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Abstract

The complex wave representation (CWR) converts unsigned 2D distance transforms into
their corresponding wave functions. The underlying motivation for performing this maneuver is
as follows: the normalized power spectrum of the wave function is an excellent approximation
(at small values of Planck’s constant—here a free parameter τ) to the density function of the
distance transform gradients. Or in colloquial terms, spatial frequencies are gradient histogram
bins. Since the distance transform gradients have only orientation information, the Fourier
transform values mainly lie on the unit circle in the spatial frequency domain. We use the
higher-order stationary phase approximation to prove this result and then provide empirical
confirmation at low values of τ . The result indicates that the CWR of distance transforms is an
intriguing and novel shape representation.

Key words: distance transforms, Voronoi, Hamilton-Jacobi equation, Schrödinger wave
function, complex wave representation (CWR), stationary phase (method of), gradient density,
power spectrum

1 Introduction

Over the past three decades, image analysis has borrowed numerous formalisms, methodologies and
techniques from classical physics. These include variational and level-set methods for active contours
and surface reconstruction [1, 12], Markov Chain Monte Carlo (MCMC) [17], mean-field methods
in image segmentation and matching [9, 20, 8], fluidic flow formulations for image registration [6]
etc. Curiously, there has been very little interest in adapting approaches from quantum mechanics.
This is despite the fact that linear Schrödinger equations are the quantum counterpart to nonlinear
Hamilton-Jacobi equations [4] and the knowledge that the quantum approaches the classical as
Planck’s constant ~ tends to zero [2].

The principal theme in this work is the introduction of complex wave representations (CWRs)
of shapes. We begin by reconstructing the well known bridge between the Hamilton-Jacobi and
Schrödinger equations as adapted to the problem of Euclidean distance transform computation.
As expected, the familiar nonlinear, static Hamilton-Jacobi equation emerges from a linear, static
Schrödinger equation in the limit as τ → 0. This paves the way for the complex wave representation

(CWR) of distance transforms: here the wave function ψ(x, y) is equal to exp
{
iS(x,y)

τ

}
where

S(x, y) is the distance transform in 2D.
Since distance transform gradients (when they exist) are unit vectors [13], their appropriate

representation is the space of orientations. The centerpiece of this work is the following statement
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of equivalence: |Ψτ (u(θ), v(θ)|2—the squared magnitude of the normalized Fourier transform of
ψ(x, y) is approximately equal to the density function of distance transform gradients with the
approximation becoming increasingly accurate as τ tends to zero. We will prove this conjecture
using the stationary phase approximation [11]—a well known technique in asymptotic analysis. The
significance for shape analysis is that spatial frequencies become histogram bins. This result also
demonstrates that the well known interpretation of the squared magnitude of the wave function as
a probability density [2] is not merely a philosophical position. Instead, the squared magnitude of
the wave function (in the spatial frequency basis) is shown to be an approximation to the distance
transform gradient density (with the approximation becoming increasingly accurate as τ → 0).

2 The Complex Wave Representation (CWR)

We begin with Euclidean distance functions—more popularly referred to as distance transforms.
Since distance transforms are used to set up the transition from Hamilton-Jacobi to Schrödinger
wave functions, we stick with the simplest case: unsigned distance functions of a point-set. Given
a point-set

{
Yk ∈ RD, k ∈ {1, . . . ,K}

}
, the distance transform is defined as

S(x)
def
= min
{Yk}
‖x− Yk‖ (1)

where x ∈ Ω, is a bounded domain in RD. Below, we mainly use D = 2. In computational geometry,
this is the Voronoi problem [15, 7] and the solution S(x) can be visualized as a set of cones (with the
centers being the point-set locations {Yk}). The distance transform S(x) is not differentiable at the
point-set locations and at the Voronoi boundaries but satisfies the static, nonlinear Hamilton-Jacobi
equation [13, 16]

‖∇S(x)‖ = 1 (2)

elsewhere. Furthermore S(x) = 0 at the point-set locations.
The intimate relationship between the Hamilton-Jacobi and Schrödinger equations is well known

in theoretical physics [4] and leveraged by our previous work on this topic [14]. For our purposes,
the static, nonlinear Hamilton-Jacobi equation can be embedded in a static, linear Schrödinger
equation. Consider the following linear differential equation

