at small values of λ as

‖∇S‖ ≈ c(x), (13)

the eikonal equation. We have shown that a linear differ-
ential equation—an Euler-Lagrange equation corresponding
to a very simple but new variational principle in (10)—can
play a role similar to the eikonal. The scalar field φ(x) is
the counterpart to S(x) in the eikonal. When we apply a
nonlinear, pointwise transformation on φ(x), we obtain a
nonlinear differential equation, very similar to the eikonal,
but containing a viscosity term modulated by a free param-
eter λ (which also controls the degree of regularization in
the variational principle). The linear differential equation
in (2) can be discretized to obtain a sparse linear system of
equations. Algorithm design is less of an issue in this space
with myriad efficient linear solvers at our disposal. To our
knowledge, this ours is the first derivation of a formal en-
ergy functional that leads to a linear PDE Euler-Lagrange
equation (11), which also corresponds, in the limit as λ→ 0,
to the nonlinear, general eikonal equation (9).

In light of the above discussion, the contributions of the
present work include:

• Introduction of a new variational principle, very closely
related to standard energy functionals used in vision
over the past thirty years, resulting in a linear Euler-
Lagrange differential equation that corresponds, in the
limit, to the nonlinear general eikonal equation.

• Viscosity terms appear naturally in our setup as op-
posed to the original eikonal.

• A standard discretization approach resulting in a
sparse linear solver.

• Demonstration of our framework in several application
domains, including path planning, shape from shading
and vessel segmentation.

As a preview, Figure 1 illustrates a solution for S(x) ob-
tained using our linear system approach and the resulting
optimal paths from three different locations.

3. RELATED WORK
The eikonal equation (9) has applications in numerous

fields, with variants of it having been successfully applied
in computer vision (shape from shading [12], distance trans-
forms [14], skeletons [19]), path planning [20], and optimal
control, with numerous accounts in theoretical physics. The
work in path planning and general geodesic processing is of
particular interest, since we will later develop the proper
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Figure 1: Left: S(x) obtained via the linear differential equation as opposed to directly solving the non-linear
eikonal equation. Middle: Contours of S(x), red dot indicates source point. Right: Optimal paths from
various locations to common source. (Note: constraint areas are in white and traversable regions in black.)

linear analog to all previous nonlinear approaches. Mitchell
[13] demonstrated the use of the eikonal equation for con-
strained path planning with multiple constraints, and more
recently, the work in [20] has illustrated its use for simple car
navigation. With the use of structured meshes, path plan-
ning using the eikonal equation can be extended to geodesic
processing on curved surfaces [3]. For completeness, we also
include [21], which recently demonstrated the use of the
classical-quantum connection in the context of reinforcement
learning (but made no contact with the eikonal).

Regardless of the application domain, what is common
among all these approaches are the numerical algorithms
used to solve eq. (9). Almost all default to the use of fast
marching and fast sweeping. The fast marching method
[14] is a well-known algorithm and has a complexity of O(N
logN), where N is the number of grid points in Ω (domain).
The logN factor is due to the overhead of administering
a priority queue data structure. More recently, the work
in [23] suggested a clever solution using an untidy priority
queue, which improved the complexity to O(N). However,
this comes at the price of approximation errors in the com-
puted solution. Analysis in [17] has shown that the explicit
estimate of the error introduced by using an untidy prior-
ity queue is tied to the speed function F (x) [inverse of cost

c(x) in eq. (9)]; the complexity bound is really O
(
Fmax
Fmin

N
)

.

Given a large ratio Fmax
Fmin

, there can be robustness problems.

This is a disconcerting characteristic for path planning—
our focus in the present work—where very large and small
values are assigned to c(x) to designate areas of admissible
traversability.

Fast sweeping [24] essentially executes Gauss-Seidel iter-
ations through the grid. It is generally easier to implement
than fast marching and is computationally nicer, having pre-
dictable memory access patterns. For a single pass over the
grid, the complexity is O(N). However, this is an iterative
algorithm; hence, the number of passes over the whole grid
really depends on the problem at hand—heuristic rules sug-
gest 2n sweeps for Ω ⊂ Rn.

