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Abstract. We propose an algorithm, E-COSEM (Enhanced Complete-Data Ordered

Subsets Expectation-Maximization) for fast maximum likelihood (ML) reconstruction

in emission tomography. E-COSEM is founded on an incremental EM approach.

Unlike the familiar OSEM (ordered subsets EM) algorithm which is not convergent,

we show that E-COSEM converges to the ML solution. Alternatives to OSEM include

RAMLA, and for the related maximum a posteriori (MAP) problem, the BSREM and

OS-SPS algorithms. These are fast and convergent, but require a judicious choice of

a user-specified relaxation schedule. E-COSEM itself uses a sequence of iteration-

dependent parameters (very roughly akin to relaxation parameters) to control a

tradeoff between a greedy, fast but non-convergent update and a slower but convergent

update. These parameters are computed automatically at each iteration and require

no user specification. For the ML case, our simulations show that E-COSEM is nearly

as fast as RAMLA.
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1. Introduction

Since the introduction of the OSEM algorithm (Hudson and Larkin 1994) for emission

tomography (ET), there has been considerable interest in further developing iterative

OS (ordered subset) type methods for ET. Like the original EM-ML (expectation

maximization - maximum likelihood) algorithm and unlike analytical methods, OS

methods can easily incorporate system models for attenuation, detector response and

system geometry. Unlike EM-ML, OS methods are typically quite fast, requiring only a

few iterations for a reconstruction deemed acceptable by many users. This speed aspect

has inspired the use of OS-type methods for fully 3D PET reconstructions (Matej et

al 2001). The OSEM algorithm in itself does not maximize likelihood, and can lead to

limit cycles in the iterative object estimates.

Thus interest has been focused in deriving provably convergent versions of fast

OS methods. In Browne and De Pierro (1996), an OS method (RAMLA) for ML ET

reconstruction was proposed along with a convergence proof. In RAMLA, the iterative

updates are controlled by a user-specified relaxation schedule to ensure convergence.

For a given object and noise level, the user must experiment with parameters of the

relaxation schedule in order to attain the potential speed of RAMLA. This is a serious

inconvenience. There has also been interest in OS-type algorithms to quickly maximize

penalized likelihood (a.k.a. MAP or maximum a posteriori) methods. In De Pierro

and Yamagishi (2001), and Ahn and Fessler (2003), convergent BSREM and OS-SPS

algorithms were proposed for fast MAP reconstruction. Again, these MAP algorithms

require a user-specified relaxation schedule.

As mentioned above, the main problem with RAMLA, OS-SPS and BSREM is that

there is no easy way to determine relaxation schedules that lead to fast algorithms while

simultaneously satisfying theoretical criteria to ensure convergence. In this paper, we

build on previous work (Hsiao et al 2002a, Hsiao et al 2002b) to derive a convergent

OS-type ML algorithm, termed E-COSEM-ML (Enhanced Complete Data OSEM-

ML), that is fast (nearly as fast as optimized RAMLA), but avoids the problem of

user-specified relaxation schedules. E-COSEM-ML is founded on an incremental EM

approach (Neal and Hinton 1998, Gunawardana 2001) that is fundamentally different

from the approaches in Browne and De Pierro (1996), De Pierro and Yamagishi (2001),

and Ahn and Fessler (2003).

Our work in this paper is focused on ML algorithms for ET. Since such algorithms

are rarely carried to convergence, then one might question the need for provably

convergent versions and use instead an expedient empirical method such as OSEM.

Furthermore, even early-terminated convergent ML methods have 3 user-specified

parameters: (1) initial condition, (2) stopping rule and (3) relaxation schedule. We

note that relaxation schedules are used in Browne and De Pierro (1996), but not in

other approaches. For our E-COSEM algorithm, our goal is to eliminate (3) while

maintaining a fast convergent algorithm. With this accomplished, E-COSEM-ML may

be extended to a MAP case (as discussed in Sec. IV), thus removing the problem of
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stopping rule. For the remainder of the text, we shall use the acronym E-COSEM to

imply the E-COSEM-ML version.

In section II, we develop the theory for E-COSEM-ML, and show some comparisons

to EM-ML and RAMLA in section III. A discussion is included in section IV.

