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Abstract. Deterministic annealing and relaxation labeling algorithms
for classification and matching are presented and discussed. A new ap-
proach —self annealing—is introduced to bring deterministic annealing
and relaxation labeling into accord. Self annealing results in an emergent
linear schedule for winner-take-all and assignment problems. Also, the
relaxation labeling algorithm can be seen as an approximation to the self
annealing algorithm for matching and labeling problems.

1 Introduction

Labeling and matching problems abound in computer vision and pattern recog-
nition (CVPR). It is not an exaggeration to state that some form or the other of
the basic problems of template matching or data clustering has remained central
to the CVPR and neural networks communities for about three decades. Due to
the somewhat disparate natures of these communities, different frameworks for
formulating and solving these two problems have emerged and it is not immedi-
ately obvious how to go about reconciling some of the differences between these
frameworks so that they can benefit from each other.

In this paper, we pick two such frameworks, deterministic annealing [18, 24,
8, 19] and relaxation labeling [21] which arose mainly in the neural networks
and pattern recognition communities respectively. Deterministic annealing has
its origins in statistical physics and more recently in Hopfield networks [10]. It
has been applied with varying degrees of success to a variety of image matching
and labeling problems. In the field of neural networks, deterministic annealing
developed from its somewhat crude origins in the Hopfield-Tank networks [10]
to include fairly sophisticated treatment of constraint satisfaction and mean-
field dynamics by drawing from statistical physics. Recently, for both matching
and classification problems, a fairly coherent framework and suite of algorithms
has emerged. These algorithms range from using the softmax or softassign for
constraint satisfaction and discrete-time dynamics that mimic the Expectation—
Maximization (EM) algorithm. The term relaxation labeling originally referred
to a heuristic technique developed in [21] in the mid 70’s. Relaxation labeling
specified a discrete-time update rule by which class labels (typically in image
segmentation problems) were refined while taking relationships in the pixel and
label array into account. As interest in the technique grew, many bifurcations
and off shoots of the basic idea developed, spanning the spectrum from ad hoc
fixes to principled modifications and justifications [5, 11, 9, 17, 16, 3] based on



probability, optimization and dynamical systems theories. Relaxation labeling
in its basic form is a discrete-time update equation that is suitably (and fairly
obviously) modified depending on the problem of interest—image matching, seg-
mentation, or classification. Deviations from the basic form of relaxation labeling
replaced the discrete-time update rule by gradient descent and projected gradient
descent [11, 5] on the objective functions. Much of this development prefigured
the evolution of optimizing neural networks; from the original Hopfield—Tank
dynamics via the softmax dynamics [18, 7] to projected gradient descent [6] or
softassign dynamics for the quadratic assignment problem [19, §].

Here, we return to the heuristic origins of relaxation labeling since ironically,
it is in the original discrete-time RL dynamical system that we find the closest
parallel to recent deterministic annealing algorithms (which have a completely
different line of development from energy functions via mean field theory to
algorithms). A new approach—self annealing (SA)—is presented which promises
to unify relaxation labeling (RL) and deterministic annealing (DA).

2 Deterministic Annealing

Deterministic annealing arose as a computational shortcut to simulated anneal-
ing. Closely related to mean field theory, the method consists of minimizing the
free energy at each temperature setting. The free energy is separately constructed
for each problem. The temperature is reduced according to a pre-specified an-
nealing schedule. DA has been applied to a variety of combinatorial optimiza-
tion problems—winner-take-all (WTA), linear assignment (AP), quadratic as-
signment (QAP) including the traveling salesman problem, graph matching and
graph partitioning, quadratic winner-take-all (QWTA) problems including pair-
wise clustering, line process models in visual reconstruction etc. with varying
degrees of success.

In this paper, we focus on the relationship between DA and RL with emphasis
on matching and labeling problems. The archetypal problem at the heart of
labeling problems is the winner-take-all and similarly for matching problems,
it is linear assignment that is central. Consequently, our development dwells
considerably on these two problems.

