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Abstract

We present a new information metric for multimodal-
ity image registration. The metric is technically a pseu-
dometric since it satisfies the properties, i) nonnegativity,
ii) symmetry, iii) triangle inequality and is iv) zero if (but
not only if) the two image intensities are identical. Infor-
mation metrics are rarely used in image registration and
notably, the widely used mutual information measure is not
a metric. Given imagesA and B, the metric used here is
the sum of the conditional entropiesH(A|B) andH(B|A).
We show that when compared to mutual information which
can even become negative in the multiple image case, it is
easier to extend our metric to the registration of multiple
images. And, after using an upper bound, we show that the
sum of the conditional entropies can be efficiently computed
even in the multiple image case. We use the metric to simul-
taneously register multiple 2D slice images obtained from
proton density (PD), magnetic resonance (MR) T2 and MR
T1 3D volumes and to match human face images obtained
under different illuminations. Our results demonstrate the
efficacy of the metric in affine, multiple image registration.

1 Introduction

Despite the pervasive use of the mutual information mea-
sure in image registration in general and in medical imag-
ing in particular, the measure is not a metric in that it does
not satisfy the triangle inequality. The first goal in this
paper is to define a new entropy-based image registration
measure which is a metric (technically a pseudometric).
Entropy-based image similarity measures have become very
popular in image analysis especially in situations where
there are significant illumination differences between the
images being compared. In the present work, we define a
new entropy-based image similarity metric. The new met-
ric ρ(A,B) = H(A|B) + H(B|A) whereH(A|B) and

H(B|A) are the conditional entropies of random variables
A andB respectively. The metric is technically a pseudo-
metric since it satisfies three properties of a metric: i) non-
negativity, ii) symmetry, and iii) triangle inequality but not
the fourth—ρ(A,B) = 0 if A = B but is also equal to zero
if A = f(B).

A second goal in this paper is the simultaneous registra-
tion of multiple images. In medical imaging, for example,
we frequently need to register at the same time, images of
different modalities. And there is a frequent need to perform
image registration of natural images acquired under differ-
ent illumination conditions. While the mutual information
measure is popular in intermodality (two images) registra-
tion, it has not been widely used in multimodality (more
than two images) situations. While the mutual information
measure between two random variables is non-negative, this
is not true when more than two random variables are in-
volved. The mutual information measure between (more
than two) random variablescan even become negative. We
show that there is a natural extension of our information
metric to the case of three or more images. However, it
turn out that the computational complexity of estimating
the conditional entropy can become very expensive since
it requires estimating a high dimensional probability mass
function. We alleviate this problem by minimizing an up-
per bound of our information metric which is a metric in its
own right.

Since Viola and Wells [1] and Collignonet al. [2] used
mutual information in image registration, there have been
hundreds of papers [3] on image registration using entropy-
based criteria and mutual information. Two notable facts
emerge after surveying the literature. There is almost no
prior work on defining an entropy-based image similarity
metric as we have done here and there are considerable
differences of opinion on the extension of mutual infor-
mation from the intermodality (two images) case to the
multimodality (more than two images) case. In [4], mu-
tual information of three random variablesX,Y andZ is
defined asMI(X,Y, Z) = H(X) + H(Y ) + H(Z) −
H(X, Y ) −H(X,Z) −H(Y, Z) + H(X, Y, Z). Unfortu-
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nately,MI(X, Y, Z) is not necessarily nonnegative, which
renders it inadequate as an image similarity measure. In [5]
and [6], a different definition is proposed:MI(X, Y, Z) =
H(X) + H(Y ) + H(Z) −H(X, Y, Z). This definition is
nonnegative but it is not a natural extension of the mutual in-
formation of two random variables. In [7], three images are
registered using yet another different definition of mutual
information. However, all these definitions do not embody
the true (in our eyes) spirit of mutual information: shared
information between multiple images. Hence using mutual
information to simultaneously register multiple images is
not appropriate despite the fact that mutual information is a
very good measure (though not a metric) for registering two
images. Finally, even if we had a nonnegative and natural
definition for multimodality mutual information, comput-
ing this high dimensional mutual information is still diffi-
cult since it requires the estimation of a high dimensional
probability mass function, which is computationally very
expensive.

2 Description of the information metric

2.1 Metric Definition

After our brief introduction and review of the different
inadequacies of the mutual information measure, we now
turn to the definition of our new information metric.