2. Theory

Let vector f with lexicographically ordered components fj, j = 1, . . . , N denote the

mean object activity at voxel j, vector g with lexicographically ordered components

gi, i = 1, . . . ,M denote the measured counts at detector bin i. A bin could be a detector

element in SPECT or a detector pair in PET. Denote the system matrix by H with

elements Hij. The system matrix element Hij is proportional to the probability of

receiving a count in bin i originating from voxel j. With the usual assumption of

independent detector counts and Poisson noise, gi ∼ Poisson([Hf ]i) so that the mean

sinogram is ḡ = Hf . (The derivation is easily extended to include a Poisson case with

ḡ = Hf + s̄ where s̄ is a vector with components s̄i, i = 1, ...,M representing mean

scatter or, for PET, randoms.) The maximum likelihood (ML) reconstruction, the goal

of this work, is then obtained as

f∗ = arg min
f≥0

Eincomplete(f) (1)

In EM approaches, the objective in (1) is referred to as the “incomplete-data negative

log-likelihood”. This ML objective is given by

Eincomplete(f) =
∑

ij

Hijfj −
∑

i

gi log
∑

j

Hijfj (2)

To motivate our E-COSEM algorithm for optimizing (2), we first show a novel means of

deriving the familiar EM-ML algorithm for ET. (This is but one of five ways to derive

EM-ML!). It turns out (Rangarajan et al 2000, Hsiao et al 2002a) that EM-ML may

be derived by optimizing the following “complete-data” objective:

Ecomplete(f ,C,λ) = −
∑

ij

Cij log Hijfj +
∑

ij

Hijfj

+
∑

ij

Cij log Cij +
∑

i

λi(
∑

j

Cij − gi). (3)

In (3), C (with entry Cij) is identified with (but not equal to) the complete data as used

in conventional statistical derivations of EM-ML. Conventionally, Cij is identified as the

integer number of photons leaving j and detected at i, but in (3), Cij is a positive analog

quantity explained below. Also, λ is a Lagrange parameter vector with component λi

which expresses the constraint
∑

j Cij = gi. In Rangarajan et al (2000) and Hsiao et al

(2002a), we showed that a coordinate descent on C and f while imposing the constraint∑
j Cij = gi leads to update equations for C and f which, when combined, yield the

familiar EM-ML update. To see this, we first write the fixed point solution for C in

terms of f and g. This is obtained from the first order Karush-Kuhn-Tucker condition
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(Karush 1939, Kuhn and Tucker 1950) by setting the first derivative of Ecomplete(f ,C,λ)

w.r.t. C to zero and solving for C to get

Cij = Hijfj exp{−λi − 1}. (4)

The Lagrange parameter vector λ can be eliminated by using the constraint
∑

j Cij = gi

in (4) to get

Cij = gi

Hijfj∑
j′ Hij′fj′

, ∀i, ∀j. (5)

The fixed point solution for f in terms of C and g is obtained by setting the first

derivative of Ecomplete(f ,C,λ) w.r.t. f to zero and solving for f to get

fj =

∑
i Cij∑
i Hij

, ∀j. (6)

Equations (5) and (6) specify a fixed-point solution for C in terms of f and a

fixed-point solution for f in terms of C, respectively. This pair of mutually dependent

fixed-point solutions can be converted into a single f updating algorithm. Introducing

a sequence of iterations indexed by an integer k ∈ {1, 2, . . .}, we convert the above fixed

point solutions for C and f in (5) and (6), respectively, to get

f
(k+1)
j =

f
(k)
j∑
i Hij

∑

i

Hijgi∑
j′ Hij′f

(k)
j′

, ∀j (7)

where f
(k)
j is the estimate at voxel j and at iteration k. This is the familiar EM-ML

algorithm for emission tomography but derived via the new complete data objective

function (3).

The above derivation of the ET EM-ML algorithm from a complete data objective

is not new. To our knowledge, albeit for a problem in mixtures decomposition

rather than ET, the first example of recasting an incomplete negative log-likelihood

objective function as a constrained objective is (Hathaway 1986) wherein the mixtures

(incomplete) likelihood is recast using a complete data objective function. In contrast,

the first place, to our knowledge where the ET EM-ML algorithm was derived using a

complete data objective was in (Lee 1994) (Appendix B) albeit using a complete data

variable which is closely related yet different from the one used here. The complete data

objective function used here therefore has a lineage in Hathaway (1986), Lee (1994),

Rangarajan et al (1996), Neal and Hinton (1998), Rangarajan et al (2000), Hsiao et al

(2002a) and Rangarajan et al (2003). Note that no connection to the world of ordered

subsets has been established thus far.

