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1 INTRODUCTION

Remote sensing instruments and sensors have
made significant progress over the last several
decade in spatial, spectral and temporal resolutions.
These improvements have led to the collection
of synoptic scale data and enabled a variety of
new applications. For example, improvements in
temporal resolution allows monitoring biomass on
a daily basis. Improvements in spatial resolution
allows fine-grained classification of urban settle-
ments, damage assessments, and critical infrastruc-
ture monitoring. Remote sensing applications have
the following characteristics:

» Spatio-temporal Grid: The underlying data sets
are gridded—with the grid dimensions rang-
ing across 2D (images, 2D flow fields), 3D (vol-
umetric data) and 4D (spatiotemporal data).
Unlike standard machine learning approaches
where the data is usually only available in the
form of high dimensional feature vectors, the
presence of a grid affords us the potential to
develop techniques that can interpolate each
of the features (using differentiable splines)
and generate new feature vectors with different
(and more desirable) nearest neighbor proper-
ties.

o Large Volume and Velocity: The underlying
volume (terabytes to petabytes) and velocity
(gigabytes to terabytes per day) of these ap-
plications is very large and are responsible for
carrying us into the bigdata regime. Effective
processing requires low complexity and multi-
scale algorithms that can exploit modern par-
allel architectures with deep memory hierar-
chies.
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o Complex Queries: The underlying queries of
interest are complex and require segmentation
into cohesive regions; change detection; model-
ing spatial and temporal correlations; detection
of rare events; and classification of each pixel
into one of the k given labels (e.g. forest, water,
urban). spatiotemporal linkages play a promi-
nent role and potentially exhibit evolutionary
dynamics rendering prediction and generaliza-
tion even more difficult.

» Expert Interactivity: These techniques need to
be able to incorporate domain expertise and
expert involvement in the knowledge discov-
ery process. Though supervised methods are
the preferred form of analysis, getting ground-
truth (training and/or labeling) data for large
spatiotemporal extents is impractical in several
application domains. Thus, techniques have to
be semi-supervised to address the fact that
expert labels may only be available for a small
portion of the data.

In this paper we provide a framework for semi-
supervised labeling of regions (urban, slums,
forests, sea, sand) in high resolution aerial images.
Our approach apart from being capable of running
in parallel is fast enough despite the large volume
of input data. The speed of our framework is
realized through clustering the data into overseg-
mented regions called superpixels which have re-
cently become popular in the computer vision com-
munity. Superpixels correspond to coherent patches
or areas in 2D (or volumes and hypervolumes in 3D
and 4D respectively). These coherent superpixels
also reduce the data complexity since processing is
moved to the superpixel level from the pixel level.
This provides a huge benefit specially in the case
of large volumes of data because dealing at per



pixel level can be overwhelming. Superpixels also
have a huge advantage over partitioning the image
into regular patches because regular patches ignore
the local variability of the underlying data w.r.t.
the grid. Superpixel estimation follows the path of
partitioning a set of pixels using feature distances.
In comparison to standard patch based approaches
which use square or rectangular patches, super-
pixels in 2D can be expected to perform better
since they take into account the local variability
of features. For example, if we obtain 128 dimen-
sional SIFT vectors [15] at each pixel, the resulting
superpixels take into account the local variation
of the set of SIFT vectors. Consequently, provided
superpixel estimation can be made scalable and
efficient, superpixel tessellation is an important first
step in spatiotemporal semi-supervised learning.

Since the advent of Normalized cuts [20] and
advances in Graph cut methods [11], [7], there has
been a surge in the methods to decompose an
image into superpixels. Ultrametric Contour Map
(UCM) [2] is another such popular method which
uses local and global cues to produce a hierarchy of
tessellations at different scales ranging from fine to
coarse. These tessellations respect the containment
property, that is every finer scale tessellation is
contained within the next higher (or coarser) scale
tessellation. In this work we lean on the hierarchical
output of UCM and leverage it in two different
ways — (i) The first usage is more traditional and
direct in the sense that a finer scale tessellation
is obtained and used for classifying (or labeling)
each superpixel (as against each individual pixel).
(ii) This second usage of UCM is more subtle
in the sense that we obtain the tessellation at a
coarser scale and use it as a feature for classifying
the superpixels at the finer scale selected in (i).
This is because the tessellation at a coarser scale
of UCM mostly picks up prominent boundaries
thus increasing the probability of detecting urban
regions. Distinguishing between different kinds of
human settlements for example, slums vs urban, is
a challenging task. The key feature that seems to
distinguish the two classes is presence of stronger
boundaries around the superpixels representing the
slums. Traditionally used features like dense sift,
HOG etc. can be used towards detecting these
regions but these suffer from the problem of de-
termining the appropriate scale and orientation.
Further these features are also not able to pick
up the prominent boundaries as detected by UCM
tessellation at a coarse scales. Because UCM in-
herently involves a combination of dense features
like textons and color histograms and only shows