The metricρ is the sum of two conditional entropies and
defined in [4]. For two random variablesX andY ,

ρ(X, Y ) = H(X|Y ) + H(Y |X) (1)

where H(·) is the entropy of a random variable and
defined as H(X) = −E(log(p(X)), where p(X)
is the probability mass function ofX, and E(·) de-
notes the expectation of a random variable. Hence
H(X|Y ) = −E(log(p(X|Y )) and H(Y |X) =
−E(log(p(Y |X)). If X and Y are discrete random
variables,H(X|Y ) = −∑

y∈Ω

∑
x∈Ω p(x, y) log(p(x|y))

and H(Y |X) = −∑
y∈Ω

∑
x∈Ω p(x, y) log(p(y|x));

If X and Y are continuous random variables,
H(X|Y ) = − ∫

Ω

∫
Ω

p(x, y) log(p(x|y))dxdy and
H(Y |X) = − ∫

Ω

∫
Ω

p(x, y) log(p(y|x))dxdy, where
p(x, y) is the joint probability mass function ofX andY ,
and p(x|y) and p(y|x) are conditional probability mass
functions ofX andY respectively.

ρ(X,Y ) is a pseudometric since it satisfies the following
four properties [4].

1. ρ(X, Y ) ≥ 0

2. ρ(X, Y ) = ρ(Y, X)

3. ρ(X, Y ) = 0 if X = Y . Howeverρ(X,Y ) = 0 also if
X = f(Y ). This is whyρ(X,Y ) is not a true metric.

H(X,Y)

MI(X,Y)H(X|Y) H(Y|X)

H(Y)H(X)

Figure 1: Venn diagram for two random variables

4. ρ(X, Y ) + ρ(Y, Z) ≥ ρ(X, Z)

As explained later, we have also found it useful to work with
the following normalized metric. Let

τ(X,Y ) =
H(X|Y ) + H(Y |X)

H(X,Y )
. (2)

Then τ(X, Y ) is also a pseudometric. For proof, please
see [8]. Sinceτ(X, Y ) = ρ(X,Y )

H(X,Y ) , we henceforth refer to
τ(X,Y ) as the normalized metric. And0 ≤ τ(X,Y ) ≤
1, τ(X,Y ) = 0 if X = Y ; τ(X, Y ) = 1 if X and Y
are independent. Another normalized version of the metric
ρ(X, Y ) is

η(X, Y ) = H(X|Y )+H(Y |X)
H(X)+H(Y )

= ρ(X,Y )
H(X)+H(Y ) .

(3)

And 0 ≤ η(X,Y ) ≤ 1, η(X, Y ) = 0 if X = Y ;
η(X,Y ) = 1 if X andY are independent. Butη(X, Y )
does not satisfy the triangle inequality and hence it is not a
metric (or pseudometric).

2.2 Relationship between the information
metric and mutual information

The definition of mutual information for two random
variablesX andY is

MI(X,Y ) = H(X) + H(Y )−H(X,Y ) (4)

whereH(X) andH(Y ) are marginal entropies ofX andY
andH(X, Y ) is the joint entropy ofX andY . Also,

H(X|Y ) = H(X, Y )−H(Y ) (5)

and
H(Y |X) = H(X,Y )−H(X). (6)
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Hence

ρ(X,Y ) = H(X|Y ) + H(Y |X)
= 2H(X, Y )−H(X)−H(Y )
= H(X) + H(Y )− 2MI(X,Y )
= H(X, Y )−MI(X, Y )

(7)

From Figure 1, we can visualize the relationship be-
tween the metricρ and MI, where the metricρ is the non-
overlapping region whereas MI is the common region be-
tween two sets.

In Figure 2, we plot the values of the metricρ and MI
between a proton density (PD) MR image and a rotated and
scaled MR T2 image, where the rotation angle ranges from
-20 degrees to 20 degrees and (log) scale ranges from -1 to
1. From Figure 2, the metricρ is smoothly behaved w.r.t.
rotation and scale and achieves its minimum at the point
where both rotation and scale are zero; MI is also smoothly
behaved w.r.t. rotation and scale and achieves its maximum
at the point where both rotation and scale are zero. Hence,
at least in this anecdotal example, we can minimizeρ or
maximize MI to recover rotation and scale variables.