The principal goal in this paper is to derive fast and provably convergent ordered

subsets-like algorithms for emission tomography. To facilitate this and to introduce

notation, we first review the familiar ordered subsets EM (OSEM) algorithm for ET

(Hudson and Larkin 1994). For clarity, we use a SPECT context where subsets are

associated with projection angles, but our argument applies to any subset scheme.

Assume that the set of projection angles is subdivided into L subsets with the projection
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data in each subset denoted as {gi, ∀i ∈ Sl} with l ∈ {1, . . . , L}. The OSEM ET

algorithm is written as

f
(k,l)
j =

f
(k,l−1)
j∑
i∈Sl

Hij

∑

i∈Sl

giHij∑
j′ Hij′f

(k,l−1)
j′

, ∀j (8)

where f
(k,l)
j denotes the estimate at voxel j at iteration (k, l). In the outer k loop,

we assume that all subsets have been updated, whereas in the inner l ∈ {1, . . . , L}

loop, each subiteration l corresponds to an update using the limited backprojection∑
i∈Sl

gi
Hij∑

j′ Hij′f
(k,l−1)

j′

. The outer/inner loop structure of the iterations is required

because the projection data from only a limited number of projection angles are

backprojected at each “subset” subiteration (k, l). This is repeated over all the

projection angles after which the inner l loop is terminated and the next outer loop

iteration k initiated. In each inner loop (k, l) subiteration, we update {fj, ∀j}.

The above OSEM algorithm is now rewritten using the complete data notation.

We do this in order to firmly establish the close relationship between our convergent

ordered subsets algorithms and OSEM. Rewriting (8), we get

f
(k,l)
j =

∑
i∈Sl

C
(k,l)
ij∑

i∈Sl
Hij

(9)

where C(k,l) is the estimate of the entire set of the complete data at iteration (k, l).

Corresponding to the division of the incomplete data into subsets (e.g. projection

angles for SPECT), we also have a division of the complete data C which is denoted by

{Cij, ∀i ∈ Sl, ∀j} with l ∈ {1, . . . , L}. The update of the complete data is

C
(k,l)
ij = gi

Hijf
(k,l−1)
j∑

j′ Hij′f
(k,l−1)
j′

, ∀i ∈ Sl, ∀j (10)

C
(k,l)
ij = C

(k,l−1)
ij , ∀i /∈ Sl, ∀j. (11)

Equations (10) and (11) partition the update of the complete data into subsets. At

subiteration (k, l), we only update the complete data {Cij, ∀i ∈ Sl, ∀j} over a subset

Sl of the projection angles. The remaining complete data {Cij,∀i /∈ Sl, ∀j} are not

updated. Instead, as shown in (11), the remaining complete data retain their values

from the previous subiteration.

We now revisit the complete data objective function in (3) and rewrite it using

ordered subsets notation. After rewriting the complete data objective, we can derive a

subset version of the update equations for C and f , following a similar strategy as used

in obtaining (4), (5) and (6). The only difference is that, in the sequence of updates,

only a limited subset of the complete data is updated. This is immediately followed by

an f update. We rewrite (3) using ordered subsets notation.

Ecomplete(f ,C,λ) =
L∑

l=1

∑

i∈Sl

N∑

j=1

Cij log
Cij

Hijfj
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+
∑

ij

Hijfj +
L∑

l=1

∑

i∈Sl

λi(
∑

j

Cij − gi) (12)

where the M bins have been divided into L subsets Sl, l = 1, . . . , L in a manner similar to

OSEM approaches. We repeat the strategy used to obtain (7), but instead of attempting

a descent on all of C, we do this one subset at a time. At each (k, l), we first update

only those Cij, i ∈ Sl followed by an update of all fj. Doing this leads to the COSEM

updates reported in (Hsiao et al 2002a):

C
(k,l)
ij = gi

Hijf
(k,l−1)
j∑

j′ Hij′f
(k,l−1)
j′

, ∀i ∈ Sl,∀j (13)

C
(k,l)
ij = C

(k,l−1)
ij , ∀i /∈ Sl,∀j (14)

f
(k,l)
j =

∑
i C

(k,l)
ij∑

i Hij

(15)

where f
(k,l)
j and C

(k,l)
ij denote the estimate of fj and Cij at iteration (k, l). Note that

C
(k,0)
ij = C

(k−1,L)
ij ,∀ij. Despite the fact that only a subset of the complete data is updated

at iteration (k, l), we carry along the rest of the complete data as shown in (14). This

permits the summation in the numerator of (15) to be over all i.

