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Abstract. As Planck’s constant ~ (treated as a free parameter) tends
to zero, the solution to the eikonal equation |∇S(X)| = f(X) can be
increasingly closely approximated by the solution to the corresponding
Schrödinger equation. When the forcing function f(X) is set to one, we
get the Euclidean distance function problem. We show that the corre-
sponding Schrödinger equation has a closed form solution which can be
expressed as a discrete convolution and efficiently computed using a Fast
Fourier Transform (FFT). The eikonal equation has several applications
in image analysis, viz. signed distance functions for shape silhouettes,
surface reconstruction from point clouds and image segmentation be-
ing a few. We show that the sign of the distance function, its gradients
and curvature can all be written in closed form, expressed as discrete
convolutions and efficiently computed using FFTs. Of note here is that
the sign of the distance function in 2D is expressed as a winding number
computation. For the general eikonal problem, we present a perturbation
series approach which results in a sequence of discrete convolutions once
again efficiently computed using FFTs. We compare the results of our ap-
proach with those obtained using the fast sweeping method, closed-form
solutions (when available) and Dijkstra’s shortest path algorithm.

1 Introduction

While image analysis borrows liberally from classical mechanics—with varia-
tional principles [1], Euler-Lagrange equations, Hamiltonians [2] and Hamilton-
Jacobi theory [3] all in widespread use at the present time—other than a few
pioneering works [4,5], there isn’t a concomitant borrowing from quantum me-
chanics. Given the very close relationship between Hamilton-Jacobi theory and
Schrödinger wave mechanics, this is somewhat surprising. In this work, we begin
with a brief overview of the classical mechanics sequence of i) variational prin-
ciples and Euler-Lagrange equations [6], ii) Legendre transformations leading
to the Hamiltonian [7], iii) canonical transformation of the Hamiltonian which
yields the Hamilton-Jacobi theory [7], and finally iv) first quantization to obtain
the Schrödinger wave equation [8]. This well known path of development needs
an image analysis payoff which we next describe.

⋆ The authors can be contacted at {anand,ksg}@cise.ufl.edu.
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It has been a decade since EMMCVPR 1999 at which event we saw [2] the
advent of Hamiltonian mechanics to solve the eikonal equation. More specifi-
cally, the Hamiltonian approach was also used to analyze the Euclidean distance
function problem—an important special case of the eikonal problem wherein
|∇S(X)| = 1 and X a regular grid. The Euclidean distance function problem in
its image analysis incarnation can be stated as follows: Given a set of shape sil-
houettes whose boundaries are parameterized as piecewise smooth curves, com-
pute the signed distance at every location on a grid w.r.t. the boundary points.
Furthermore, we often seek the gradient, divergence, curvature and medial axes
of the signed distance function which are not easy to obtain by other approaches
such as the fast marching [9,10] and fast sweeping methods [11] due to the lack
of differentiability of the signed distance function. In sharp contrast, we show—
using our previous work on this topic [12]—that the Schrödinger wave equation
approach to the eikonal results in a closed-form solution which can be expressed
as a discrete convolution and computed in O(N log N) time using a Fast Fourier
Transform (FFT) [13] where N is the number of grid points. While the fast
marching method is also O(N log N) (and even O(N) with cleverly chosen data
structures [14]), these methods are based on spatial discretizations of the deriva-
tive operator (in |∇S(X)| = 1) whereas the Schrödinger approach does not
require derivative discretization. A caveat is that our Euclidean distance func-
tion is an approximation since it is obtained for a small but non-zero value of
Planck’s constant ~.

The Schrödinger equation approach to the eikonal gives us an unsigned dis-
tance function. We complement this by independently finding the sign of the
distance function in O(N log N) time on a regular grid in 2D. We achieve this
by efficiently computing the winding number for each location in the 2D grid.
The winding number is the number of times a closed curve winds around a point.
We show that just as in the case of the Schrödinger equation, the winding num-
ber can also be written in closed-form, expressed as a discrete convolution and
efficiently computed using an FFT. The fact that the winding number can be
expressed as a discrete convolution for every location in a 2D grid appears to be
a new contribution.