(a) PD image (b) MR T2 image
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Figure 2: The metricρ and mutual information between PD
and rotated and scaled T2 images

Now we discuss relationships between the normalized
metric τ and normalized mutual information (NMI). The
definition of normalized mutual information [9] for two ran-
dom variablesX andY is

NMI(X,Y ) =
H(X) + H(Y )

H(X,Y )
. (8)

Hence the normalized metric

τ(X, Y ) = H(X|Y )+H(Y |X)
H(X,Y )

= 2H(X,Y )−H(X)−H(Y )
H(X,Y )

= 2− H(X)+H(Y )
H(X,Y )

= 2−NMI(X,Y )

(9)

A different normalized version of the metric

η(X, Y ) = H(X|Y )+H(Y |X)
H(X)+H(Y )

= 2H(X,Y )−H(X)−H(Y )
H(X)+H(Y )

= 2H(X,Y )
H(X)+H(Y ) − 1

= 2
NMI(X,Y ) − 1.

(10)

Hence, maximizing NMI is equivalent to minimizing the
normalized metricτ or η.

2.3 Affine Registration by Minimizing the
Metric

Assume that we have two imagesI(1)andI(2). We treat
the intensity value of each pixel as an independent random
variable. We seek to register imageI(2) to imageI(1) by
determining the best affine transformationT ∗ which mini-
mizes the metric (1).

T ∗ = arg min
T

ρ(I(1), I(2)(T )) (11)

whereT =




a b 0
c d 0
e f 1


 is an affine transformation. In

T, the submatrix

[
a b
c d

]
can be decomposed into shear,

scale and rotation and the vector
[

e f
]

contains thex
andy translations. The imageI(2)(T ) is the transformed
image of imageI(2) using the affine transformationT .

2.4 Extension to the multimodality case

Having defined the metric for two images, we now work
out the extension to the multi-modality case. Again, please
note that this extension is extremely straightforward as op-
posed to extending mutual information.

From the definition of the information metric for two
random variables (1) and from the Venn diagram shown be-
low in Figure 3, we can easily extend the metric to three
random variables. For three random variablesX, Y andZ,

ρ(X, Y, Z)
= H(X|Y, Z) + H(Y |X,Z) + H(Z|X, Y ) (12)
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where, as before,H(·) is the entropy of a random variable
and defined asH(X) = −E(log(p(X)), with p(X) being
the probability mass function ofX. HenceH(X|Y,Z) =
−E(log(p(X|Y,Z)), H(Y |X,Z) = −E(log(p(Y |X, Z))
andH(Z|X, Y ) = −E(log(p(Z|X,Y )).

H(Z)

MI(X,Y,Z)
H(X|Y,Z) H(Y|X,Z)

H(Y)H(X)

H(Z|X,Y)

Figure 3: Venn diagram for three random variables

From Figure 3, we can see the relationship between the
metricρ and MI, where the metricρ is the sum of the en-
tropies of the non-overlapping regions whereas MI is the
common region of the three sets.

Forn random variablesX1, X2 . . . Xn,

ρ(X1, X2, . . . , Xn)
=

∑n
i=1 H(Xi|X1, . . . , Xi−1, Xi+1, . . . , Xn) (13)

When we simultaneously register three imagesI(1),I(2)

andI(3), we seek two optimal affine transformationsT ∗1 and
T ∗2 by minimizing the metric (12).

{T ∗1 , T ∗2 } = arg min
{T1,T2}

ρ(I(1), I(2)(T1), I(3)(T2)) (14)

whereT1andT2 are two affine transformations.I(2)(T1) is
the transformed image of imageI(2) using affine transfor-
mationT1 andI(3)(T2) is the transformed image of image
I(3) using affine transformationT2.

We can also extend the normalized metricτ and η to
multiple variables:

τ(X1, X2, . . . , Xn)

=
∑n

i=1
H(Xi|X1,...,Xi−1,Xi+1,...,Xn)

H(X1,...,Xn)

= ρ(X1,X2,...,Xn)
H(X1,...,Xn)

(15)

η(X1, X2, . . . , Xn)

=
∑n

i=1
H(Xi|X1,...,Xi−1,Xi+1,...,Xn)∑n

i=1
H(Xi)

= ρ(X1,X2,...,Xn)∑n

i=1
H(Xi)

(16)

For the problem of registering three images, we can use
the normalized metricτ or η. The objective function in (14)
usesτ or η instead ofρ.