2.1 The winner take all

The WTA problem is stated as follows: Given a set T;, ¢ € {1, ..., N}, find
i* = argmax;(T;, i € {1, ...,N}) or in other words, find the index of the
maximum number. Using N binary variables s;, i € {1, ..., N}, the problem
is restated as:

maXx E Tisi
s
i

s. to Zsi =1, and s; € {0,1}, Vi . (1)
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The DA free energy is written as follows:
1
Fya(v) = — ZTivi + )\(Z v; — 1)+ 3 Zvi logv; . (2)
i i i

In (2), v is a new set of analog mean field variables summing to one. The tran-
sition from binary variables s to analog variables v is deliberately highlighted
here. Also, § is the inverse temperature to be varied according to an annealing
schedule. X is a Lagrange parameter satisfying the WTA constraint. The z log x
form of the barrier function keeps the v variables positive and is also referred to
as an entropy term.

We now proceed to solve for the v variables and the Lagrange parameter A.
We get (after eliminating \)

) _ _exp(B8T;) :
v; _Zjexp(ﬂTj)’W e{1,...,N} . (3)
This is referred to as the softmaz nonlinearity [1]. DA WTA uses the nonlin-
earity within an annealing schedule. (Here, we gloss over the technical issue of
propagating the solution at a given temperature v(%») to be the initial condition
at the next temperature (3,y1.) When there are no ties, this algorithm finds the
single winner for any reasonable annealing schedule—quenching at high 3 being
one example of an “unreasonable” schedule.

2.2 The linear assignment problem

The AP is written as follows: Given a matrix of numbers A,;, a,i € {1, ... ,N},
find the permutation that maximizes the assignment. Using N2 binary variables
Saiy ay1 € {1, ..., N}, the problem is restated as:
msax Z Aaisai
at
s. to Zsa,- = 1,28(”' =1, and s, € {0,1}, Va,i . (4)
% a

The DA AP free energy is written as follows:

Fp(v) = — Z Aaivai—i—z ua(z vai—l)—i—z I/Z(Z vai—1)+% Z Vg; 10gVg; -
a?r a 1 1 a a?r (5)

In (5), v is a doubly stochastic mean field matrix with rows and columns summing
to one. (u,v) are Lagrange parameters satisfying the row and column WTA
constraints. As in the WTA case, the zlogx form of the barrier function keeps
the v variables positive.

We now proceed to solve for the v variables and the Lagrange parameters
(u,v) [15, 24]. We get

vl7 = exp(BAai — Blia + vi]) Ya,i € {1, ..., N} . (6)



AP is distinguished from the WTA by requiring the satisfaction of two-way WTA
constraints as opposed to one. Consequently, the Lagrange parameters cannot
be solved for in closed form. Rather than solving for the Lagrange parameters
using steepest ascent, an iterated row and column normalization method is used
to obtain a doubly stochastic matrix at each temperature [15, 19]. Sinkhorn’s
theorem [22] guarantees the convergence of this method. (This method can be
independently derived as coordinate ascent w.r.t. the Lagrange parameters.)
With Sinkhorn’s method in place, the overall dynamics at each temperature is
referred to as the softassign [19]. DA uses the softassign within an annealing
schedule. (Here, we gloss over the technical issue of propagating the solution at
a given temperature v(») to be the initial condition at the next temperature
Bn+1.) When there are no ties, this algorithm finds the optimal permutation for
any reasonable annealing schedule.

2.3 Related problems

Having specified the two archetypal problems, the WTA and AP, we turn to
other optimization problems which frequently arise in computer vision, pattern
recognition and neural networks.

2.4 Clustering and Labeling

Clustering is a very old problem in pattern recognition [4, 12]. In its simplest
form, the problem is to separate a set of N vectors in dimension d into K
categories. The precise statement of the problem depends on whether central
or pairwise clustering is the goal. In central clustering, prototypes are required,
in pairwise clustering, a distance measure between any two patterns is needed
[2]. Closely related to pairwise clustering is the labeling problem where a set of
compatibility coeflicients are given and we are asked to assign one unique label
to each pattern vector. In both cases, we can write down the following general
energy function:

1
max - E CaisbjSaiSaj
s 2

aibj

s. to ZS“" =1, and s,; € {0,1}, Va,i . (7

(This energy function is a simplification of the pairwise clustering objective func-
tion used in [2], but it serves our purpose here.) If the set of compatibility coeffi-
cients C' is positive definite in the subspace of the one-way WTA constraint, the
local minima are WTAs with binary entries. We call this the quadratic WTA
(QWTA) problem, emphasizing the quadratic objective with a one-way WTA
constraint.