−τ2∇2ψ(x) = ψ(x) (3)

where ψ(x) is a complex wave function and τ a free parameter (usually Planck’s constant in the

physics literature). Now, substitute ψ(x) = exp
{
iS(x)

τ

}
with the notation S(x) deliberately chosen

to resonate with the distance transform above. We get using simple algebra [5]

‖∇S(x)‖2 − iτ∇2S(x) = 1 (4)

which approaches (3) as τ → 0 provided |∇2S(x)| is bounded. Due to this equivalence, and since the
focus in this work is not on efficient computation of S(x), we will henceforth not make a distinction
between the Hamilton-Jacobi field S(x) and the phase of the wave function ψ(x).

We have shown—following the theoretical physics literature and our previous work in EMM-
CVPR 2009 [14]—that the static, linear Schrödinger equation in (3) is capable of expressing the
static, nonlinear Hamilton-Jacobi equation in (2). The focus in this work, however, is on leveraging

the complex wave representation (CWR) ψ(x) = exp{iS(x)
τ }.
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3 Distance transform gradient density

The geometry of the distance transform in 2D corresponds to a set of intersecting cones with the
origins at the Voronoi centers [7]. The gradients of the distance transform (which exist globally
except at the cone intersections and origins) are unit vectors and satisfy ‖ 5 S‖ = 1. Therefore
the gradient density function is one dimensional and defined over the space of orientations. The
orientations are constant and unique along each ray of each cone. Its probability distribution
function is given by

F (θ ≤ Θ ≤ θ + ∆) ≡ 1

L

ˆ ˆ
θ≤arctan

(
Sy
Sx

)
≤θ+∆

dxdy (5)

where we have expressed the orientation random variable—Θ = arctan
(
Sy

Sx

)
—as a random variable

transformation of a uniformly distributed random variable (defined on a bounded 2D domain). The
probability distribution function also induces a closed-form expression for its density function as
shown below.

Let Ω denote the polygonal grid. Let L = µ(Ω) represent the area of the grid and l =
√
L.

Let Y = {Yk ∈ R2, k ∈ {1, . . . ,K}} be the given point-set locations. Then the Euclidean distance
transform at a point X = (x, y) ∈ Ω is given by

S(X) ≡ min
k
‖X − Yk‖ = min

k
(
√

(x− xk)2 + (y − yk)2). (6)

Let Dk, centered at Yk, denote the kth Voronoi region corresponding to the input point Yk. Dk can
be represented by the Cartesian product [0, 2π)× [0, Rk(θ)] where Rk(θ) is the length of the ray of
the kth cone at orientation θ. If a grid point X = (x, y) ∈ Yk +Dk, then S(X) = ‖X − Yk‖. Each
Dk is a convex polygon whose boundary is composed of a finite sequence of straight line segments.
Even for points that lie on the Voronoi boundary–where the radial length equals Rk(θ)–the distance
transform is well defined. The area L of the polygonal grid Ω is given by

L =
K∑
k=1

ˆ 2π

0

ˆ Rk(θ)

0
rdrdθ =

K∑
k=1

ˆ 2π

0

R2
k(θ)

2
dθ. (7)

With the above set-up in place and by recognizing the cone geometry at each Voronoi center Yk,
equation (5) can be simplified as

F (θ ≤ Θ ≤ θ + ∆) ≡ 1

L

K∑
k=1

ˆ θ+∆

θ

ˆ Rk(θ)

0
rdrdθ =

1

L

K∑
k=1

ˆ θ+∆

θ

R2
k(θ)

2
dθ. (8)

Following this drastic simplification, we can write the closed-form expression for the density function
of the unit vector distance transform gradients as

P (θ) ≡ lim
∆→0

F (θ ≤ Θ ≤ θ + ∆)

∆
=

1

L

K∑
k=1

R2
k(θ)

2
. (9)

Based on the expression for L in (7) it is easy to see that
ˆ 2π

0
P (θ)dθ = 1. (10)

Since the Voronoi cells are convex polygons [7], each cell contributes exactly one conical ray to the
density function on orientation.
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Figure 1: Left: Distance transform and gradient map of horse silhouette (τ = 0.00004). Right:
The scaled and normalized Fourier transform Ψτ (u, v). Please ZOOM into the plots (especially the
horse silhouette) to see greater detail.