A logical precursor to the work presented here is the Pois-
son equation approach in [9]. In this previous work, Poisson
equations are used in wave function-like shape representa-
tions (but not for the eikonal). The use of the Schrödinger
equation in [10] leads to an eikonal solver but the authors
do not demonstrate a variational principle underlying the
differential equation and do not solve a sparse linear sys-
tem as we have done. From a broader perspective, one can
view our work as a further step in the logical progression of
the application of linear differential equations in nonlinear

domains.
In our framework, we circuitously avoid direct solution of

the nonlinear eikonal, and instead only have to solve a lin-
ear wave equation (second-order PDE). We can leverage a
plethora of direct and iterative solutions to solve the result-
ing sparse, linear system, with complexity measures ranging
from optimal O(N) for multigrid [18, 22], logarithmic spec-
tral O(N logN) techniques [7], and polynomial O(N1.5) di-
rect solvers [6]. In addition to these favorable complexity
measures, sparse linear solvers have less complex implemen-
tation requirements than fast marching or fast sweeping, ex-
hibit better numerical stability, and are typically included
as part of many numerical libraries, e.g. MATLABR©.

The remainder of this paper is organized as follows. In the
next section, we detail the physical motivations and theory
that connects the variational approach used here with stan-
dard variational principles used in physics. Here, we also
make the connections between our framework and viscos-
ity solutions to the eikonal equation. We then discuss the
specifics as they relate to developing our path planning for-
malism, §5, followed by a brief exposition shape from shad-
ing., §6 Experimental results are showcased in §7.1, demon-
strating optimal path recovery on complicated constraint do-
mains, segmentation of vessels and surface reconstruction.
The last section concludes by summarizing our effort and
proposing directions for future work.

4. RELATIONSHIP TO PHYSICS-BASED
VARIATIONAL PRINCIPLES AND
VISCOSITY SOLUTIONS

In the theoretical physics literature, we encounter the fol-
lowing variational principle [2] on a wave function ψ(x):

H[ψ] =

∫
Ω

{
~2

2m
‖∇ψ‖2 + V (x)|ψ|2

}
dx (14)

in which ~ is the reduced Planck’s constant, m is the mass
of a free particle moving under a potential V (x). The Euler-
Lagrange equation derived from this variational principle is
the static Schrödinger equation

− ~2

2m
∇2ψ + V (x)ψ = 0. (15)

When we set ψ(x) = R(x) exp
{
iS(x)

~

}
in (15), we get two



equations, one for R(x) and the other for S(x):

∇ ·
(
R2∇S

)
= 0,

(∇S)2

2m
+ V (x)− ~2

2m

∇2R

R
= 0. (16)

In our setup, the “wave function” is not complex and we set

φ(x) = exp
{
−S(x)

λ

}
with λ playing a role similar to ~ in

(14). The change in the definition of φ relative to ψ above
allows us to obtain a single static Hamilton-Jacobi equation
with a viscosity term in (12). Otherwise, there are broad
similarities. It remains to be seen if there is any benefit to
using the complex wave function formalism in image analysis
problems.

There is a remarkable connection between the framework
detailed here and the theory of viscosity solutions for eikonal
equations [5]. Viscosity solutions arise from the need to
mathematically characterize solutions to the eikonal equa-
tion. More specifically, we desire the ability to prove proper-
ties such as uniqueness of the solution, its regularity, consis-
tency, etc. For a nonlinear PDE such as the general eikonal,
eq. (9), we mathematically cannot define a point-wise con-
vergent solution that strictly satisfies the differential equa-
tion. Hence, the basic approach in seeking viscosity so-
lutions for eikonal problems is to introduce an additional,
parameter-influenced term in the equation to get

‖∇S‖ − τ∇2S = c(x), (17)

where τ is a free parameter. The solution S is realized in the
limiting behavior of τ → 0 [5, 1]. The artificial incorporation
of this second-order term endows the approximate solution
desirable mathematical properties such as uniqueness.

The elegance of the present framework, where we solve the
linear PDE corresponding to nonlinear eikonal, is that this
viscosity-type behavior is a natural outcome of the Hamil-
ton-Jacobi formalism that connects the classical eikonal equ-
ation with its quantum, wave equation counterpart. Refer-
ring back to eq. (11), we see that the second-order Lapla-
cian term precisely exhibits this behavior, with λ2 playing
the role of τ . All desirable mathematical niceties are ob-
tained for free—properties of uniqueness, stability, etc. are
all well established for such linear, Poisson-type PDEs. We
consider this a novel contribution; as, to our knowledge, this
is the first time that the eikonal equation is solved using a
sparse, linear system approach (as we will later detail); thus,
circumventing the entire discipline of nonlinear viscosity so-
lutions which aim at directly solving the eikonal equation.