We also leverage the closed-form solution for the unsigned distance function
obtained from Schrödinger. Since our distance function is differentiable every-
where, we can once again write down closed-form expressions for the gradients
and curvature, express them as discrete convolutions and efficiently compute
these quantities in O(N log N) using FFTs. We visualize the gradients and the
maximum curvature using 2D shape silhouettes as the source. The maximum
curvature—despite its fundamental drawback of being extrinsic—has a haunt-
ing similarity to the medial axis. To our knowledge, the fast computation of the
derivatives of the distance function on a regular grid using discrete convolutions
is new.

Next, we present a general eikonal solver using a Born expansion-based per-
turbation method [15]. We cannot solve for S(X) in closed form here, and instead
we express the solution as a sequence of discrete convolutions, with each term
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efficiently computed using an FFT. We apply this method to image segmen-
tation by first seeding a set of points on the interior and the exterior of the
segmentation regions and then solving the eikonal using a forcing function f(X)
derived from the image gradients. These results are compared to those obtained
using fast sweeping and Dijkstra’s shortest path algorithm [16] (since the ground
truth is not available). Since all results are obtained for very low values of ~,
some numerical instability issues arise in the FFT-based convolutions. Conse-
quently, higher precision numerical support for fast, discrete convolution is a
fundamental requirement and one that we plan to address in future work.

2 A Schrödinger equation for the eikonal problem

In this section, we briefly review the Schrödinger equation approach to (un-
signed) Euclidean distance functions. We begin with a Lagrangian variational
principle, derive the Hamiltonian via a Legendre transformation, use a canoni-
cal transformation to obtain the Hamilton-Jacobi equation and finally quantize
Hamilton-Jacobi to obtain the Schrödinger equation.

The Lagrangian variational principle for Euclidean distance functions is an
objective function whose solution is the shortest distance between two points in
Rd—the Euclidean distance. While we use d = 2 for illustration purposes, the
approach is general and not restricted to a particular choice of dimension:

I[q] =
∫ t1

t0

L(q1, q2, q̇1, q̇2, t)dt (1)

where q(t) = {q1(t), q2(t)} is a C2 path between two points in time t0 and t1
with

L(q1, q2, q̇1, q̇2, t) =
1
2

(
q̇2
1 + q̇2

2

)
. (2)

The corresponding Euler-Lagrange equations are

q̈1(t) = 0, and q̈2(t) = 0 (3)

which are tantamount to a straight line in 2D. This choice of L actually yields
the squared Euclidean distance between two points q(t0) and q(t1). If we used the
square root of this quantity in the Lagrangian, it becomes homogeneous of degree
one in (q̇1, q̇2) [as in L(q1, q2, λq̇1, λq̇2, t) = λL(q1, q2, q̇1, q̇2, t)] and this creates
problems for the Legendre transform. Note that the Lagrangian is independent
of time t and this fact will later allow us to derive a static Schrödinger equation.

The Hamiltonian is obtained via a Legendre transform [6] applied to the
Lagrangian:

H(q1, q2, p1, p2, t) =
2∑

i=1

piq̇i(p1, p2, t) − L(q1, q2, q̇1(p1, p2), q̇2(p1, p2), t) (4)
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where the momenta p1, p2 are defined as

pi ≡
∂L

∂q̇i
, i = 1, 2. (5)

Equation (5) can be inverted to obtain q̇i = q̇i(p1, p2, t) [and this fails if the
Lagrangian is homogeneous of degree one in (q̇1, q̇2)].