For book-keeping purposes, we keep track of the value of B
(k,l)
j

def
=

∑
i C

(k,l)
ij and the

values of

A
(k,l)
j

def
=

∑

i∈Sl

C
(k,l)
ij , ∀Sl, l = 1, . . . , L, ∀j. (16)

We also define the quantities Dj
def
=

∑
i Hij, ∀j and T

(l)
j

def
=

∑
i∈Sl

Hij, ∀j. The values

of B
(k,l)
j can be recursively updated according to the following equation:

B
(k,l)
j = A

(k,l)
j − A

(k−1,l)
j + B

(k,l−1)
j , ∀j (17)

with initial condition B
(k,0)
j = B

(k−1,L)
j . Then (15) can be re-expressed as

f̃
(k,l)
j =

B
(k,l)
j

Dj

, ∀j (18)

where Dj is the system sensitivity at voxel j, and we append a tilde to f
(k,l)
j to denote

f̃
(k,l)
j as the COSEM estimate at voxel j and at iteration (k, l). The OSEM algorithm

(9) in this new notation becomes

f̆
(k,l)
j =

∑
i∈Sl

C
(k,l)
ij∑

i∈Sl
Hij

=
A

(k,l)
j

T
(l)
j

(19)

where f̆
(k,l)
j denotes the OSEM estimate at voxel j and at iteration (k, l).

It can be shown (Hsiao et al 2002a, Gunawardana 2001, Neal and Hinton 1998,

Rangarajan et al 2003) that COSEM monotonically decreases the complete data

objective (12) and that f (k,l) asymptotically approaches the ML solution f∗. (Please
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see the Appendix for an outline of the proof.) The decrease in incomplete-data negative

log-likelihood with k is not guaranteed to be monotonic, but in practice, we have always

observed it to be so. In contrast, OSEM does not actually minimize any objective

function. In particular, OSEM cannot be shown to asymptotically minimize the

incomplete-data negative log-likelihood and consequently does not converge to a true ML

solution. In our convergent ordered subsets approach, there are two different but closely

related objective functions. The first objective function is the familiar incomplete-data

negative log-likelihood that appears in (2) and the second is the complete data objective

function (12). The sequence of updates in (13), (14), (16), (17) and (18) decrease

the complete data objective function in (12) and not the incomplete data negative log

likelihood in (2). However, it can be shown (Neal and Hinton 1998, Gunawardana 2001,

Rangarajan et al 2003) that the above sequence of updates asymptotically reaches the

minimum of the original incomplete data negative log-likelihood. Therefore, despite the

fact that we minimize an objective function which is different from, albeit very closely

related to, the incomplete-data negative log-likelihood, asymptotically, we do minimize

the incomplete-data negative log-likelihood.

From (17), (18) and (19), we see that the computational expense of each COSEM

iteration is about the same as for OSEM. In particular, the numerator in (18) requires

only an incremental computation, the first term in (17), since the second and third

terms in (17) needn’t be recomputed.

We found that COSEM, while much faster than EM-ML in maximizing likelihood,

was “slower” than OSEM. By “slower”, we mean that a plot of incomplete data log-

likelihood vs iteration for COSEM and OSEM shows OSEM increasing the incomplete

data log-likelihood towards its asymptotic maximum value faster than COSEM in the

first few iterations. Since OSEM does not lead to a true ML solution, it is not guaranteed

to attain the correct asymptotic value of log-likelihood. Nevertheless, with these results,

we are motivated to speed up COSEM by making it “resemble” OSEM more closely while

still retaining its convergence properties. This heuristic impulse is justified below.

The basic idea is as follows: We seek a compromise between the faster OSEM update

in (19) and the slower COSEM update in (18), while still guaranteeing convergence.

This compromise is achieved by using a linear combination of the OSEM and COSEM

updates. The linear combination introduces a tradeoff between the faster OSEM and the

slower, but convergent, COSEM with a relaxation parameter α ∈ [0, 1] expressing the

degree of tradeoff. The relaxation parameter α is not a user-specified free parameter.