4 Properties of the Fourier transform of the CWR

4.1 Spatial frequencies as gradient histogram bins

Now, consider the CWR of the distance transform in 2D. We therefore use ψ(x, y) = exp
{
iS(x,y)

τ

}
and S(x, y) the actual distance transform of a point-set. We take its 2D scaled Fourier transform:

Ψτ (u, v) =
1

2πτ

ˆ ˆ
Ω

exp

{
i
S(x, y)

τ

}
exp

{
−iux+ vy

τ

}
dxdy. (11)

We see in Figure 1 (the figure on the right) that the Fourier transform values lie mainly on a
circle and we have observed that this behavior tightens as τ → 0. The preferred theoretical tool
in the literature to analyze this general type of behavior is the stationary phase approximation
[11]—well known in theoretical physics but not so well known in image analysis. Below, we give a
very brief and very qualitative exposition.

Consider the following integral (in 1D):ˆ ∞
−∞

exp

{
i
f(x)

τ

}
exp

{
−iν
τ
x
}
dx (12)

where f(x) is a twice differentiable function and ν a fixed parameter. The first exponential is a
varying complex “sinusoid” whereas the second is a fixed complex sinusoid at frequency ν

h . When
we multiply these two complex exponentials, at low values of τ , the two sinusoids are usually
not “in sync” and cancellations occur in the integral. Exceptions to the cancellation happen at
locations where f

′
(x) = ν, since around these locations, the two sinusoids are in perfect sync

(with the approximate duration of this resonance dependent on f
′′
(x). The value of the integral is

approximately
√

2πτ exp
{
±iπ

4

}∑
{x0}

1√
|f ′′(x0)|

exp

{
i
f(x0)− νx0

τ

}
(13)

where {x0} is the set of locations at which f
′
(x0) = ν. The approximation is increasingly tight

as τ → 0. For more information, please see [11]. The stationary phase approximation gives a
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theoretical explanation for the Fourier transform of ψ(x, y) taking values mainly on the unit circle.
In 2D, the stationary phase approximation indicates that the two sinusoids are in sync when∇S = ν
where ν is now a 2D spatial frequency pair (u, v). However, since ‖∇S‖ = 1, strong resonance occurs
only when u2 + v2 = 1 and when the distance transform orientation θ = arctan

(
v
u

)
. While this

brief explanation does serious injustice to a vast topic, the important points nonetheless are: i)
match between the orientation θ of each ray of the distance transform and the angle of the 2D
spatial frequency [arctan

(
v
u

)
] and ii) match between the magnitude of ∇S (which is equal to one)

and locations on the unit circle (corresponding to 2D spatial frequencies of magnitude one).
Next, we show that the squared magnitude of the Fourier transform (normalized such that it

has overall unit norm) is approximately equal to the density function of the distance transform
gradients.

4.2 Power spectrum of ψ(x, y) as a gradient density estimator

The previous section motivated the use of the stationary phase approximation for evaluating inte-
grals. In this section, we first outline the main result and then spend the remainder of the section
proving it.

The main result: The squared magnitude of the Fourier transform of the complex wave rep-

resentation ψ(x, y) = exp
{
iS(x,y)

τ

}
is an increasingly more accurate approximation to the density

function of ∇S as the free parameter τ tends to zero.
We now briefly outline the proof strategy: The Fourier transform of the CWR involves two

spatial integrals (over x and y) which are converted into polar coordinate domain integrals. The
squared magnitude of the Fourier transform involves multiplying the Fourier transform with its
complex conjugate. The complex conjugate is yet another 2D integral which we will perform in
the polar coordinate domain. Since the Fourier transform (suitable normalized) takes values very
close to the unit circle, we then integrate the squared magnitude of the Fourier transform along
the radial direction. This is a fifth integral. Finally, in order to eliminate unwanted phase factors,
we first integrate the result of the above over very small angles and then take the limit as τ tends
to zero. This integral and limit cannot be exchanged because the phase factors will not otherwise
cancel. The remainder of this section mainly deals with managing these six integrals.