The Hamilton-Jacobi equation is obtained via a canonical transformation [7]
of the Hamiltonian. In classical mechanics, a canonical transformation is defined
as a change of variables which leaves the form of the Hamilonian unchanged. For
a type 2 canonical transformation, we have

2∑
i=1

piq̇i − H(q1, q2, p1, p2, t) =
2∑

i=1

PiQ̇i − K(Q1, Q2, P1, P2, t) +
dF

dt
(6)

where F ≡ −
∑2

i=1 QiPi + F2(q, P, t) which gives

dF

dt
= −

2∑
i=1

(
Q̇iPi + QiṖi

)
+

∂F2

dt
+

2∑
i=1

(
∂F2

∂qi
q̇i +

∂F2

∂Pi
Ṗi

)
. (7)

When we pick a particular type 2 canonical transformation wherein Ṗi = 0, i =
1, 2 and K(Q1, Q2, P1, P2, t) = 0, we get

∂F2

∂t
+ H(q1, q2,

∂F2

∂q1
,
∂F2

∂q2
, t) = 0 (8)

where we are forced to make the identification pi = ∂F2
∂qi

, i = 1, 2. Note that the
new momenta Pi are constants of the motion (usually denoted by αi, i = 1, 2).
Changing F2 to S as in common practice, we have the standard Hamilton-Jacobi
equation for the function S(q1, q2, α1, α2, t). To complete the circle back to the
Lagrangian, we take the total time derivative of the Hamilton-Jacobi function S
to get

dS(q1, q2, α1, α2, t)
dt

=
2∑

i=1

∂S

∂qi
q̇i +

∂S

∂t

=
2∑

i=1

piq̇i − H(q1, q2,
∂S

∂q1
,

∂S

∂q2
, t) = L(q1, q2, q̇1, q̇2, t).(9)

Consequently S(q1, q2, α1, α2, t) =
∫ t

t0
Ldt and the constants {α1, α2} can now be

interpreted as integration constants. For a more accessible treatment of the rela-
tionship between Lagrangians and the Hamilton-Jacobi field S(q1, q2, α1, α2, t),
please see [17].

For the Euclidean distance function problem, following (4) and (8), we get
H(q1, q2, p1, p2, t) = 1

2

(
p2
1 + p2

2

)
and the Hamilton-Jacobi equation is

∂S

∂t
+

1
2

[(
∂S

∂q1

)2

+
(

∂S

∂q2

)2
]

= 0. (10)
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The Schrödinger equation can sometimes be “derived” using a Feynman path
integral approach. The more common approach—termed first quantization1—
is to convert the relation pi = ∂S

∂qi
, i = 1, 2 into an operator relation pi =

i~ ∂
∂qi

, i = 1, 2. In a similar fashion, the time operator is i~ ∂
∂t . When we quantize

the Euclidean distance function problem, we get

i~
∂ψ

∂t
+

~2

2

(
∂2ψ

∂x2
+

∂2ψ

∂y2

)
= 0. (11)

At first glance, there appear to be some similarities between the Hamilton-Jacobi
equation in (10) and the Schrödinger equation in (11). Due to first quantization,
the squared first derivatives w.r.t. space in the former have morphed into second
derivative operators in the latter. Both equations have first derivatives w.r.t.
time.

We now show that the time independence of the Lagrangian in (2) allows us
to simplify the former into the static Hamilton-Jacobi equation and the latter
into the static Schrödinger equation.

If the Lagrangian is not an explicit function of time, we can seek solutions for
the Hamilton-Jacobi equation that are time independent. Setting S(q1, q2, α1, α2, t)
= S∗(q1, q2, α1, α2) − Et where E = 1

2 is the total energy for the Euclidean dis-
tance function problem, we get(

∂S∗

∂q1

)2

+
(

∂S∗

∂q2

)2

= 1 (12)

which is the eikonal equation with the forcing term set to one—a nonlinear,
first-order differential equation. In a similar fashion, when we set ψ(x, t) =
ϕ(x) exp

(
it
2~

)
and use E = 1

2 , we see that ϕ(x) satisfies the screened Poisson
equation

~2

(
∂2ϕ

∂x2
+

∂2ϕ

∂y2

)
= ϕ (13)

which is a linear, second-order differential equation. A close relationship between
ϕ and S∗ can be shown by setting ϕ(x) = exp

{
− Ŝ(x)