Instead, it will be automatically chosen to guarantee convergence while keeping the

tradeoff as close to OSEM as possible.

To do this, we modify the COSEM update (18) to the following E-COSEM form:

f
(k,l)
j = α(k,l)f̆

(k,l)
j + (1 − α(k,l))f̃

(k,l)
j (20)

where α(k,l) is an iteration-dependent parameter estimated so that it speeds up COSEM.

In (20), the OSEM update f̆
(k,l)
j and the COSEM update f̃

(k,l)
j are as in (19) and (18),
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respectively. The update for C, (13) and (14), remains the same. Note that

f
(k,l)
j |α(k,l)=1 = f̆

(k,l)
j (21)

and

f
(k,l)
j |α(k,l)=0 = f̃

(k,l)
j . (22)

Thus α controls the trade-off between OSEM and COSEM. The replacement of (18)

by (20) entails two challenges: choose α(k,l) to attain speed, and guarantee that the

resulting E-COSEM update is still convergent.

As far as convergence, we first note that the C(k,l) update, (13) and (14), remain

unchanged for E-COSEM, so that optimization w.r.t. C remains unchanged. It remains

to be shown that with suitable choice of α(k,l), (20) guarantees that the complete data

objective (12) will still decrease (or remain constant). It turns out, as explained below,

that such a decrease in (12) will guarantee a convergence of E-COSEM f (k,l) to f∗,

although f (k,l) will not converge monotonically to the minimum of the incomplete-data

negative log-likelihood. To show the decrease in (12), we first observe that the objective

in (12) with C held fixed at C(k,l) can be written as

E(k,l)(f) =
∑

j

E
(k,l)
j (fj) (23)

where E
(k,l)
j (fj) is given by

E
(k,l)
j (fj) = Dj(−

B
(k,l)
j

Dj

log fj + fj). (24)

In (24), we have dropped terms independent of f . The initial value of each E(k,l)(f) is

E(k,l)(f (k,l−1)) with the understanding that f (k,0) = f (k−1,L). To attain convergence of

(12) it is sufficient for the update f (k,l) to satisfy

E(k,l)(f (k,l)) ≤ E(k,l)(f (k,l−1)). (25)

Using (24) and (18), we may write

E
(k,l)
j (fj) = Dj(−f̃

(k,l)
j log fj + fj) (26)

where f̃
(k,l)
j is the COSEM update in (18).

To make (20) look like the speedy OSEM, we want α close to unity, but at the

same time, we need guarantee a decrease in E(k,l)(f). This strategy is attained by our

α update, which is given by

α̂(k,l) = max
α(k,l)∈[0,1]

α(k,l) (27)

subject to
∑

j

E
(k,l)
j (f

(k,l)
j ) <

∑

j

E
(k,l)
j (f

(k,l−1)
j ) (28)

where f
(k,l)
j is as defined in (20). Furthermore, note that (Rangarajan et al 2003)

COSEM (i.e. α = 0) guarantees
∑

j E
(k,l)
j (f

(k,l)
j ) ≤

∑
j E

(k,l)
j (f

(k,l−1)
j ), so that if the
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search in (27) and (28) fails, we set α = 0. This implies that α will inevitably be driven

to zero, and that E-COSEM will approach COSEM. Since COSEM converges, so does

ECOSEM. (See Appendix and (Rangarajan et al 2003).)

The final E-COSEM f update equation then is

f
(k,l)
j = α̂(k,l)f̆

(k,l)
j + (1 − α̂(k,l))f̃

(k,l)
j

= α̂(k,l)

∑
i∈Sl

C
(k,l)
ij∑

i∈Sl
Hij

+ (1 − α̂(k,l))

∑
i C

(k,l)
ij∑

i Hij

= α̂(k,l)
A

(k,l)
j

T
(l)
j

+ (1 − α̂(k,l))
B

(k,l)
j

Dj

. (29)

Note that this final form (29) of the iterative update incorporates the optimum value

α̂(k,l), whereas the intermediate form (20) leaves the value of α(k,l) unspecified. The

search strategy for α adopted here is to start with α(k,l) = 1 corresponding to OSEM,

and then repeatedly decrease α(k,l) by a factor of 0.9 until the inequality in (28) is

satisfied, or if α(k,l) becomes zero, whichever occurs first. Note that because of our

geometric update of α, it cannot exactly equal zero. In our implementation, we limit

our α update to a finite number of steps so that it ends up at a small value (0.0096)

near zero. In the limit of an infinite number of α-update steps, α approaches 0. This

α update, together with (13), (14) and (29) define our E-COSEM algorithm. Thus

our “enhancement” parameter α is computed automatically and is not a user-specified

parameter.