stronger boundaries at coarser scales, it greatly sim-
plifies the task of discriminating the urban regions
from the slums. The containment property of UCM
further helps in percolating the features obtained at
a coarser tessellation down to the all the superpixels
of the finer tessellation.

Our classification and label propagation pipeline
works by using superpixels to find various features
and then uses the sparsely available groundtruth
data from the expert to train a rudimentary classi-
fier based on either k-nearest neighbors (kNN) or
SVM. We then use Laplacian Propagation to refine
the preliminary labels obtained in the previous
stage. For both these approaches we build a graph
with superpixels as the nodes. These nodes are
connected in the feature space in the case of kKNN
and in the spatial domain in the case of Laplacian
Propagation.

Roadmap: In the next section we discuss the
related work in classifying remote sensing im-
ages using semi-supervised approaches. Section 3
describes our approach in detail. In this section
we also discuss the graph theoretical approaches
needed for Laplacian propagation and kNN. Sec-
tion 4 provides experimental validation and section
5 concludes this paper after highlighting the future
work.

2 PREvViIOUS WORK

Major steps involved in remote sensing image clas-
sification can be abstracted into: (i) extraction of fea-
tures from the image, (ii) collection of ground-truth
(training/test) data for few sample locations, (iii)
building a classification model (e.g. naive Bayes,
decision trees, MLPs), and (iv) predicting labels
for the entire image. Most of the existing clas-
sification approaches work with spectral features
(e.g., blue, green, red, thermal infrared) and de-
rived features (e.g., texture, band ratios like Nor-
malized Difference Vegetation Index (NDVI), His-
togram of Oriented Gradients (HOG)), extracted
at each pixel (spatial location). These classification
approaches are called pixel-based or single instance
learning (SIL) algorithms. A review of these tech-
niques can be found in [25], [13]. Most classification
schemes model the correlations in feature space
and often ignore spatial correlations in the image
space. An improvement over per-pixel classification
schemes are the spatial classification schemes such
as MREF [19]. In spatial classification schemes both
spatial correlations (context) and feature correla-
tions are modeled simultaneously, as a result the
final classified image contains much smoother (spa-
tially) class distributions and eliminates salt and



pepper noise. However, it should be noted that
spatial classification methods are also essentially
single instance learners. One way to overcome sin-
gle instance limitation is to look at additional fea-
tures beyond spectral features, because features that
exploit spatial contextual information are highly
useful in the classification of very high-resolution
images. Recent studies [25], [22], [13] show the
improved performance of SIL methods when the
spectral features are combined with a broad set of
extended features such as morphological, texture,
and edge density. Although these studies showed
that the extended features which exploit spatial
contextual information resulted in improved the
SIL accuracy, the underlying image complexity and
interpixel relationships are still not fully exploited.

Complex object recognition requires investiga-
tion of spatial region or image patch. Object based
classification schemes [18], [5] seek to segment the
image into meaningful objects by exploiting spa-
tial and spectral features. One can build a meta
classifier on the features extracted from the objects,
for example, area, perimeter, compactness, shape
index, and fractal dimension. Or one can aggregate
all feature vectors into a single feature vector and
then apply any single instance learning algorithm.
However, all these approaches lose important struc-
tural and spatial properties in the aggregation pro-
cess. Multi-instance (or Multiple instance) learning
(MIL) methods have been developed to overcome
some of the limitations of single instance learning
schemes. Notable approaches include the seminal
work of Dietterich et. al. [10], Diverse Density [16],
and Citation-KNN [26]. Recently, MIL algorithms
have also been applied to remote sensing image
classification as well. For example, in [6], authors
have developed an MIL based binary classification
scheme for identifying targets (landmines) in Hy-
perspectral (HS) imagery. While each of these al-
gorithms have advantages and disadvantages over
per-pixel based classification schemes, in general
they are shown to perform (accuracy) better than
single instance learning schemes. In MIL, the train-
ing data consists of many bags (image patches)
where each bag contains several examples (pixels).
A bag is positively labeled if it contains at least
one positive instance (e.g., informal settlement) and
negative otherwise (e.g., formal settlement). In a re-
cent feasibility study Citation-KNN algorithm was
applied for complex settlement mapping [24]. The
high computational cost of Citation-KNN has lead
to the development of an efficient Gaussian Multi-
ple Instance (GMIL) [23] learning algorithm. Both of
these algorithms are shown to perform better than