~

}
and rewriting (13) to

get (
∂Ŝ

∂x1

)2

+

(
∂Ŝ

∂x2

)2

− ~

(
∂2Ŝ

∂x2
1

+
∂2Ŝ

∂x2
2

)
= 1 (14)

which is strikingly similar to the eikonal equation in (12) with the important
difference being a viscosity regularization term [18] modulated by the free pa-
rameter ~. [Note that the viscosity term arises naturally from (13)—an intriguing
result.] As ~ → 0, Ŝ → S∗ which implies that we can solve the static Schrödinger
equation in (13) instead of the eikonal equation in (12). In the next section, we
describe fast algorithms for solving (14) and also present fast methods for com-
puting the signed distance function and the derivatives of the Euclidean distance
function.
1 First quantization is still mysterious. For an informal but illuminating treatment,

please see http://math.ucr.edu/home/baez/categories.html.
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3 Fast computation of the signed Euclidean distance
function and its derivatives

In our previous work [12], we showed that the static Schrödinger equation in
(13) can be efficiently solved using a Fast Fourier Transform (FFT) approach
in arbitrary dimensions. The complexity of the FFT is O(N log N) where N is
the total number of grid points (in any dimension). We briefly summarize the
FFT-based Euclidean distance function algorithm.

3.1 Unsigned Euclidean distance functions

In the Euclidean distance function problem, we begin by considering the forced
version of (13) in 2D:

−~2 ▽2 ϕ + ϕ =
K∑

k=1

δ(X − Yk). (15)

The points Yk, k ∈ {1, . . . ,K} are a set of seed locations at which S∗(Yk) =
0, ∀Yk, k ∈ {1, . . . ,K} with the set X being the locations at which we wish to
compute the Euclidean distance function. A Green’s function approach can be
pursued since the above differential equation is homogeneous except at the seed
locations Y . The Green’s functions [19] (for an unbounded domain with Dirichlet
boundary conditions) are

G1D(X − Y ) =
1
2~

exp
(
−|X − Y |

~

)
, (16)

G2D(X − Y ) = =
1

2π~2
K0

(
∥X − Y ∥

~

)
, (17)

and

G3D(X − Y ) =
1

4π~2

exp
(

−∥X−Y ∥
~

)
∥X − Y ∥

(18)

in 1D, 2D and 3D respectively where K0(r) is the modified Bessel function of the
second kind. We avoid the singularity at the origin in 2D and 3D by replacing
their Green’s functions with the exponential function (similar to the 1D Green’s
function). This is a very good approximation as ~ → 0 since the 2D and 3D
Green’s functions converge uniformly to the exponential function everywhere
away from the origin. With this in place, we write the solution for ϕ(X) as

ϕ(X) =
K∑

k=1

G(X) ∗ δ(X − Yk) =
K∑

k=1

G(X − Yk) (19)

and the corresponding approximate solution to the eikonal equation (after re-
moving terms independent of X) is

Ŝ(X) = −~ log
K∑

k=1

exp
{
−∥X − Yk∥

~

}
(20)
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with the caveat being that we are using an approximate, unbounded domain
Green’s function G(X) here. We have shown that an approximate solution for
the eikonal (with the forcing term set to one) can be obtained in closed-form as
in (20) and efficiently computed using an FFT since equation (19) expresses a
discrete convolution [13] between the functions

G(X) = exp
{
−∥X∥

~

}
(21)

and

Ykron(X) ≡
K∑

k=1

δkron(X − Yk). (22)

(Here δkron(X) is a Kronecker delta function.) This is a significant result since
the time complexity of the discrete convolution is O(N log N) and the expression
Ŝ(X) in (20) for the Euclidean distance function is continuous and differentiable
everywhere (except in 1D at the seed locations).

3.2 Winding numbers for the signed distance function in 2D

The solution for the approximate Euclidean distance function in (20) is lacking
in one respect: there is no information on the sign of the distance. This is to
be expected since the distance function was obtained only from a set of points
Y and not a curve or surface. We now describe a new method for computing
the signed distance in 2D using winding numbers [20]. (The equivalent concept
in 3D and higher dimensions is the topological degree which appears to be a
straightforward extension but with possible unexpected pitfalls.)