For the first time, we have gone beyond objective functions that are linear
in the binary variables s to objective functions quadratic in s. This transition is
very important and entirely orthogonal to the earlier transition from the WTA



constraint to the permutation constraint. Quadratic objectives with binary vari-
ables obeying simplex like constraints are usually much more difficult to minimize
than their linear objective counterparts. The DA QWTA free energy is written
as follows

Fywta(v) = —% D Caipjvaive; + Y XD vai — 1) + % Zvai logvei-  (8)

aibj i

Notwithstanding the increased difficulty of this problem, a DA algorithm which
is fairly adept at avoiding poor local minima, is:

def
i =) CaipjVog, 9)
bj
@ — _P(B%ai)
“ Xy exp(Bani)

The intermediate ¢ variables have an increased significance in our later discussion
on RL. The algorithm consists of iterating the above equations at each temper-
ature. It has been shown to converge to a fixed point provided C' is positive
definite in the subspace of the WTA constraint [23]. Central and pairwise clus-
tering energy functions have been used in image classification and segmentation
or labeling problems in general.

(10)

2.5 Matching

Template matching is also one of the oldest problems in vision and pattern
recognition. Consequently, the subfield of image matching has become increas-
ingly variegated over the years. In our discussion, we restrict ourselves to feature
matching. Akin to labeling or clustering, there are two different styles of match-
ing depending on whether a spatial mapping exists between the features in one
image and the other. When a spatial mapping exists (or is explicitly modeled),
it acts as a strong constraint on the matching. The situation when no spatial
mapping is known between the features is similar to the pairwise clustering case.
Here, a distance measure between pairs of features in the model and pairs of fea-
tures in the image is assumed. This results in the QAP objective function—for
more details see [8]:

1
maxi E Caibjsaisbj
aibj

s. to Zs,“- = 1’23” =1, and s,; € {0,1}, YV a,i (11)
i a

If the quadratic benefit matrix C' is positive definite in the subspace spanned
by the row and column constraints, the minima are permutation matrices. This
result was shown in [24]. Once again, a DA free energy and algorithm can be



written down after spotting the basic form (linear or quadratic objective, one-
way or two-way constraint): The DA QAP free energy is written as follows:

Faap(v) = —% > CaiitjVaits; + ) a <Z Vai — 1) + Z vi <Z Vai — 1)

aibj a
1
+ E Z Vai IOg Vai (12)
at
And the DA QAP algorithm is
Goi & Z CaishjVb;, (13)
bj
0l = exp(Bgai — Blua + 1)) - (14)

The two Lagrange parameters p and v are specified by Sinkhorn’s theorem and
the softassign. These two equations (one for the ¢ and one for the v) are iterated
until convergence at each temperature. The softassign QAP algorithm is guar-
anteed to converge to a local minimum provided the Sinkhorn procedure always
returns a doubly stochastic matrix [20].

We have written down DA algorithms for two problems (QWTA and QAP )
while drawing on the basic forms given by the WTA and the AP. The common
features in the two DA algorithms and their differences (one-way versus two-
way constraints) [13] have been highlighted as well. We now turn to relaxation
labeling.

3 Relaxation Labeling

Relaxation labeling as the name suggests began as a method for solving labeling
problems [21]. While the framework has been extended to many applications
[17, 3] the basic feature of the framework remains: Start with a set of nodes i
(in feature or image space) and a set of labels A. Derive a set of compatibility
coefficients (as in Section 2.4) r for each problem of interest and then apply the
basic recipe of RL for updating the node-label (i to A) assignments:

G = Y 73O ) ), (15)

(n) (n)
(n+1) \) = D; (/\)(1+thi ()\)) .
N = S T 1+ ad )

Here the p’s are the node-label (i to A) labeling probabilities, the ¢ are interme-
diate variables similar to the ¢’s defined earlier in DA. « is a parameter greater
than zero used to make the numerator positive (and keep the probabilities posi-
tive.) We have deliberately written the RL update equation in a quasi-canonical
form while suggesting (at this point) similarities most notably to the pairwise

(16)



clustering update equation. To make the semantic connection to DA more ob-
vious, we now switch to the old usage of the v variables rather than the p’s in
RL.