3. Results

We anecdotally explore 2D SPECT reconstruction speed using the EM-ML, OSEM,

COSEM, E-COSEM and RAMLA algorithms. We first generated noisy sinograms using

a 2D 64×64 phantom, shown in figure 1(a), consisting of a disk background, two hot

lesions and two cold lesions with contrast ratio of 1:4:8 (cold:background:hot). The

projection data had dimensions of 64 angles by 96 detector bins. Poisson noise (300 K

counts), uniform attenuation, and depth-dependent blur were simulated. We used an

initial condition f (0,0) = a constant.

The image was reconstructed using the EM-ML (7), OSEM (19), COSEM (13, 14,

18), E-COSEM (13, 14, 29) and RAMLA (14, 15, 16 in (Browne and De Pierro 1996))

algorithms using L = 32 subsets for all algorithms except EM-ML. For RAMLA, the

relaxation schedule (Browne and De Pierro 1996) was chosen as

βk =
β0

maxl T
(l)
j + k + 1

(30)

with β0 = 2.90. This choice adheres to the necessary conditions in (Browne and De

Pierro 1996), and through extensive numerical exploration, β0 was chosen to yield as

fast a convergence as we could attain.
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(a) (b) (c)

(d) (e) (f)

Figure 1. The 2D 64x64 phantom is shown in (a), while the anecdotal reconstructions

are displayed in (b) EM-ML, (c) COSEM, (d) E-COSEM, (e) RAMLA, and (f) OSEM.

There are 32 subsets used in the OS-type reconstructions, and all are run to 20

iterations.

Anecdotal reconstructions for each algorithm at iteration 20, using the above

physical effects, and L = 32 subsets, are shown in figure 1(b) EM-ML, 1(c) COSEM, 1(d)

E-COSEM, 1(e) RAMLA, and 1(f) OSEM. By 20 iterations, COSEM, E-COSEM, and

RAMLA have converged nearly to the same value of the incomplete-data log-likelihood,

and the reconstructions look similar. The EM-ML algorithm indeed has not converged

as much and looks somewhat smoother. The OSEM algorithm in figure 1(f) yields a

somewhat different reconstruction.

We plot the incomplete-data log-likelihood vs. log iteration of each reconstruction in

figure 2 for EM-ML (−−), COSEM (+), E-COSEM (.), and RAMLA (◦). As expected,

all methods show relative order-of-magnitude acceleration over EM-ML. The speed of

COSEM lies between that of RAMLA and EM-ML, and the speed of E-COSEM lies

between that of COSEM and RAMLA. Note that ECOSEM is considerably faster than

COSEM. In figure 2, the curve for OSEM is not plotted. However, it almost exactly

overlaps that for RAMLA.

We also plot the incomplete-data log-likelihood vs. log-iteration for E-COSEM,

under the same physical effects, but with varying numbers of subsets, in figure 3, using

1, 4, 8, 16, 32 and 64 subsets. One can see the speed-up of E-COSEM using larger

numbers of subsets. Note that the speed-up continues through 32 subsets, but slows

down as the number of subset increases to 64.
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Figure 2. This shows the plots of log-likelihood vs. log-iteration for the

reconstructions using EM-ML ( −− ), COSEM( + ), E-COSEM ( . ) and RAMLA (

◦ ).
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Figure 3. This shows the plots of incomplete data log-likelihood vs. iteration for the

E-COSEM reconstruction with various subset numbers of 1, 4, 8, 16, 32 and 64.

4. Discussion

We have enhanced our COSEM-ML algorithm to a faster E-COSEM-ML version that

uses the estimated parameter α̂(k,l), specified in equations (27) and (28). The resulting

speed is close to that of RAMLA, but E-COSEM avoids the need for a user-specified

relaxation schedule. A single iteration (one outer-loop k iteration) of COSEM has

the same computational complexity as EM-ML. But for E-COSEM, the extra step of
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Figure 4. This shows the plots of global α vs. sub-iteration E-COSEM. Here sub-

iteration index is defined as L ∗ (k − 1) + l, L = 32, k = 1, .., 20, and l = 1, .., L. The

value of α decreased to the lower limit, 0.0096 (it becomes COSEM), after sub-iteration

250 (k = 8).

searching for a suitable value of α can add to the computational burden per iteration

relative to EM-ML. We currently see an empirical increase of roughly 20% per iteration.