Assume that we have a closed, parametric curve
{
x(1)(t), x(2)(t)

}
, t ∈ [0, 1].

We seek to determine if a grid location in the set
{
Xi ∈ R2, i ∈ {1, . . . , N}

}
is

inside the closed curve. The winding number is the number of times the curve
winds around the point Xi (if at all) and if the curve is oriented, counterclockwise
turns are counted as positive and clockwise turns as negative. If a point is inside
the curve, the winding number is a non-zero integer. If the point is outside the
curve, the winding number is zero. If we can efficiently compute the winding
number for all points on a grid w.r.t. to a curve, then we would have the sign
information (inside/outside) for all the points. We now describe a fast algorithm
to achieve this goal.

If the curve is C1, then the angle θ(t) of the curve is continuous and dif-

ferentiable and dθ(t) =
(

x(1)ẋ(2)−x(2)ẋ(1)

r2

)
dt where r(t) =

√[
x(1)

]2 +
[
x(2)

]2.
Since we need to determine whether the curve winds around each of the points
Xi, i ∈ {1, . . . , N}, define (x̂(1)

i , x̂
(2)
i ) ≡ (x(1) − X

(1)
i , x(2) − X

(2)
i ), ∀i. Then the

winding numbers for all grid points in the set X are

µi =
1
2π

∮
C

 x̂
(1)
i

˙̂x
(2)

i − x̂
(2)
i

˙̂x
(2)

i[
x̂

(1)
i

]2

+
[
x̂

(2)
i

]2

 dt, ∀i ∈ {1, . . . , N} . (23)
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As it stands, we cannot actually compute the winding numbers without per-
forming the integral in (23). To this end, we discretize the curve and produce a
sequence of points

{
Yk ∈ R2, k ∈ {1, . . . ,K}

}
with the understanding that the

curve is closed and therefore the “next” point after YK is Y1. (The winding num-
ber property holds for piecewise continuous curves as well.) The integral in (23)
becomes a discrete summation and we get

µi =
1
2π

K∑
k=1


[
Y

(1)
k − X

(1)
i

] [
Y

(2)
k⊕1 − Y

(2)
k

]
−

[
Y

(2)
k − X

(2)
i

] [
Y

(1)
k⊕1 − Y

(1)
k

]
[(

Y
(1)
k − X

(1)
i

)2

+
(
Y

(2)
k − X

(2)
i

)2
]


(24)

∀i ∈ {1, . . . , N}, where the notation Y
(·)
k⊕1 denotes that Y

(·)
k⊕1 = Y

(·)
k+1 for k ∈

{1, . . . ,K − 1} and Y
(·)
K⊕1 = Y

(·)
1 . We can simplify the notation in (24) (and

obtain a measure of conceptual clarity as well) by defining the “tangent” vector
{Zk, k = {1, . . . ,K}} as Z

(·)
k = Y

(·)
k⊕1 − Y

(·)
k , k ∈ {1, . . . ,K} with the (·) symbol

indicating either coordinate. Using the tangent vector Z, we rewrite (24) as

µi =
1
2π

K∑
k=1


[
Y

(1)
k − X

(1)
i

]
Z

(2)
k −

[
Y

(2)
k − X

(2)
i

]
Z

(1)
k[(

Y
(1)
k − X

(1)
i

)2

+
(
Y

(2)
k − X

(2)
i

)2
]

 , ∀i ∈ {1, . . . , N}

(25)
We now make the somewhat surprising observation (to us at any rate) that

µ in (25) is a sum of two discrete convolutions. The first convolution is between
two functions fcr(X) ≡ fc(X)fr(X) and g2(X) =

∑K
k=1 Z

(2)
k δkron(X−Yk) where

the Kronecker delta function is a product of two Kronecker delta functions, one
for each coordinate. The second convolution is between two functions fsr(X) ≡
fs(X)fr(X) and g1(X) ≡

∑K
k=1 Z

(1)
k δkron(X − Yk). The functions fc(X), fs(X)

and fr(X) are defined as

fc(X) ≡ X(1)√[
X(1)