5. APPLICATIONS TO PATH PLANNING
In the pioneering contribution of [12], Kimmel and Seth-

ian developed one of the earliest applications of the eikonal
equation to path planning. By finding a solution S(x) (re-
ferred to as the value function in the path planning context)
to the eikonal equation in eq. (9), we immediately recover
the minimum cost to go from a source location x0 in the
state space to any other point x (in the state space). Here,
we impose the boundary condition S(x0) = 0, and consider
c(x) as the cost to travel through location x (higher the
value, the more costly) and prescribe it as a strictly positive
function, and S : Rd → R+[0,∞). In comparison to other
popular path planning techniques like potential field meth-
ods [11], the value function is an example of a navigation
function—a potential field free of local minima.

Given a scalar field solution, the optimal paths are deter-
mined by gradient descent on S(x), and is typically referred
to as backtracking. The backtracking procedure can be for-
mulated as an ordinary differential equation

ẋ = − ∇S(x(t))

‖∇S(x(t))‖ , (18)

whose solution x(t) is the reconstructed path from a fixed
target location xT . We typically terminate the gradient
backtracking procedure at some t value such that ‖x(t)− x0‖
< ε, i.e. we get arbitrarily close the source point, for some
small ε > 0. By construction, the backtracking on S(x)
cannot get stuck in local minima—an obvious proof by con-
tradiction validates this claim if one considers S to be dif-
ferentiable and have local minima ∇S = 0 at some x, but
c(x) > 0, and contradicts the eikonal equation ‖∇S‖ = c(x).
Although, in theory, S(x) can contain saddle points, but
usually this is not an issue in practice.

As we have espoused in §2, the linear differential equa-
tion—our counterpart to the general nonlinear eikonal in
eq. (9)—is the inhomogeneous, screened Poisson equation in
(11). Here, we choose to directly solve this linear differential
equation and get increasingly better approximations to the
true S(x) by solving the system at small values of λ.

Solving the distributional form of the screened Poisson
equation is far less complicated to implement than the fast
marching or fast sweeping methods needed for directly solv-
ing (9). In addition, the computational complexity for im-
plementing (11) can match these algorithms since O(N)
sparse, linear system solvers are available [18]. This comes
from the fact that a finite difference approximation to (11),
using a standard five-point Laplacian stencil, simply results
in a sparse linear system of the form [7]:

TN + 2IN −IN · · · 0

−IN
. . .

. . .
...

...
. . .

. . . −IN
0 −IN TN + 2IN


︸ ︷︷ ︸

A


φ1

φ2

...
φN


︸ ︷︷ ︸

x

=



c21φ0(1)
...

c2x0φ0(x0)
...

c2Nφ0(N)


︸ ︷︷ ︸

b

,

(19)

where N represents the number of grid points and TN is a
tri-diagonal block of the form

TN =


2 −1 0

−1
. . .

. . .

. . .
. . . −1

0 −1 2

 .
In eq. (19), there are three minor implementation details
hidden in the sparse structure. First, when the correspond-
ing grid locations of the main diagonal terms incur cost from
c(x), these will have to be added to that diagonal location.
Next, the right-hand side notation [with φ0(x0)] highlights



the fact that only the grid location(s) of the source point(s)
should have a high value (e.g.one) while all others are close
to zero. Finally, the c(x) function should be set to high
values for undesirable travel regions for the optimal path,
and very small values for favorable travel areas (and set to
one on the source point). Though better complexities are
achievable using multigrid [18] solvers, one can just as well
address many problems in a satisfactory manner using di-
rect, sparse solvers, like MATLAB’s A\b—an approach we
adopt for the experiments in the present paper.

6. APPLICATIONS TO SHAPE-FROM-
SHADING

Shape-from-shading has long been a popular problem do-
main for computer vision, having the primary objective of re-
covering the scalar height field from a single image. Solution
approaches utilizing the eikonal equation have been known
since the early 80’s [4], and have continually improved upon
through the advent of fast sweeping and fast marching meth-
ods [12, 15]. The standard forward image model assumes a
Lambertian reflectance model generates the luminance via
inner product of the surface normal, N(x), with the light
source direction, d., i.e. L(x) = 〈N(x), d〉. For example, if
we assume a vertical lighting direction d = [0, 0, 1]T , we get
the imaging operator

L(x) =
1√

‖∇S(x)‖2 + 1
,

where S(x) is the desired scalar height field we wish to re-
cover. This can be obtained by solving the standard eikonal
equation, eq. (9), with

c(x) =

√
1

L(x)2
− 1 (20)

and boundary conditions S(xi) = hi, i.e. we seed the bound-
ary conditions with the known heights hi at select grid lo-
cations xi.