most well-known SIL approaches, however lever-
aging them for global scale problems is difficult due
to their complexity. We believe that our work which
utilizes irregular patches or superpixels (which are
mainly homogeneous) along with novel and par-
allelizable machine learning techniques have the
potential to address the scale requirements of target
applications.

Finally, we summarize the evolution—mainly in
the past decade—of graph-based semi-supervised
learning methodologies. Note that there is no gen-
eral literature of graph-based SSL for gridded data.
Early work on SSL focused on optimization [9]
and relationships to transductive inference [14], [21]
and multi-view learning [17]. Since then, the use
of graphs in SSL has become standard [12] (while
the extension to multivariate graphs for gridded
data is not). Graph-based SSL methods attempt to
assign node labels using a weighted combination
of the neighbors. Different methods use different
principles to design objective functions for label
propagation. For example, a popular approach [27]
iterates a function of the graph affinity matrix until
convergence and then uses the sign of the function
at each node. A different method adapts the Jacobi
iteration for linear systems and obtains a some-
what different weighted combination subsequently
used for prediction. Other influential methods [3]
use regression to determine the weighted combina-
tion. First, they compute the graph Laplacian fol-
lowed by eigenvector computation. Then a regres-
sion objective estimates a weighted combination of
the principal eigenvectors on the training samples
which is utilized for prediction at the unlabeled
nodes. Other methods draw upon random walks on
graphs (related to Markovian transition probability
estimation) to perform label prediction [8].

3 APPROACH

We have motivated the importance of adaptive
patch generation which respects data regularities
prior to construction of the patch graph. Since the
decomposition of the data into irregular (but co-
herent) patches or tessellations using “superpixels”
is so crucial for spatiotemporal SSL, we begin by
describing our approach to this problem. This is
followed by a rudimentary classification using ei-
ther SVM or kNN and finally smoothing the labels
using Laplacian Propagation. Because kNN and
Laplacian Propagation are based on a graph datas-
tructure, we will also describe the construction of
a superpixel graph with multivariate edges corre-
sponding to the spatiotemporal (grid) and feature-
based metrics. The nodes of the graph are the



superpixels with the edges being the connections
between superpixels. In spatiotemporal processing,
multivariate edges comprise spatiotemporal edges
(type 1) and feature-based edges (type 2). The latter
are obtained from a superpixel similarity metric
wherein comparisons are undertaken between pairs
of superpixels. To achieve scalability, the number
of such edges would be significantly lower than
O(M?) for M superpixels. We develop fast and
parallel approaches for implementing the graph-
based SSL techniques. The details are provided in
the following subsections.

3.1

We use UCM [2] to decompose the image into
superpixels at multiple scales. UCM outputs a hi-
erarchical structure with dense superpixels at the
finest level which gradually merge into one big
superpixel for the whole image at the topmost
(coarsest) level. At all other intermediate levels
in UCM, the superpixels follow the containment
property, that is the superpixels at a finer level
are contained within the superpixels at the coarser
level. In our approach we leverage this hierarchical
structure to obtain a fine and a coarse tessellation
of the 2D image by thresholding the UCM at two
different scales. The finer tessellation is used for
classification and label propagation as described in
the next section. The coarser tessellation is used
to obtain those superpixels which predominantly
distinguish urban regions. This is because a coarser
tessellation outputs superpixels with prominent
boundaries which are more likely to belong to the
urban regions.