]2 +
[
X(2)

]2 , fs(X) ≡ X(2)√[
X(1)

]2 +
[
X(2)

]2 , and (26)

fr(X) ≡ 1√[
X(1)

]2 +
[
X(2)

]2 . (27)

where we have abused notation somewhat and let X(1) (X(2)) denote the x (y)-
coordinate of all the points in the grid set X. Armed with these relationships,
we rewrite (25) to get

µ(X) =
1
2π

[−fcr(X) ∗ g2(X) + fsr(X) ∗ g1(X)] (28)

which can be computed in O(N log N) time using two FFTs. We have shown
that the sign component of the Euclidean distance function can be separately
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computed (without knowledge of the distance) in parallel in O(N log N) on a
regular 2D grid.

3.3 Fast computation of the derivatives of the distance function

Just as the approximate Euclidean distance function Ŝ(X) can be efficiently
computed in O(N log N), so can the derivatives. This is important because fast
computation of the derivatives of Ŝ(X) on a regular grid can be very useful
in medial axes and curvature computations. Below, we detail how this can be
achieved. We begin with the gradients and for illustration purposes, the deriva-
tions are performed in 2D:

Ŝx(X) =

∑K
k=1

“

X(1)−Y
(1)

k

”

r

“

X(1)−Y
(1)

k

”2
+

“

X(2)−Y
(2)

k

”2
exp

{
−∥X−Yk∥

~

}
∑K

k=1 exp
{
−∥X−Yk∥

~

} . (29)

A similar expression can be obtained for Ŝy(X). These first derivatives can be
rewritten as discrete convolutions:

Ŝx(X) =
fc(X) exp

{
−X

~
}
∗ Ykron(X)

Ŝ(X)
, Ŝy(X) =

fs(X) exp
{
−X

~
}
∗ Ykron(X)

Ŝ(X)
,

(30)
where fc(X) and fs(X) are as defined in (26) and Ykron(X) is as defined in (22).

The second derivative formulae are somewhat involved. Rather than hammer
out the algebra in a turgid manner, we merely present the final expressions—all
discrete convolutions—for the three second derivatives in 2D:

Ŝxx(X) = −(1 +
1
~
)
f2

c (X) exp
{
−X

~
}
∗ Ykron(X)

Ŝ(X)
+

1
~
Ŝ2

x(X)

+
fr(X) exp

{
−X

~
}
∗ Ykron(X)

Ŝ(X)
, (31)

Ŝyy(X) = −(1 +
1
~
)
f2

s (X) exp
{
−X

~
}
∗ Ykron(X)

Ŝ(X)
+

1
~
Ŝ2

y(X)

+
fr(X) exp

{
−X

~
}
∗ Ykron(X)

Ŝ(X)
, and (32)

Ŝxy(X) = −(1 +
1
~
)
fc(X)fs(X) exp

{
−X

~
}
∗ Ykron(X)

Ŝ(X)
+

1
~
Ŝx(X)Ŝy(X)(33)

where fr(X) is as defined in (27). We also see that

Ŝ2
x(X)+Ŝ2

y(X)−~
[
Ŝxx(X) + Ŝyy(X)

]
= (1+~)−2~

fr(X) exp
{
−X

~
}
∗ Ykron(X)

Ŝ(X)
(34)
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[since f2
c (X) + f2

s (X) = 1] with the right side going to one as ~ → 0 for points
in X away from points in the seed point-set Y . This is in accordance with (14)
and vindicates our choice of the replacement Green’s function in (21).

Since we can efficiently compute the first and second derivatives of the ap-
proximate Euclidean distance function Ŝ(X) everywhere on a regular grid, we
can also compute derived quantities such as curvature (Gaussian, mean and prin-
cipal curvatures for a two-dimensional surface). In the next section, we visualize
the derivatives and maximum curvature for shape silhouettes.