Define a function F : R× R× R+ → C by

F (u, v, τ) ≡ 1

2πτl

ˆ ˆ
Ω

exp

(
iS(x, y)

τ

)
exp

(
−i(ux+ vy)

τ

)
dxdy. (14)

For a fixed value of τ , define a function Fτ : R× R→ C by

Fτ (u, v) ≡ F (u, v, τ). (15)

Observe that Fτ is closely related to the Fourier transform of exp
(
iS(x,y)
τ

)
[3]. The scale factor

1
2πτl is the normalizing term such that Fτ ∈ L2(R2) and ‖Fτ‖ = 1.

Consider the polar representation of the spatial frequencies(u, v) namely u = r̃ cos(φ) and
v = r̃ sin(φ) where r̃ > 0. For (x, y) ∈ Yk + Dk, let x − xk = r cos(θ) and y − yk = r sin(θ) where
r ∈ (0, Rk(θ)]. Then

Fτ (r̃, φ) =
K∑
k=1

CkIk(r̃, φ) (16)

where

Ck = exp

(
− i
τ

[r̃ cos(φ)xk + r̃ sin(φ)yk]

)
(17)
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and

Ik(r̃, φ) =
1

2πτl

ˆ 2π

0

ˆ Rk(θ)

0
exp

(
i

τ
r [1− r̃ cos(θ − φ)]

)
rdrdθ. (18)

Lemma 1. For r̃ 6= 1, limτ→0 Fτ (r̃, φ) = 0.

Proof. As each Ck is bounded, it suffices to show that if r̃ 6= 1, then the limit limτ→0 Ik(r̃, φ) = 0
for all Ik. Consider

I(r̃, φ) =
1

2πτl

ˆ 2π

0

ˆ R(θ)

0
exp

{
i

τ
r [1− r̃ cos(θ − φ)]

}
rdrdθ. (19)

Let p(r, θ) = r(1 − r̃ cos(θ − φ)). Since we are interested only in the limit as τ → 0, essential
contribution to I(r̃, φ) in (19) comes only from the stationary points of p(r, θ) [10, 19]. The partial
gradients of p are given by

∂p

∂r
= 1− r̃ cos(θ − φ)

∂p

∂θ
= rr̃ sin(θ − φ). (20)

The gradient equals zero only when r̃ = 1 and θ = φ. Since r̃ 6= 1 by assumption, no stationary
points exist (5p 6= 0). Then, using the two dimensional stationary phase approximation, we can
show that I = O(τ) as τ → 0 and hence converges to zero in the limit as τ → 0.

Define a function Pτ by
Pτ (r̃, φ) ≡ |Fτ (r̃, φ)|2 = Fτ (r̃, φ)Fτ (r̃, φ). (21)

By definition Pτ ≥ 0. Then, from basic algebra we have

ˆ 2π

0

ˆ ∞
0

Pτ (r̃, φ)r̃dr̃dφ = 1 (22)

independent of τ . Hence r̃Pτ (r̃, φ) can be treated as a density function irrespective of the value of
τ . Furthermore, from Lemma (1), we see that as τ → 0, Pτ is concentrated only on the unit circle
r̃ = 1 and converges to zero everywhere else.

We now state and prove the main theorem in this work.

Theorem 2. For any given 0 < δ < 1, φ0 ∈ [0, 2π) and 0 < ∆ < 2π,

lim
τ→0

ˆ φ0+∆

φ0

ˆ 1+δ

1−δ
Pτ (r̃, φ)r̃dr̃dφ =

ˆ φ0+∆

φ0

P (φ)dφ (23)

where P (φ) is as defined in (9).

Proof. First observe that

Fτ (r̃, φ) =
K∑
k=1

Ck
2πτl

ˆ 2π

0

ˆ Rk(θ′)

0
exp

(
− ir

′

τ

[
1− r̃ cos(θ′ − φ)

])
r′dr′dθ′. (24)

Fτ (r̃, φ) in (24) is the complex conjugate of the Fourier transform of the CWR in (14) and (15).
Define

I(φ) ≡
ˆ 1+δ

1−δ
Pτ (r̃, φ)r̃dr̃. (25)
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As τ → 0 I(φ) will approach the density function of the gradients of S(x, y). Note that the integral
in (25) is over the interval [1− δ, 1 + δ] where δ > 0 can be made arbitrarily small (as τ → 0) due
to Lemma (1). Since Pτ (r̃, φ) equals Fτ (r̃, φ)Fτ (r̃, φ), we can rewrite I(φ) in (25) as