As we have detailed in previous sections, our formalism
allows one to address any general (non-linear) eikonal equa-
tion by solving the linear screened Poisson equation in (11).
One simply needs to create the forcing function in (20), and
then solve the discretized sparse system as in (19). This
immediately yields the recovered height field.

7. EXPERIMENTAL VALIDATION

7.1 Path Planning on Complex Mazes and
Extensions to Vessel Segmentation

We applied our path planning approach to a variety of
complex maze images. We explicitly chose the maze grid
sizes to be much larger than the norm for recent publications
that apply the eikonal equation for path planning; these
typical sizes are usually smaller than 100 × 100. An objec-
tive juxtaposition of contemporary fast sweeping and march-
ing techniques, which require special discretization schemes,
data structures, sweep orders, etc., versus our approach pre-
sented here, clearly illustrates the efficiency and simplicity of
the later. Our framework reduces path planning (a.k.a. all-
pairs, shortest path or geodesic processing) implementation
to four straightforward steps:

2D Grid Dims. (No. of Points) A\b (sec.)

450× 450 (N = 202, 500), Fig. 1 0.79
434× 493 (N = 213, 962), Fig. 2(a) 1.02
621× 473 (N = 293, 733), Fig. 2(b) 1.22
419× 496 (N = 207, 824), Fig. 2(c) 0.77

Table 1: Maze grids sizes and time to solve sparse
system for path planning. Our approach simply uses
MATLAB’s ’\’ operator to solve the shortest path
problem, avoiding complex nuances of discretization
schemes and specialized data structures required for
fast marching.

1. Define c(x), which assigns a high cost to untraversable
areas in the grid and low cost to traversable locations.
In the experiments here, we simply let appropriately
scaled versions of the maze images be c(x), with white
pixels representing boundaries and black pixels the pos-
sible solution paths.

2. Select a source point on the grid and a small value
for λ. The solution to (11) will simultaneously recover
all shortest paths back to this source from any non-
constrained region in the grid.

3. Use standard finite differencing techniques to evaluate
(11). This leads to a sparse, block tri-diagonal system,
as described in §5, which can be solved by a multitude
of linear system numerical packages. We simply use
MATLAB’s ’\’ operator. Recover approximate solu-
tion to eikonal by letting S(x) = −λ log φ(x).

4. Backtrack to find the shortest path from any allowable
grid location to the source, i.e. use eq. (18) to perform
standard backtracking on S(x) .

The grid sizes and execution times for several mazes are pro-
vided in Table 1. Notice that even for larger grids, our time
to solve for S(x) is on the order of a few seconds, and this is
simply using the basic sparse solver in MATLAB. The time
complexity of MATLAB’s direct solver is O

(
N1.5

)
, which

makes our approach here slightly slower than the optimal
runtime. O (N) is achievable for sparse systems, such as
ours, using multigrid methods, but we have opted to show-
case the simplicity of our implementation versus pure speed.
Figure 2 illustrates our path planing approach on a vari-
ety of mazes: (a) demonstrates path planning while paying
homage to Schrödinger’s cat, (b) is a traditional maze, and
(c) is a whimsical result on a skull maze. Notice in all these
mazes there are multiple solution paths back to the source,
but only the shortest path is chosen.

The above discussed application of path planning can be
readily extended to centerline extraction from medical im-
agery of blood vessels. One can view the image I(x) as a
“maze” where we only want to travel on the vessels in the
image. Figure 3, column (a) illustrates three example med-
ical images: eye, brain, and hand. Columns (b) showcases
our results, while (c) provides comparative analysis against
fast sweeping. Notice that our solution naturally generates
smoother centerline segmentations, which is a natural con-
sequence of having a built-in, viscosity-like term in (12).
Whereas, the fast marching and fast sweeping methods tend
to have sharper transitions in the paths and deviate from
the center—viscosity solutions can be used to alleviate this,



(a) (b) (c)

Figure 2: (a) Schrödinger’s cat maze, (b) standard
maze, (c) skull maze. Multiple solutions are possible
but only the shortest path is chosen to be optimal.
(Note: constraint areas are in white and traversable
regions in black.)