4 Euclidean distance function experiments

We executed the Schrödinger Euclidean distance function algorithm on a set of
2D shape silhouettes2. The grid size is −20 ≤ x ≤ 20 and −20 ≤ y ≤ 20 with a
grid spacing of 0.25 and ~ = 0.3. The winding number discrete convolution algo-
rithm is used to mark points as either inside or outside each shape. We visualize
the vector fields (Ŝx, Ŝy) in Figure 1 for the 8 shapes and the maximum curvature
for a subset of the shapes in Figure 2. We chose the maximum curvature (defined
as H +

√
H2 − K where H and K are the mean and Gaussian curvatures respec-

tively of the Monge patch given by
{

x, y, Ŝ(x, y)
}

) as the vehicle to visualize
the medial axes of each shape after first considering the divergence of the unit
gradient

[
∇ · g = ∇ ·

(
∇Ŝ(X)

|∇Ŝ(X)|

)]
and the entropy

(
−∂Ŝ(X)

∂~

)
. The divergence is

a good choice for the medial axes provided we update an adaptive grid whereas
the entropy requires very high precision numerical computation (which we plan
to pursue in the future).

Next, we ran a comparison of the Schrödinger Euclidean distance function
algorithm with the fast sweeping method [11] and the exact Euclidean distance.
We used a “Dragon” point-set obtained from the Stanford 3D Scanning Repos-
itory3 in 3D and executed the three approaches to construct isosurfaces which
are visualized in Figure 3. The common grid was −2 ≤ x ≤ 2, −2 ≤ y ≤ 2
and −2 ≤ z ≤ 2 with a grid spacing of 0.125. Numerical underflow errors in
the FFT forced us to run the Schrödinger Euclidean distance function algorithm
at four values of ~, namely, 0.025, 0.045, 0.06, and 0.08. We used the following
decision criterion for Ŝ(X): Ŝ = Ŝ|~=0.08 if Ŝ ≥ 2, Ŝ = Ŝ|~=0.06 if 1.5 ≤ Ŝ < 2,
Ŝ = Ŝ|~=0.045 if 0.75 ≤ Ŝ < 1.5 and Ŝ = Ŝ|~=0.025 if Ŝ < 0.75. The initial condi-
tions Ŝ(Yk) = 0, ∀k ∈ {1, . . . ,K} were used to translate the Ŝ values (upwards
or downwards) such that the minimum value was zero. The average percentage
error in the Schrödinger approach was 3.89% whereas the average percentage er-
ror in the fast sweeping method (where the Gauss-Seidel iterates were run until
convergence) was 6.35%. Our FFT-based approach does not begin by discretiz-
ing the spatial differential operator as is the case with the fast marching and
fast sweeping methods and this could help account for the increased accuracy.

2 We thank Kaleem Siddiqi for providing us the set of 2D shape silhouettes used in
this paper.

3 This dataset is available at http://graphics.stanford.edu/data/3Dscanrep/.
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5 A perturbation approach for the general eikonal
problem

In this section, we briefly summarize our perturbation approach (using the well
known Born expansion) [15,12] for the general eikonal equation (with forcing
functions f(X) bounded away from zero). We consider the static Schrödinger
equation (in 2D) with a forcing function f(X):

−~2 ▽2 ϕ + f2ϕ =
K∑

k=1

δ(X − Yk). (35)

Equation (35) can be rewritten as

(−~2 ▽2 +f̃2)
[
1 + (−~2 ▽2 +f̃2)−1 ◦ (f2 − f̃2)

]
ϕ =

K∑
k=1

δ(X − Yk) (36)

with f̃(X) a constant forcing function. Now, defining the operator A as A ≡
(−~2 ▽2 +f̃2)−1 ◦ (f2 − f̃2) and ϕ0 as ϕ0 ≡ (1 + A)ϕ, we see that ϕ0 satisfies

(−~2 ▽2 +f̃2)ϕ0 =
K∑

k=1

δ(X − Yk) (37)

and
ϕ = (1 + A)−1ϕ0. (38)

Using a geometric series approximation for (1+A)−1, we obtain the solution for
ϕ as

ϕ ≈ ϕ0 − ϕ1 + ϕ2 − ϕ3 + . . . + (−1)T ϕT (39)
where ϕi satisfies the recurrence relation