However, our crude α-search step can be modified using closed-form Taylor series

approximations so that the extra computation time is negligible.

By adjusting α(k,l), we have captured the intuitive notion of using the fast OSEM

algorithm in the early stages of a reconstruction, and then switching to a slower

algorithm that ensures convergence. To show that E-COSEM indeed captures this

notion, we plot α̂(k,l) vs. subiteration in figure 4. (Since L = 32, every 32 subiterations

correspond to a single outer-loop k iteration.) As seen in figure 4, α̂(k,l) begins near

unity, so that E-COSEM resembles OSEM, then eventually drops to nearly zero, so

that E-COSEM becomes equivalent to COSEM. (The limiting value of α̂(k,l) was 0.0096

due to the finite number of steps in the α update.) Though not shown, ECOSEM at

lower values of L will result in α = 1 (i.e. pure OSEM) for the first few outer loop

iterations. Thus our intuition is borne out.

In section I, we motivated the development of E-COSEM-ML as a stepping stone

towards an E-COSEM-MAP algorithm. We have already extended (Hsiao et al 2002b)

COSEM-ML (α = 0) to the MAP case, by deriving a convenient update using a

separable surrogate form of a prior. The speed of COSEM-MAP was slightly slower than

that of optimized BSREM. It appears plausible that by introducing a speed-enhancing

α̂(k,l) factor to COSEM-MAP, we can derive an E-COSEM-MAP algorithm competitive

with those in (Ahn and Fessler 2003, De Pierro and Yamagishi 2001), but without the

inconvenience of a user-specified relaxation schedule.

We note also that there is considerable latitude in the choice of update schemes like
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(20) that incorporate α. We are exploring alternatives to our simple linear combination

rule in (20) to see if faster algorithms are possible.
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Appendix

In this appendix, we provide an outline of the COSEM-ML proof, referring the reader

to (Rangarajan et al 2003) for details. This reference is available online. We will utilize

the notation Ecomplete(f ,C) to indicate the objective function

Ecomplete(f ,C) =
L∑

l=1

∑

i∈Sl

N∑

j=1

Cij log
Cij

Hijfj

+
∑

ij

Hijfj −
∑

ij

Cij (31)

This is equation (12) without the Lagrange term but with an extra term, −
∑

ij Cij ,

added, that does not affect the fixed point.

Denote the Cij in (4), i.e. the fixed point solution for Cij in terms of f , as Csol
ij (f).

Then as proven in (Rangarajan et al 2003)

Ecomplete(f ,C
sol(f)) = Eincomplete(f) (32)

We can show (Rangarajan et al 2003) that Ecomplete(f ,C) is convex. To see this,

observe that each term in (31) can be manipulated into a form φ(x, y) = x log(x
y
)−x+y,

where x = Cij and y = Hijfj. With some algebra, it is easy to show that φ(x, y) is

convex with respect to both x and y, and , hence, Ecomplete(f ,C) is convex in Cij and

Hijfj. Then since Hij is a constant (independent of fj), Ecomplete(f ,C) is convex in Cij

and fj.

Define ∆E
(k,l)
complete = Ecomplete(f

(k,l),C(k,l)) − Ecomplete(f
(k,l−1),C(k,l−1)). Then in

(Rangarajan et al 2003), we show that via the COSEM-ML algorithm, ∆E
(k,l)
complete ≤ 0.

At ∆E
(k,l)
complete = 0, for all subiterations l, we reach a fixed point (f̂ , Ĉ). That is, all Cij,

fj stop changing with k, l. Furthermore Ĉ = Csol(f̂).

Since Ecomplete is convex and since COSEM-ML is a form of grouped coordinate

descent, it turns out that (f̂ , Ĉ) is, in fact, an element of the set Γ of global minima of

(12). This f̂ can also be shown to be a global minimum f∗ of Eincomplete(f) (Rangarajan

et al 2003). We conclude f̂ = f∗.
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