Figure 3: Medical image vessel centerline extrac-
tion, top row original images and bottom row our
linear solution approach. Paths under our linear sys-
tems approach are smooth due to inherent viscosity-
like behavior. They also produce segmentations
where the extracted vessels are centered on the
blood vessels. FM approach requires additional con-
straints to achieve centerline extraction [8].

but are not organic to the formulation like ours. In fact, it
has been shown that additional constraints have to be in-
corporated to ensure fast marching approaches extract the
centerline [8]. Again, we stress the simplicity and ease-of-use
of this approach, with only one free parameter λ, making it
a viable option for many path planning related applications,
such as robotic navigation, optimal manipulation, and vessel
extraction in medical images.

7.2 Surface Reconstruction via Shape-from-
Shading

For shape-from-shading, we validated height recovery on
two common images that often used in the literature: Mozart
and a vase. Figure 4 illustrates the recovered surfaces us-
ing our method, (a), fast marching, (b), and fast sweeping,
(c). Under each image we also list the error of the recon-
struction from the known ground truth height field. The
error was computed by comparing the true mean gradient
magnitudes versus those estimated from the recovered S(x).

The validation shows that our method is competitive with
both fast marching and fast sweeping, all the while retaining
the efficiency and simplicity of obtain a solution through a

Error: 0.524438 Error: 0.713825 Error: 0.654674

Error: 0.203321 Error: 0.237820 Error: 0.199234
(a) (b) (c)

Figure 4: Shape-from-shading surface reconstruc-
tion, per column: (a) our linear solution approach,
(b) fast marching, (c) fast sweeping. Based on the
gradient magnitude error (from the true surface),
our approach linear systems approach is better or
at least highly competitive.

sparse linear system. Going beyond the present work, our
general framework can be adapted to all previous applica-
tion areas of the eikonal equation, and, as alluded to earlier,
the variational objective can be readily modified for to in-
corporate other constraints that may lead to better recon-
structions.

8. CONCLUSION
The Hamilton-Jacobi equation, particularly its specialized

form as the eikonal equation, is at the heart of numerous ap-
plications in vision (shape-from-shading, path planning, me-
dial axis, etc.), and spurred the rapid development of several
innovative computational techniques to directly solve this
nonlinear PDE, including fast marching, and fast sweep-
ing. However, lost in this flurry of advancing nonlinear
solvers was a completely alternative approach, one which
allows you to rigorously approximate solutions to the non-
linear eikonal by instead solving a linear differential equa-
tion which can be discretized and solved using a sparse, lin-
ear solver. We formally derived new variational principles
that lead to the Poisson-class equation and its connection
to the classical eikonal equation. This opens the door for
myriad future explorations that can be realized by simply
modifying the variational objective. We applied our frame-
work to develop a novel solution to the classical all-pairs,
shortest path problem (a.k.a. path planning)—for the first
time demonstrating that the solution is achievable by simply
solving a sparse, linear system. We also illustrated results
on shape-from-shading and vessel centerline extraction. Our
approach is straightforward to implement (by deploying any
sparse linear solver) and holds its own against contemporary
fast marching and fast sweeping methods while possessing
the considerable advantage of linearity. In addition, a di-
rect consequence of our mathematical formulation is that
viscosity solutions are naturally incorporated and obtained
when solving the linear differential equation—allowing one
to circumvent explicit viscosity constructions required for



any method that tries to directly solve the nonlinear eikonal.
In future work, we plan to revisit past uses of the eikonal
equation and examine improvements gained by the adop-
tion of our framework. We are also investigating extensions
of this approach to other areas such as control theory.
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Appendix
When φ(x) = exp

{
−S(x)

λ

}
, the gradient of φ is

∇φ = − 1

λ
exp

{
−S(x)

λ

}
∇S. (21)

From this, the Laplacian can be written as

∇2φ = exp

{
−S(x)

λ

}(
1

λ2
‖∇S‖2 − 1

λ
∇2S

)
. (22)

Substituting (22) into (11), we obtain

−‖∇S‖2 + λ∇2S + c2(x) = c2(x) exp

{
−S0(x)− S(x)

λ

}
.

(23)

Recall that φ0(x) = exp
{
−S0(x)

λ

}
behaves like a delta func-

tion. As S(x) is bounded within the domain under consid-
eration, S0(x) can be chosen much larger than S(x), ex-
cept at x = 0, so that the right side approaches zero as
λ → 0, ∀x 6= 0. The additional λ∇2S term [relative to
(9)] is referred to as the viscosity term which emerges natu-
rally from our Euler-Lagrange equation—an intriguing re-
sult. Since |∇2S| is bounded, as λ → 0, (23) tends to
‖∇S‖ = c(x) which is the original eikonal equation (9).