@\ = Z Caishj by, (17)
b
(1) _ (1 + agly)
YVia =~ = (n) (n)y (18)
2V (1+agy”)

As in the QAP and QWTA DA algorithms, a Lyapunov function exists [16] for
RL.

We can now proceed in the reverse order from the previous section on DA.
Having written down the basic recipe for RL, specialize to WTA, AP, QWTA
and QAP. While the contraction to WTA and QWTA may be obvious, the case
of AP and QAP are not so clear. The reason: two-way constraints in AP are
not handled by RL. We have to invoke something analogous to the Sinkhorn
procedure. Also, there is no clear analog to the iterative algorithms obtained
at each temperature setting. Instead the label probabilities directly depend on
their previous state which is never encountered in DA. How do we reconcile
this situation so that we can clearly state just where these two algorithms are
in accord? The introduction of self annealing promises to answer some of these
questions and we now turn to its development.

4 Self annealing

Self annealing has one goal, namely, the elimination of a temperature schedule.
As a by-product we show that the resulting algorithm bears a close similarity to
both DA and RL. The SA update equation for any of the (matching or labeling)
problems we have discussed so far is derived [14] by minimizing

F(v,0) = B(v) + éd(v, o) (19)

where d(v, o) is a distance measure between v and an “old” value o. (The ex-
planation of the “old” value will follow shortly.) When F' is minimized w.r.t v,
both terms in (19) come into play. Indeed, the distance measure d(v, o) serves
as an “inertia” term with the degree of fidelity between v and o determined by
the parameter a. For example, when d(v,0) is 3||v — o||?, the update equation
obtained after taking derivatives w.r.t. v and o and setting the results to zero is

g; = ’l)z(n)

o™ =5 —a OE(v) . (20)

i | ymy(nt)

This update equation reduces to “vanilla” gradient descent provided we approxi-
9B (v) by 2E@) . a becomes a step-size parameter. However,

mate
Ovi |y pynt1) 0vi |y y(m)



the distance measure is not restricted to just quadratic error measures. Espe-
cially, when positivity of the v variables is desired, a Kullback-Leibler (KL)
distance measure can be used for d(v, ). In [14], the authors derive many linear
on-line prediction algorithms using the KL divergence. Here, we apply the same
approach to the QWTA and QAP.

Examine the following QAP objective function using the KL divergence as
the distance measure:

Fsaqap(v g, [, V, a Y Z Caz ;05 VaiUbj + - Z (Uaz log — —0Og + vaz)

azb]
+ Z/‘a(z Vai — 1) + Zu,-(z vai — 1) (21)

We have used the generalized KL divergence d(z,y) = }_,(z;log I — @i + y:)
which is guaranteed to be greater than or equal to zero without requiring the
usual constraints , z; = ) . y; = 1. This energy function looks very similar to
the earlier DA energy function (12) for QAP. However, it has no temperature
parameter. The parameter « is fixed and positive. Instead of the entropy barrier
function, this energy function has a new KL measure between v and a new
variable o. Without trying to explain the SA algorithm in its most complex
form (QAP), we specialize immediately to the WTA.

Foawta(v,0, A, @) = ZTU;—I—)\ Zv,—l Z(Uilog%—ai—%w)
1

(22)
Equation (22) can be alternately minimized w.r.t. v and o (using a closed form
solution for the Lagrange parameter \) resulting in

L) 1)5") exp(aT;)

(0) .
i = > UJ(-") exp(aTj)’ v, >0,Vi,ie{l,...,N} . (23)

The new variable ¢ is identified with U(") in (23). When an alternating mini-
mization (between v and o) is prescrlbed for Fyawta, the update equation (23)

results. Initial conditions are an important factor. A reasonable choice is u§°’ =

1/N, a§°) = v,@, Vi, i € {1, ..., N} but other positive, initial conditions may

work as well. To summarize, in the WTA, the new variable o is identified with

the “past” value of v. We have not yet shown any relationship to DA or RL.
Moving to the QAP, the main update equation used by the algorithm is

def
Gai = anz b]Ub] ) (24)

gfrl) = 04i exp(aga; — Oé[ua +v]) . (25)

Convergence of the SA QAP algorithm to a local minimum can be easily shown
when we assume that the Sinkhorn procedure always returns a doubly stochastic



matrix. Our treatment follows [20]. A discrete-time Lyapunov function for the
SA QAP algorithm is (21). (The Lagrange parameter terms can be eliminated
since we are restricting v to be doubly stochastic.) The change in energy is
written as