(−~2 ▽2 +f̃2)ϕi = (f2 − f̃2)ϕi−1, ∀i ∈ {1, 2, . . . , T}. (40)

The solutions for ϕi can then be obtained by convolution

ϕ0(X) =
K∑

k=1

G(X) ∗ δ(X − Yk) =
K∑

k=1

G(X − Yk), (41)

ϕi(X) = G(X) ∗
[
(f2 − f̃2)ϕi−1

]
, ∀i ∈ {1, 2, . . . , T} (42)

and an approximate solution to the eikonal equation can be obtained from
Ŝ(X) = −~ log ϕ(X). The discrete convolutions in (41) and in (42) can be ef-
ficiently computed via FFTs. The number of terms (T ) used in the geometric
series approximation of (1 + A)−1 is independent of the grid size N . We set

f̃ =
√

[minX f(X)]2+[maxX f(X)]2

2 which turns out to be the optimal value [12].
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Fig. 1. A quiver plot of ∇Ŝ = (Ŝx, Ŝy) for a set of silhouette shapes

Fig. 2. Maximum curvature plots: i) Horse, ii) Hand, and iii) Bird

Fig. 3. Dragon surface reconstructed using i) Schrödinger, ii) Exact Euclidean distance
and iii) Fast sweeping
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6 Image segmentation results using the eikonal solver

To test the eikonal solver, we obtained two images (3096 and 101085) from the
Berkeley Segmentation Dataset and Benchmark4. After first smoothing them us-
ing a 5× 5 Gaussian with standard deviation 0.25, we used the following sets of
parameters for the two images. For image 3096: we ran the perturbation method
for T = 5 iterations at ~ values of 0.05, 0.15, 0.25 and 0.35 with thresholds of
1.5, 2.5 and 4, grid size −8 ≤ x ≤ 8, −6 ≤ y ≤ 6 with grid spacing 0.0313
and the forcing function f(X) = |∇I(X)|

maxX |∇I(X)| + 0.5. For image 101085, the only
changes were: grid size −5 ≤ x ≤ 5, −8 ≤ y ≤ 8 with grid spacing 0.0313 and
the forcing function f(X) = |∇I(X)|

maxX |∇I(X)| + 0.01. Both images were seeded with
a set of interior/exterior points, the eikonal algorithms were run twice and we
displayed the boundaries in Figure 4 using the eikonal “winner”—the one with
the smaller distance. The same approach was used for the fast sweeping method
and Dijkstra’s shortest path algorithm [16] (since closed form solutions are not
available). The results are obviously anecdotal but serve to illustrate the corre-
spondence between the Schrödinger (quantum) and the fast sweeping (classical)
approaches. Note the larger scale boundaries in the Schrödinger segmentation of
image 101085 which we attribute to the viscosity term in (14).

Fig. 4. Image segmentation results. Top from left to right: i) Image 3096, ii)
Schrödinger, iii) Dijkstra, iv) Fast sweeping. Bottom from left to right: i) Image 101085,
ii) Schrödinger, iii) Dijkstra, iv) Fast sweeping.

4 This dataset is available at
http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench/
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7 Discussion

While energy minimization methods have permeated image analysis in the past
two decades, one overarching generalization we can make is that the formulations
are inspired by classical and not quantum mechanics. Despite the fact that a close
correspondence exists between Hamilton-Jacobi theory and Schrödinger wave
mechanics, we have not seen image analysis leverage this relationship. When
we solve the Schrödinger equation at small values of ~, we obtain closed-form
solutions for the Euclidean distance function problem that can be efficiently
computed in O(N log N). This has immediate applications in image analysis as
the sign of the distance function, its gradients and curvature can all be writ-
ten in closed-form and efficiently computed via FFTs. When applied to shape
silhouettes, the gradients and curvature information can aid in medical axes
computation. We also show that a perturbation series approach leads to a fast
eikonal solver which can be used in image segmentation. Future work will focus
on fast, multipole methods [21] for solving the time independent Schrödinger
equation since these methods have very attractive computational properties.
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