2.5 Computational complexity considera-
tions

From the definition of the metricρ for three random vari-
ables, it can be seen that we have to estimate the joint prob-
ability mass functionp(X, Y, Z) of three random variables
X, Y andZ, which is computationally much more expen-
sive than the estimation of the joint probability mass func-
tion of two random variables. To alleviate the computa-
tional burden, we present an upper bound of the metricρ
which is also a metric. We then use the upper bound as a
legitimate metric for registration instead ofρ. It turns out
that the upper bound does not require the estimation of the
joint probability mass function of three random variables.
This is the main benefit of using the upper bound.

ρ(X, Y, Z)
= H(X|Y, Z) + H(Y |X,Z) + H(Z|X, Y )

≤ 1
2 (H(X|Y ) + H(X|Z))

+ 1
2 (H(Y |X) + H(Y |Z))

+ 1
2 (H(Z|X) + H(Z|Y ))

= 1
2 (ρ(X,Y ) + ρ(Y, Z) + ρ(X, Z))

(17)

In the reduction of (17), we mainly use the property of en-
tropy: H(X|Y, Z) ≤ H(X|Y ).

Let

κ(X, Y, Z) def=
1
2
(ρ(X, Y ) + ρ(Y, Z) + ρ(X,Z)) (18)

In multimodality image registration, we may minimize (18)
instead of minimizing (12).

Finally, we briefly discuss the field of view problem
which besets much of entropy-based image registration.
Since the joint probability mass function between two im-
ages is estimated by considering the overlap region of the
two images, the trivial minimization of the information
metric and maximization of the mutual information occurs
when the two images are spatially separated with zero over-
lap. The information metricρ is minimized in that case and
the mutual information reaches its maximum value equal
to the sum of the two marginal entropies. A simple, but
non-unique way of fixing this problem is to use normalized
version of the metricκ. There are two ways of normalizing
the metric:

ν(X, Y, Z) def=
ρ(X,Y ) + ρ(Y, Z) + ρ(X, Z)

2H(X, Y, Z)
(19)

and

σ(X, Y, Z) def=
ρ(X, Y ) + ρ(Y,Z) + ρ(X, Z)
2(H(X) + H(Y ) + H(Z))

, (20)
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where it can be shown that0 ≤ σ(X, Y, Z) ≤ 1. If
X = Y = Z thenσ(X, Y, Z) = 0 and if X, Y andZ
are independent of each other,σ(X,Y, Z) = 1. These also
hold forν(X, Y, Z).

Since we do not want to estimate the joint probability
mass functionp(X, Y, Z) of three random variablesX, Y
andZ, we use (20) instead of (19) in our experiments.

In Figure 4, we plot the values of the measureσ for a PD
image, a rotated MR T2 and a rotated MR T1 image, where
both rotation angles range from -20 degrees to 20 degrees
and the values of the metricσ for a PD image, scaled MR
T2 and scaled MR T1 image, where both scale ranges are
from -1 to 1. From Figure 4, the normalized measureσ
achieves its minimum at the point where rotation or scale is
zero. Once again this anecdotally demonstrates that we can
minimizeσ to recover transformations of rotation or scale.

(a) PD image (b) MR T2 image (c) MR T1 image
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Figure 4:σ with rotation and scaling of PD, rotated T2 and
rotated T1 images

3 Experimental Results

3.1 Affine Registration of PD, T2 and T1
MR 2D images

In all our medical imaging experiments, we use the pow-
erful Brainweb simulated MRI volumes for a normal brain
[10]. The simulator is based on an anatomical model of a
normal brain. The main advantage of using simulated MR
data is that the ground truth is known.

We decompose an affine transformation matrix into
a product of shear, scale and rotations. LetT =

(a) PD (b) T2 (c) T1

(e) recovered T2 (f) recovered T1

Figure 5: 2D slice along sagittal direction

T on MR T2 T on MR T1
ground truth results ground truth results

s 0.1 0.1 0.2 0.18
t 0.1 0.1 0.2 0.18
θ 5 5 10 9.4
φ 5 5 10 9.8
e 3 3 5 5
f 3 3 5 5

Table 1: results of 2D slice along sagittal direction




a b 0
c d 0
e f 1


 be an affine transformation.