I(φ) =
K∑
j=1

K∑
k=1

1

(2πτl)2

ˆ 2π

0

ˆ Rk(θ′)

0
exp

(
−ir′

τ

)
gjk(r

′, θ′)r′dr′dθ′. (26)

Here

gjk(r
′, θ′) ≡

ˆ 1+δ

1−δ

ˆ 2π

0

ˆ Rj(θ)

0
exp

{
i

τ
γjk(r, θ, r̃; r

′, θ′, φ)

}
f(r, r̃)drdθdr̃ (27)

where
γjk(r, θ, r̃; r

′, θ′, φ) ≡ r [1− r̃ cos(θ − φ)] + r′r̃ cos(θ′ − φ)− r̃ρjk (28)

and

ρjk(φ) = cos(φ)(xj − xk) + sin(φ)(yj − yk) (29)

with

f(r, r̃) = rr̃. (30)

The main reason for rewriting I(φ) in this manner will become clear as we proceed. In (29),ρjk
represents the phase term of the quantity CjCk with Ck defined earlier in (17). In the definition
of γjk(r, θ, r̃; r

′, θ′, φ) in (28), the particular notation is used to emphasize that φ, r′ and θ′ are held
fixed in the integral in (27). The integration with respect to r̃ is considered before the integration
for r′ and θ′.

The main integral (26) has an integral over θ′ over the range [0, 2π). Dividing the integral range
[0, 2π) for θ′ into three disjoint regions namely [0, φ− β), [φ− β, φ+ β] and (φ+ β, 2π) with β > 0,
we get

I(φ) =
K∑
j=1

K∑
k=1

(
J

(1)
jk (φ) + J

(2)
jk (φ) + J

(3)
jk (φ)

)
(31)

where

J
(1)
jk (φ) =

1

(2πτl)2

ˆ φ−β

0

ˆ Rk(θ′)

0
exp

(
−ir′

τ

)
gjk(r

′, θ′)r′dr′dθ′,

J
(2)
jk (φ) =

1

(2πτl)2

ˆ φ+β

φ−β

ˆ Rk(θ′)

0
exp

(
−ir′

τ

)
gjk(r

′, θ′)r′dr′dθ′, and

J
(3)
jk (φ) =

1

(2πτl)2

ˆ 2π

φ+β

ˆ Rk(θ′)

0
exp

(
−ir′

τ

)
gjk(r

′, θ′)r′dr′dθ′. (32)

Examine the phase term (in the exponent) of the above integrals. One factor comes from − r′

τ and
the other from

γjk
τ which is present in gjk in (27). Let αjk = −r′ + γjk denote the phase term in

the above integrals relative to τ . Since we are interested only in the limit as τ → 0, the essential
contribution to the above integrals comes only from regions (in 5D) near the stationary points of
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αjk [10, 19]. The partial derivatives of αjk w.r.t. r, θ, r̃, r′ and θ′ are given by

∂αjk
∂r

= 1− r̃ cos(θ − φ),
∂αjk
∂θ

= rr̃ sin(θ − φ),

∂αjk
∂r′

= r̃ cos(θ′ − φ)− 1,
∂αjk
∂θ′

= −r′r̃ sin(θ′ − φ), and

∂αjk
∂r̃

= −r cos(θ − φ) + r′ cos(θ′ − φ)− ρjk. (33)

Since both r and r′ are greater than zero, for 5αjk = 0, we must have

r̃ = 1, θ = θ′ = φ, and r = r′ − ρjk. (34)

By construction, the integrals J
(1)
jk (φ) and J

(3)
jk (φ) do not include the stationary point θ′ = φ, and

hence 5αjk 6= 0 in these integrals. Using the higher order stationary phase approximation [18],

both the integrals J
(1)
jk (φ) and J

(3)
jk (φ) can be shown to be O(τ) as τ → 0 and therefore converge

to zero in the limit. This leaves us with just the second integral J
(2)
jk (φ) which is restricted to the

interval [φ− β, φ+ β].
As β → 0, we may assume that Rk(θ

′) is constant over the θ′ interval [φ − β, φ + β] and
equals Rk(φ). (Without this assumption, the main result still goes through, but the proof is rather

unwieldy.) Hence, the integral J
(2)
jk (φ) can be rewritten as

J
(2)
jk (φ) =

1

(2πτl)2

ˆ Rk(φ)