Superpixel formation

3.2 Superpixel descriptor

As mentioned above we obtain superpixel tessel-
lations at two levels — finer and coarser. Because
in our framework only the finer scale superpixels
are used for classification and label propagation,
we only need to provide feature descriptors for
superpixels obtained at the finer scale. The coarser
scale superpixels in turn act as features to describe
the finer superpixels as we will explain here.

Each superpixel at the finer level is described
using three kinds of features — intensity histograms,
corner density and a binary feature derived from
the coarser level of UCM. For the intensity his-
tograms, we quantize the grayscale intensities into
52 bins and obtain a 52 dimensional feature vector
for each superpixel. For obtaining the corners we
use Harris corner detector and obtain the density
as the number of corners per unit area for each

superpixel. Corners act as an important feature
in discriminating between regions with buildings
(for example, slums and urban area) and regions
without (for example, forest and sea). The coarser
scale UCM provides a binary feature for each finer
superpixel as follows. The coarser scale UCM only
keeps prominent boundaries and therefore outputs
much larger superpixels. Among them, the super-
pixels which are smaller than a certain size thresh-
old predominantly belong to urban regions. This
is because urban regions are usually found with
stronger boundaries and hence are more discrimi-
nating. The superpixels which are much larger than
the size threshold are more likely to be a merger of
several different types of smaller superpixels and
are often not much discriminating. For example,
these superpixels can be a merger of slums and
forests or other similar looking regions which do
not have as clearly demarcating boundaries as the
urban regions have. So to get the binary feature
we label the superpixels below the chosen size
threshold with ones and the superpixels above this
threshold with zeroes. These binary features are
then percolated down the UCM hierarchy to the
finer scale superpixels. All the finer superpixels
contained in the larger superpixels get the same
label as that of the larger superpixel they are con-
tained in.

These three different kind of features are then
concatenated to form a 54 dimensional feature vec-
tor which describes each superpixel of the finer
tessellation. Other features like HOG and dense
SIFT can also be added to the above framework
but for simplicity we only chose the above three
features. Further, the coarser level feature derived
from UCM itself incorporates textons and size of
superpixels as implicit features in arriving at the
binary descriptor.

3.3 Building a Patch Graph with Multivariate
Edges

Before we move on to describe the semi-supervised
learning stage of our pipeline, we discuss methods
used to create graph data structures. This is because
we employ k-nearest neighbors (kNN) and Lapla-
cian propagation (described in the next section)
both of which rely on Graphs. We use graphs with
a patch or superpixel at each node with edges con-
necting superpixels that exhibit strong similarity to
each other.

Spatio-temporal datasets have two metrics: (i)
pixel and space-time metric (in the case of Lapla-
cian propagation) and the (ii) feature vector metric



(in the case of kNN). The pixel space-time metric
imposes locality while the feature metric allows
distant features to be similar. Thus, similarity be-
tween objects can be measured using either of
these two metrics generating multivariate edges.
Instead of using pairwise comparison that requires
quadratic time, whenever possible efficient deriva-
tion of these edges is done using k-d trees [4].

3.4 Semi-supervised learning on the Patch
Graph

Given the large size of the underlying datasets it
is impractical to expect that the ground truth is
available except at a small number of grid points
since data sets scale but experts do not. Thus,
practical approaches have to be semi-supervised (as
opposed to supervised or unsupervised) with focus
restricted on methods with proven scalability. In
this work we achieve SSL through a two stage pro-
cess of (i) classification using either SVM or kNN
followed by (ii) Laplacian smoothing. Our classifi-
cation pipeline is similar to [1]. As mentioned above
the ground truth data is available only for a small
number of superpixels as labeled by experts. We
use this ground truth to train our classifier. For
training the SVM we used a linear kernel and for
training the kNN we used the nearest neighbors in
the feature space based on the k-d tree method. The
model obtained from training either the SVM or the
kNN is then used to determine preliminary labels
for all other superpixels.