Fsaqap('v(") , 0’) - Fsaqap (U("+1), U) déf AFSAQAP =
( )
1
=-3 Z Clisjv fg)v,ﬁj) + = Zv(") log
aibj

( n+1)
5 3 Casael s Zv("“)log — (26)

azb] av

The Lyapunov energy difference has been simplified using the relation )° , vq; =
N. Using the update equation for SA in (25), the energy difference is rewrltten

as
ol

e +1)
Vai

AFsagap = Z Caizpj Avai Avpj + Z v(") log

azb]

where Avg; v("H) (") The first term in (27) is non-negative due to

the positive deﬁnlteness of C in the subspace spanned by the row and column
constraints. The second term is non-negative by virtue of being a KL distance
measure. We have shown the convergence to a fixed point of the SA QAP algo-
rithm.

We now write down the QAP SA algorithm:

Self annealing QAP
Initialize v,; to %, Oqi 1O Vg
Begin A: Do A until row dominance and (1 — pporm) < Pthe-
Begin B: Do B until egig < egpy-
Gai 4= 2p; Caispjvnj
Vai ¢ 0qi €xP (Qai)
Begin C: Do C until sporm < Sghr-
Update v,; by normalizing the rows:

Vai
Vi 4 ai
. Vai

Update vlai by normalizing the columns:
Vai ¢ vai} -
End C

End B

Oai < Vai

End A

>0 (27)

. def ai def
The various parameters are defined as: pnorm = Z‘“ , edif = AFgaqap, and

Snorm = - Pthr, €thr, and sgn, are the permutation, energy dif-
ference and Sinkhorn convergence thresholds respectively. Row dominance im-

plies that thresholding v returns a permutation matrix [15]. This is the full



blown SA QAP algorithm with Sinkhorn’s method and the softassign used for
the constraints but more importantly a built in delay between the “old” value
of v namely ¢ and the current value of v.

5 Self annealing and deterministic annealing

SA and DA are closely related. To see this, we return to our favorite example—
the WTA. The SA and DA WTAs are now brought into accord: Assume uniform

rather than random initial conditions for SA. vgo) =1/N,Vi,ie{l,...,N}L
(n).

With uniform initial conditions, it is trivial to solve for v,
RO exp(naT;)
! > exp(naT))

The correspondence between SA and DA is clearly established by setting 8, =
na, n=1,2, ... We have shown that the SA WTA corresponds to a particular
linear schedule for the DA WTA.

Since the case of AP is more involved than WTA, we present anecdotal
experimental evidence that SA and DA are closely related. In Figure 1, we have
shown the evolution of the permutation norm and the AP free energies. A linear
schedule with 3 = na was used. The correspondence between DA and SA is
nearly exact for the permutation norm despite the fact that the free energies
evolve in a different manner. The correspondence is exact only when we match
the linear schedule DA parameter a to the SA parameter a. It is important
that SA and DA be in lockstep, otherwise we cannot make the claim that SA
corresponds to DA with an emergent linear schedule.

Vi, ie{l,...,N}. (28)
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Fig. 1. Left: 100 node AP with three different schedules. The agreement between SA
and DA is obvious. Right: The evolution of the SA and DA AP free energies for one
schedule.

The SA and DA QAP objective functions are also quite general. The QAP or
QWTA benefit matrix Cas;p; is preset based on the chosen problem—weighted,



graph matching, or pairwise clustering. Note the basic similarity between the SA
and DA QAP algorithms. In SA, a separation between past (o) and present (v)
replaces relaxation at a fixed temperature. Moreover, in the WTA and AP, SA
results in an emergent linear schedule. A similar argument can be made for QAP
as well but requires experimental validation due to the presence of bifurcations.
We return to this topic in Section 7.