0
exp

(
−ir′

τ

)
ξjk(r

′)r′dr′ (35)

where

ξjk(r
′) ≡
ˆ φ+β

φ−β
gjk(r

′, θ′)dθ′. (36)

In (28), the notation for γjk(r, θ, r̃; r
′, θ′, φ) was used to emphasize that φ, r′ and θ′ were held fixed

in the integral in (27). But in order to compute ξjk(r
′) in (36), we need the integral over θ′ in

the interval [φ − β, φ + β]. As τ → 0, the essential contribution to ξjk(r
′) comes only from the

stationary points of γjk [18]. Closely following (33) where we computed the gradients of αjk, it can
be readily verified that for 5γjk = 0 we must have

r̃ = 1, θ = θ′ = φ, and r = r′ − ρjk. (37)

Let p0 denote this stationary point. Then

γjk(p0) = r′ − ρjk = rp0 ,

f(p0) = rp0 = r′ − ρjk (38)

and the Hessian matrix H of γjk at p0 is given by

H(r, θ, r̃, θ′)|p0 =


0 0 −1 0
0 r′ − ρjk 0 0
−1 0 0 0

0 0 0 −r′

 .
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The determinant of H equals r′(r′ − ρjk) and its signature—the difference between the number
of positive and negative eigenvalues—is zero. From the results of the four-dimensional stationary-
phase approximation [18], we have as τ → 0,

ξjk(r
′) = (2πτ)2

√
r′ − ρjk√
r′

exp

{
i

τ
(r′ − ρjk)

}
+ ε1(r′, τ) (39)

where ε1(r′, τ) ≤ M1τ
κ with κ ≥ 5

2 and includes contributions from the boundary. Plugging the
value of ξjk(r

′) in (35), we get

J
(2)
jk (φ) =

1

l2

ˆ Rk(φ)

0
exp

(
−iρjk
τ

)√
r′(r′ − ρjk)dr′

+
1

(2πτl)2

ˆ Rk(φ)

0
exp

(
−ir′

τ

)
ε1(r′, τ)r′dr′. (40)

Since ε1(r′,τ)
h2

≤ Mτ
1
2 , the second integral converges to zero as τ → 0. Let χjk(φ) denote the first

integral in (40). Note that l2 = L and ρjk depends only on φ [as can be seen from Equation (29)].
Then

χjk(φ) =
1

L
exp

{
−i
τ
ρjk(φ)

}ˆ Rk(φ)

0

√
r′(r′ − ρjk)dr′. (41)

Recall the definition of I(φ) in (25) and its equivalent statement in (31). So far we have

approximated I(φ) by
∑K

j=1

∑K
k=1 J

(2)
jk (φ) and J

(2)
jk (φ) by χjk(φ) as τ → 0. For the theorem

statement to hold good, it suffices to show that

lim
τ→0

K∑
j=1

K∑
k=1

ˆ φ0+∆

φ0

χjk(φ)dφ =

ˆ φ0+∆

φ0

P (φ)dφ. (42)

We now consider two cases: first in which j 6= k and the second in which j = k.

case (i) : If j 6= k, then ρjk varies continuously with φ. The stationary point(s) of ρjk—denoted by
φ̃—satisfies

tan(φ̃) =
yj − yk
xj − xk

(43)

and the second derivative of ρjk at its stationary point is given by

ρ
′′
jk(φ̃) = −ρjk(φ̃). (44)

For ρ
′′
jk(φ̃) to become equal to zero, we must have

tan(φ̃) = −xj − xk
yj − yk

=
yj − yk
xj − xk

(45)

where the last equality is obtained using (43). Rewriting we get(
yj − yk
xj − xk

)2

= −1 (46)
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which cannot be true. Since the second derivative cannot vanish at the stationary point (φ̃), from
the one dimensional stationary phase approximation [11], we have

lim
τ→0

ˆ φ0+∆

φ0

χjk(φ)dφ = lim
τ→0

O(τκ) = 0 (47)

where κ = 0.5 or 1 depending on whether the interval [φ0, φ0 + ∆) contains the stationary point
(φ̃) or not. Hence,

lim
τ→0

ˆ φ0+∆

φ0

χjk(φ)dφ = 0 (48)

for j 6= k.

case (ii) : If j = k, then ρkk = 0. Hence

χkk(φ) =

ˆ Rk(φ)

0
r′dr′ =

R2
k(φ)

2
(49)

and ˆ φ0+∆

φ0

χjk(φ)dφ =

ˆ φ0+∆

φ0

R2
k(φ)

2
dφ. (50)

Combining both case (i) and case (ii) we get

K∑
j=1

K∑
k=1

lim
τ→0

ˆ φ0+∆

φ0

χjk(φ)dφ =
1

L

K∑
k=1

ˆ φ0+∆

φ0

R2
k(φ)

2
dφ =

ˆ φ0+∆

φ0

P (φ)dφ (51)

which completes the proof.