[
a b
c d

]
=

[
2s 0
0 2s

]
R(θ)

[
2t 0
0 2−t

]
R(φ)

wheres andt are scale and shear parameters, andR(θ) =[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
, R(φ) =

[
cos(φ) − sin(φ)
sin(φ) cos(φ)

]

are two rotation matrices. In our experiments, the range
of shear and scale parameters is [-1 1], the range of rotation
parameters are [-45 45] and the range of translations is [-10
10].

In the experiments we use 3 triplets of 2D slices of 3D
PD, T2 and T1 MR brain volume images. The slices are
chosen in sagittal, coronal and axial directions. We then
transform the T2 image with an affine transformationT̂1.
The scale and shear parameters are 0.1 and 0.1 respec-
tively, and the two rotation parameters are 5 and 5 de-
grees respectively, with the two translations along thex
andy direction being 3 and 3 pixels respectively. Hence
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(a) PD (b) T2 (c) T1

(e) recovered T2 (f) recovered T1

Figure 6: 2D slice along coronal direction

T on MR T2 T on MR T1
ground truth results ground truth results

s 0.1 0.1 0.2 0.16
t 0.1 0.1 0.2 0.22
θ 5 5.4 10 10.6
φ 5 5.4 10 10.4
e 3 3 5 5
f 3 3 5 5

Table 2: results of 2D slice along coronal direction

T̂1 =




1.1324 −0.1866 0
0.1866 0.9837 0

3 3 1


, with s1 = 0.1, t1 = 0.1,

θ1 = 5, φ1 = 5, e1 = 3 and f1 = 3. We then trans-
form the T1 MR image with an affine transformation̂T2.
The scale and shear parameters are 0.3 and -0.1 respec-
tively and the two rotation parameters are 10 and -5 de-
grees respectively, with the translations along thex and
y directions being 5 and -3 pixels respectively. Hence

T̂2 =




1.2496 −0.3967 0
0.3967 0.9301 0

5 5 1


, with s2 = 0.2, t2 = 0.2,

θ2 = 10, φ2 = 10, e2 = 5 andf2 = 5. We add Gaussian
noise with zero mean and standard deviation 0.1 to the PD,
transformed T2 and transformed T1 MR images and regis-
ter the three images simultaneously. (The original intensity
range of all images is normalized to the [0 1] interval). We
use a coarse-to-fine search strategy to find the optimalT ∗1
andT ∗2 . The registration measureσ is computed only in
the overlap area of the three images with nearest neighbor
interpolation used for transforming the image intensities.

In all results shown here, the normalized measureσ was

(a) PD (b) T2 (c) T1

(e) recovered T2 (f) recovered T1

Figure 7: 2D slice along axial direction

T on MR T2 T on MR T1
ground truth results ground truth results

s 0.1 0.12 0.2 0.18
t 0.1 0.1 0.2 0.2
θ 5 5 10 9.4
φ 5 5.4 10 10.2
e 3 3 5 5
f 3 3 5 5

Table 3: results of 2D slice along axial direction

used. Figure 5 shows 2D PD, transformed T2 and trans-
formed T1 slices along the sagittal direction and the reg-
istration results. Table 1 shows the registration results of
these sagittal slices. Figure 6 shows 2D PD, transformed
T2 and transformed T1 slices along coronal direction and
registration results. Table 2 shows the registration results of
these coronal slices. Figure 7 shows 2D PD, transformed
T2 and transformed T1 slices along axial direction and reg-
istration results. Table 3 shows the registration results of
these axial slices.

These experiments above demonstrate a proof of con-
cept of our approach to multimodality image registration
sinceT1 andT2 are being simultaneously determined. Fu-
ture work will focus on validation studies from which we
hope to elicit capture range and tolerance to noise, etc.