6 Self annealing and relaxation labeling

Rather than present the RL update equation in its “canonical” labeling problem
form, we once again return to the WTA problem where the similarities between
SA and RL are fairly obvious. The RL WTA update equation is

LD _ o (1 + oT;)

! P v§")(1+aTj)

09 >0, Vi, ie{l,...,N}. (29)

(2

Equations (23) and (29) are very similar. The main difference is the 1 + aTj
factor in RL instead of the exp(aTj) factor in SA Expanding exp(aTj) using the
Taylor-MacLaurin series gives

fla) = exp(aT}) = 1+ oT; + Ra(a) (30)

where
22
Ro(a) < exp(a|T;|)a’T; -
2

If the remainder Ry(a) is small, the RL WTA closely approximates SA WTA.
This will be true for small values of a. Increased divergence between RL and SA
can be expected as a is increased—faster the rate of the linear schedule, faster
the divergence. If |Tj| > L1, the non-negativity constraint is violated leading to
breakdown of the RL algorithm.

Comparison at the WTA level is not the end of the story. RL in its hey-
day was applied to image matching, registration, segmentation and classifica-
tion problems. Similar to the QAP formulation, the benefit matrix C called the
compatibility coefficients in the RL literature was introduced and preset depend-
ing on the chosen problem. Because of the bias towards labeling problems, the
all important distinction between matching and labeling was blurred. In model
matching problems (arising in object recognition and image registration), a two
way constraint is required. Setting up one-to-one correspondence between fea-
tures on the model and features in the image requires such a two-way assignment
constraint. On the other hand, only a one way constraint is needed in segmen-
tation, classification, clustering and coloring problems since i) the label and the
data fields occupy different spaces and ii) many data features share member-
ship under the same label. (Despite sharing the multiple membership feature of
these labeling problems, graph partitioning has a two-way constraint because

(31)



of the requirement that all multiple memberships be equal in number—an ar-
bitrary requirement from the standpoint of labeling problems arising in pattern
recognition.)

Due to the bias towards labeling, RL almost never tried to enforce two-way
constraints either using something like the Sinkhorn procedure in discrete-time
algorithms or using projected gradient descent in continuous time algorithms.
This is an important difference between SA and DA on one hand and RL on the
other.

Another important difference is the separation of past and present. Due to
the close ties of both SA and DA to simulated annealing, the importance of
relaxation at a fixed temperature is fairly obvious. Otherwise, a very slow an-
nealing schedule has to be prescribed to avoid poor local minima. Due to the
entirely heuristic origin of RL and due to the lack of an analog of a temperature
parameter, the importance of relaxation at fixed temperature was not recog-
nized. Examining the SA and RL QAP algorithms, it is clear that RL roughly
corresponds to one iteration at each temperature. This issue is orthogonal to con-
straint satisfaction. Even if Sinkhorn’s procedure is implemented in RL—and all
that is needed is non-negativity of each entry of the matrix 1 + a@),;—the sepa-
ration of past (o) and present (v) is still one iteration. Put succinctly, step B in
SA is allowed only one iteration.

A remaining difference is the positivity constraint, We have already discussed
the relationship between the exponential in SA and the (1 + oT;) RL term in
the WTA context. There is no need to repeat the analysis for QAP—note that
positivity is guaranteed by the exponential whereas it must be checked in RL.

In summary, there are three principal differences between SA and RL: (i)
The positivity constraint is strictly enforced by the exponential in SA and loosely
enforced in RL, (ii) the use of the softassign rather than the softmax in matching
problems has no parallel in RL and finally (iii) the discrete-time SA QAP update
equation introduces an all important delay between past and present (roughly
corresponding to multiple iterations at each temperature) whereas RL having no
such delay forces one iteration per temperature with consequent loss of accuracy
(as demonstrated in the next section).

7 Results

We conducted several hundreds of experiments comparing the performance of
DA, RL, and SA discrete-time algorithms. The chosen problems were QAP and
QWTA.

In QAP, we randomly generated benefit matrices C' (of size N x N x N x

N) that are positive definite in the subspace spanned by the row and column

. . . f
constraints. The procedure is as follows: Define a matrix r EC - enek /N

where ey is the vector of all ones. Generate a matrix R by taking the Kronecker

product of r with itself (R =¥, r). Rewrite C' as a two-dimensional N2 x N2

matrix ¢. Project ¢ into the subspace of the row and column constraints by
forming the matrix RéR. Determine the smallest eigenvalue Amin(RéR). Then



the matrix ¢ % ¢ — Amin (RER)In2 + eIn2 (where € is a small, positive quantity)

is positive definite in the subspace spanned by the row and column constraints.