We have shown that the Fourier transform of the CWR of the distance transform has magnitude
peaks on the unit circle of spatial frequency [Lemma (1)]. We have then shown that the squared
magnitude of the Fourier transform (normalized such that it has overall unit norm) is approximately
equal to the density function of the distance transform gradients with the approximation becoming
increasingly tight as τ (a free parameter) tends to zero [Theorem (2)]. Consequently, we can make
the identification that Ψτ (u(θ), v(θ)) is a complex, square-root density (of gradient orientation) and
that spatial frequencies are essentially gradient histogram bins. (Since the Fourier transform values
lie mainly on the unit circle, the difference between marginalization w.r.t. the radial parameter and
evaluation on the unit circle becomes negligible.)

5 Empirical confirmation of the main result

The first set of empirical results seeks to validate the principal result in this paper. In Figure 2,
we show four shapes1, their associated distance transforms, the Fourier transform of the CWR
and finally the comparison between the true density function—where we have denoted (9) as the
true density function for the sake of clarity—and the power spectrum of the CWR. As expected,
and at a value of τ = 0.00004, we note from visual inspection that the two density functions are
qualitatively similar. While obviously anecdotal, these empirical findings buttress the theoretical
result proved in the paper.

1Two shapes were obtained from Kaleem Siddiqi whom we thank and the other two shapes are from the GatorBait
shape database (http://www.cise.ufl.edu/˜anand/GatorBait 100.tgz).
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While Theorem 2 establishes the principal result, it does not provide much in terms of the
approach toward convergence as τ → 0. Our next set of empirical results examines the convergence
as τ → 0. In Figure 3, we show the convergence patterns of the FFT density for τ taking values
in a set. From an initial density at τ = 0.001 which does not bear much resemblance to the true
density (see Figure 3 top left), we see gradual improvement and much closer correspondence at
τ = 0.00004. A curious transitory pattern can also be discerned as τ is reduced. At τ = 0.001
and 0.0006, we notice very smooth density function estimates at odds with the shape of the true
density. For τ = 0.0002 and 0.00004, we notice the emergence of the “Manhattan” skyline in the
density estimator. We do not have any explanation for this empirical observation at the present
time.

Finally, we plot a scalar figure of merit—the L1 norm of the difference between the true and
estimated densities for two shapes (Figure 4). As expected, the L1 norm shows a gradual pattern of
convergence as τ is reduced. More detailed work (and with arbitrary precision numerics) is required
to understand the approach toward convergence.

6 Discussion

We have shown that the power spectrum of the complex wave representation (CWR) of 2D dis-
tance transforms approaches the true density function of the distance transform gradients as a free
parameter τ (usually identified with Planck’s constant in the physics literature) tends to zero. The
proof utilizes the higher-order stationary phase approximation, a technique which is well known and
widely deployed in the theoretical physics literature but underused in present day image analysis
and machine learning. Insofar as the higher-order stationary phase approximation bounds conspire
to work in our favor (as they have clearly done in the 2D case), the extension to 3D distance
transforms should be straightforward. This connection to density estimation legitimizes the CWR
as a viable distance transform shape representation with potential applications in atlas estimation,
shape clustering etc. It remains to be seen if CWRs can play a role in general image analysis
domains as well.
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Figure 2: Wave function (left), FFT (middle) and density estimation comparison (right).
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Figure 3: Convergence of the FFT density. Top Left: τ = 0.007. Top Middle: τ = 0.004. Top Right:
τ = 0.001. Bottom Left: τ = 0.0006. Bottom Middle: τ = 0.0002. Bottom Right: τ = 0.00004.
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Figure 4: Variation of the L1 norm of the error with τ for two shapes.
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