3.2 Matching face images obtained under
different illuminations

In the following experiments, we use face images from
the AR Face Database [11]. We simultaneously regis-
ter three face images with different illuminations. Essen-
tially, either one side of the face or the other or none
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(a) left light on (b) right light on (c) no light on

(e) recovered right light on (f) recovered no light on

Figure 8: Images under different lighting conditions (left
light on, right light on, and no light on) and wearing sun
glasses

T on right light on T on no light on
ground truth results ground truth results

s -0.2 -0.22 0.2 0.14
t -0.2 -0.2 0.2 0.14
θ -10 -9.6 10 9.6
φ -10 -10 10 10.6
e -5 -5 5 5
f -5 -5 5 5

Table 4: results under different lighting conditions (left light
on, right light on, and no light on) and wearing sun glasses

are exposed to a light source. We use affine transfor-

mations T̂1 =


−

0.7049 0.3006 0
0.3006 0.9740 0
−5 −5 1


 and T̂2 =




1.2496 −0.3967 0
0.3967 0.9301 0

5 5 1


 to transform two of the face

images. Registration is performed against the one untrans-
formed image. The true affine transformation parameters
ares1 = −0.2, t1 = −0.2, θ1 = −10, φ1 = −10, e1 = −5,
f1 = −5, s2 = 0.2, t2 = 0.2, θ2 = 10, φ2 = 10, e2 = 5
andf2 = 5.

In all subsequent results, the normalized measureσ was
used. Figure 8 shows left-light-on, transformed right-light-
on and no-light-on face images wearing sun glasses and the
corresponding registration results recovered using the nor-
malized measureσ. Table 4 shows the registration results of
these face images wearing sun glasses under different light
conditions. Figure 9 shows left-light-on, transformed right-
light-on and no-light-on face images wearing a scarf and the
registration results. Table 6 shows the registration results of
these face images wearing a scarf under different light con-

(a) left light on (b) right light on (c) no light on

(e) recovered right light on (f) recovered no light on

Figure 9: Images under different lighting conditions (left
light on, right light on, and no light on) and wearing a scarf

T on right light on T on no light on
ground truth results ground truth results

s -0.2 -0.20 0.2 0.16
t -0.2 -0.22 0.2 0.2
θ -10 -10.6 10 10.2
φ -10 -9.6 10 10.2
e -5 -5 5 5
f -5 -5 5 5

Table 5: results under different lighting conditions (left light
on, right light on, and no light on) and wearing a scarf

ditions. Figure 10 shows left-light-on, transformed right-
light-on and no-light-on face images wearing sun glasses
or a scarf and results recovered using the normalized mea-
sureσ. Table 6 shows the registration results of these face
images wearing sun glasses or a scarf under different light
conditions.

Once again, these three experiments demonstrate a proof
of concept with more validation experiments required to
better understand the performance under different illumi-
nations.

4 Conclusions
We have presented an information metric for multi-

modality image registration, which works very well for
affine registration. And we have clearly demonstrated that
this metric can be easily extended to the multiple image
case as opposed to mutual information which is not so eas-
ily extended. The information metric is a linear combina-
tion of conditional entropies and has the properties of sym-
metry, non-negativity and triangle inequality. Intuitively,
in the case of two image registration, the metric measures
the amount of ignorance in one image given the other and
vice versa. The transformation that reduces this “igno-
rance” metric is deemed optimal. In the multiple image
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(a) left light on (b) right light on (c) no light on

(e) recovered right light on (f) recovered no light on

Figure 10: Images under different lighting conditions and
wearing sun glasses or scarf

T on right light on T on no light on
ground truth results ground truth results

s -0.2 -0.24 0.2 0.14
t -0.2 -0.2 0.2 0.14
θ -10 -9.4 10 9.6
φ -10 -9.6 10 10.6
e -5 -5 5 5
f -5 -5 5 5

Table 6: results under different lighting conditions (left light
on, right light on, and no light on) and wearing sun glasses
or a scarf

case, the metric measures the amount of ignorance in one
image given the other images. Since it is computationally
expensive to compute the conditional entropy (relative igno-
rance) of one image given the rest, we instead use an upper
bound of this entropy. The upper bound is also a metric and
is not computationally expensive. In the case of registering
two images, the computational expense of our metric is the
same as using mutual information. In the case of register-
ing three images, since an upper bound is used, we do not
need to estimate the joint probability mass function of three
image intensities. The upper bound requires us to estimate
3 joint probability mass functions of two image intensities.
We stress that a similar extension of mutual information to
three images is not straightforward. In our future work, we
plan to extend the use of this metric to nonrigid multimodal-
ity registration. We also plan to use an efficient density es-
timator to estimate high dimensional density functions so
that we can directly use the metric instead of merely using
an upper bound.
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