Four algorithms were executed on the QAP. Other than the three algorithms
mentioned previously, we added a new algorithm called exponentiated relaxation
(ER). ER is closely related to SA. The only difference is that the inner B loop
in SA is performed just once (Ig = 1). ER is also closely related to RL. The
main difference is that the positivity constraint is enforced via the exponential.
Since the QAP has both row and column constraints, the Sinkhorn procedure is
used in ER just as in SA. However, RL enforces just one set of constraints. To
avoid this asymmetry in algorithms, we replaced the normalization procedure
in RL by the Sinkhorn procedure, thereby avoiding unfair comparisons. As long
as the positivity constraint is met in RL, we are guaranteed to obtain doubly
stochastic matrices. There is overall no proof of convergence, however, for this
“souped up” version of RL.

The common set of parameters shared by the four algorithms were kept
exactly the same: N = 25, ¢ = 0.001, Sinkhorn norm threshold sg,, = 0.0001,
energy difference threshold ey, = 0.001, permutation norm threshold pgn, =
0.001, and initial condition v = e ~ek/N. The stopping criterion chosen was
Penr = 0.001 and row dominance [15]. In this way, we ensured that all four
algorithms returned permutation matrices. A linear schedule 8 = na was used in
DA. The parameter « was varied logarithmically from log(a) = —2 to log(a) =1
in steps of 0.1. 100 experiments were run for each of the four algorithms. The
common benefit matrix ¢ shared by the four algorithms was generated using
independent, Gaussian random numbers. ¢ was then made symmetric by forming
# The results are shown in Figure 2(a).

The most interesting feature emerging from the experiments is that there is
an intermediate range of « in which self annealing performs at its best. (The
negative of the QAP minimum energy is plotted on the ordinate.) Contrast this
with ER and RL which do not share this feature. We conjecture that this is
due to the “one iteration per temperature” policy of both these algorithms. RL
could not be executed once the positivity constraint was violated but ER had no
such problems. Also, notice that the performances of both SA and DA are nearly
identical after & = 0.2. The emergent linear schedule in SA derived analytically
for the WTA and demonstrated in AP seems to be valid only after a certain
value of a in both QAP and QWTA.

Figure 2(b) shows the results of QWTA. The behavior is very similar to the
QAP. In QWTA the benefit matrices were projected onto the subspace of only
one of the constraints (row or column). In other respects, the experiments were
carried out in exactly the same manner as QAP. Since there is only one set of
constraints, the canonical version of RL [21] was used. Note that the negative of
the minimum energy is consistently higher in QWTA than QAP; this is due to
the absence of the second set of constraints.

Next we studied the behavior of self annealing with changes in problem size.
In Figure 3(a), the problem size is varied from N =2 to N = 25 in steps of one.
We normalized the QAP minimum energy at log(a) = —2 for all values of N.
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Not only is the overall pattern of behavior more or less the same, in addition
there is an impressive invariance to the choice of the broad range of «. This
evidence is very anecdotal however.
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Fig. 3. Self annealing: Left: (a) Normalized negative QAP minimum energy plot for
problem size N varying from 2 to 25 in steps of one. The performance is somewhat
invariant to the broad range of a. Right. (b) Negative QAP minimum energy plot in a
more finely sampled range of a.

Finally, we present some evidence to show that there is a qualitative change
in the behavior of the self annealing algorithm roughly around a = 0.15. The
energy plot in Figure 3(b), the contour and “waterfall” plots in Figure 4 indicate
the presence of different regimes in SA. The change in the permutation norm
with iteration and « is a good qualitative indicator of this change in regime.
Our results are very preliminary and anecdotal here. We do not as yet have any
understanding of this qualitative change in behavior of SA with change in «.
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8 Conclusions

We have demonstrated that self annealing has the potential to reconcile re-
laxation labeling with deterministic annealing when applied to matching and
labeling problems. While the relaxation labeling dynamical system has a Lya-
punov energy function [16], we have shown that there exists a class of hitherto
unsuspected self annealing energy functions that are also closely related to re-
laxation labeling. Our experiments and analyses suggest that relaxation labeling
can be extended in a self annealing direction until the two become almost indis-
tinguishable. The same cannot be said for deterministic annealing since it has
more formal origins in mean field theory. Also, it remains to be seen if some of
the more recent modifications to relaxation labeling like probabilistic relaxation
[3] can be brought under the same rubric as deterministic annealing.
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