3.5 Laplacian propagation

Because of the semi-supervised nature of the prob-
lem, the classification obtained from above is rudi-
mentary because it based on a classifier (SVM or
kNN in our case) derived from limited groundtruth
data. This classification can lead to artifacts such
that neighboring regions which belong to the same
class may get labeled incorrectly. To correct this
problem and after being inspired by [1] we apply
Laplacian propagation method as detailed here.
Let f; denote the feature vector corresponding to
the i'" superpixel and let X; be the label that is re-
quired to be found from the Laplacian propagation.
Let Y; be the initial label as obtained from the first
stage of either SVM or kNN. To perform Laplacian
propagation we construct a graph connecting ad-
jacent superpixels in the spatial domain (and not
in the feature domain). The edge weight is given
as W;; = exp (—W) . Our goal is to minimize

the following objective function [1] :
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where D;;, = Z;\le W;;. The above equation 1 is
optimized separately for each category in a one
versus rest fashion. Y; = 1 if the superpixel belongs
to the category and 0 otherwise. X; can take a
real value and after solving equation 1 for each
category, we assign each superpixel the category
which corresponds to the maximum value of X;.
The above equation 1 can be directly minimized by
solving as a linear system of equations [1]:

A
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3.6 Parallelization

The above steps can be easily parallelized by de-
composing the high resolution image into smaller
pieces and assigning each piece to a different com-
pute node in a distributed system. We obtain UCM
for each piece separately and obtain superpixel
features from each image. For generating the SVM
or kNN classifier we only use one node since only
a handful of samples are labeled by the expert. We
then distribute this SVM or kNN model to all other
nodes in order to classify superpixels in all the
image pieces. We next use Laplacian Propagation
on each of the sub-images to smooth out the labels.

At this point we have divided the large image
data into smaller sub-images and have run UCM
and Laplacian propagation individually on each
of the sub image. Our future work will focus on
parallelizing UCM and Laplacian propagation to
run on a distributed system.

4 EXPERIMENTAL RESULTS

We now briefly describe an example of superpixel
tessellation on a settlement mapping application.
The grayscale image of Rio, Brazil is publicly avail-
able from DOE (with the color version not cur-
rently available in the public domain). This image
is of size 10,000 by 10,000 pixels. We have chosen
a portion of the image of size 3000 by 3000 to
showcase the key ideas. This portion of the image
consists of a combination of favelas, forests, urban
territories, sea, and sand. We performed Gaussian
smoothing followed by UCM [2]. The support of
the Gaussian filter was chosen to be a 10 pixels



wide square and the standard deviation was set
to 15. The resulting tessellation (with appropriate
UCM threshold) consisted of 10452 patches [Figure
1b(a)]. This represents a size reduction of a factor
of around 1000. Each of the patches represent co-
herent portions of the image. We note in passing
that heavy smoothing of the image as mentioned
above was only done for computing UCM. Once
the UCM was obtained the original image was used
at every other stage of the pipeline for example in
computing features or for classification.

Intensity histograms, corner density and coarser
scale UCM features were extracted for each of the
superpixels. The last two features were weighted
by a factor of 100 and concatenated together with
the intensity histogram to obtain a 54 dimensional
feature vector describing each superpixel. We pro-
vided ground truth labels to only 0.24% of the
patches to train the SVM. The SVM classifier was
used to obtain the preliminary classification [Figure
1c] for all the other superpixels. This was then given
as an initialization to the Laplacian Propagation
algorithm in order to obtain the final labels [Figure
1d]. The values of 7 and A were kept fixed to be
2 and 0.125 respectively. Additionally, the time re-
quired for the overall processing (including UCM)
was less than twenty minutes and this processing
can essentially be conducted in parallel for different
sub-images of size 3000x3000 assigned to each core.

5 DISCUSSION

We have provided a framework to classify different
land use regions in spatio-temporal aerial image
data. Current results do not showcase the temporal
component, however, our work is easily extensible
to temporal data as well and is the focus of our
future work. Further, our current parallelization
only deals with dividing the data into different
pieces and work on each piece individually on each
compute node. Our immediate future work is to
distribute the superpixels on different nodes and
run SVM and graph Laplacian algorithm in parallel
over a distributed architecture. Further, we also aim
to implement UCM to run in parallel by employing
the use of parallel watershed transform algorithms.
Below we highlight the contributions of this paper
in an itemized format.

o Determined the appropriate scale factors to
obtain coarse and fine tessellations from UCM.

o Obtained features which depict regions sur-
rounded by strong boundaries by combining
the coarse scale UCM tessellation with the size
of superpixels.

o Developed features which can discriminate be-
tween urban, slums, and forest regions.

o Developed a fast SSL approach based on SVM,
kNN and Laplacian Propagation.
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