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Abstract. We construct probabilistic generative models for the non-
rigid matching of point-sets. Our formulation is explicitly Platonist. Be-
ginning with a Platonist super point-set, we derive real-world point-sets
through the application of four operations: i) spline-based warping, ii)
addition of noise, iii) point removal and iii) amnesia regarding the point-
to-point correspondences between the real-world point-sets and the Pla-
tonist source. Given this generative model, we are able to derive new
non-quadratic distance measures w.r.t. the “forgotten” correspondences
by a) eliminating the spline parameters from the generative model and
by b) integrating out the Platonist super point-set. The result is a new
non-quadratic distance measure which has the interpretation of weighted
graph matching. The graphs are related in a straightfoward manner to
the spline kernel used for non-rigid warping. Experimentally, we show
that the new distance measure outperforms the conventional quadratic
assignment distance measure when both distances use the same weighted
graphs derived from the spline kernel.

1 Introduction

The need for non-rigid image matching arises in many domains within the field
of computer vision. Some form of non-rigid matching is required to match ob-
jects that have undergone complex deformations. The extent of the deformation
required to achieve non-rigid matching is an important quantity as it provides a
convenient measure of distance between the two objects.

Non-rigid matching methods can be broadly divided into two categories;
intensity-based and feature-based. Intensity-based methods attempt to calculate
the optical flow between the two images. Usually, these methods require fairly
strong brightness constancy assumptions between the two images. Feature-based
methods attempt to match two sets of sparse features that have been extracted
from the underlying image intensities. Usually, these methods require both object
and deformation models in order to constrain the set of allowed matches and
deformations.

Object models are typically constructed using a hierarchy of features: points,
lines, curves, surfaces, etc. If matching is performed using generic, unlabeled



point features, then the correspondence problem is acute. On the other hand,
if high-level feature representations are used, the correspondence problem is
alleviated but the matching is not likely to be robust against missing features.
In addition, the constraints on the deformation model become more complex
when high-level features are used.

In this paper, we are mainly concerned with deriving new distance measures
for non-rigid matching of unlabeled point features. The new distance measure
is a function of the unknown point-to-point correspondences and can handle
outliers as well. Since we mostly focus on the new distance measure, at this
point we are not presenting an algorithm to minimize this distance.

The formulation of our problem is explicitly Platonist. We begin by assuming
a Platonist super point-set of unlabeled features. By using a probabilistic thin-
plate spline warping model, we are able to generate real-world point feature sets.
Outliers are explicitly modeled by forcing each real-world warped point-set to be
a strict subset of the Platonist super point-set. The final step in this generative
model is the loss of information of the point-to-point correspondences between
the real-world point-set and the Platonist super point-set.

After exploiting a Platonist analogy in formulating this model, we then derive
a new distance measure between the real-world point-sets. First, we eliminate
the thin-plate spline warpings from the model by setting these parameters to
their maximum a posteriori estimates. Then, in typical Bayesian fashion, we
integrate out the hidden Platonist super point-set. The result is a new non-
quadratic distance measure between all of the real-world point-sets defined solely
in terms of the unknown correspondences.

Having derived the new non-quadratic distance measure, we present compar-
isons with the more traditional quadratic assignment distance measures. As a
by-product of our derivation, we are able to show that the new distance mea-
sure is closely related to a weighted graph matching distance measure with the
“graphs” determined by the thin-plate spline kernel. Both distance measures
(quadratic and non-quadratic) use the same graphs derived from the spline ker-
nels. Finally, we show that our new distance measure significantly outperforms
the quadratic distance measure indicating a payoff resulting from our principled
derivation.

2 Review

The various approaches to non-rigid image matching can be broadly grouped into
two categories—intensity-based and feature-based. Intensity-based methods be-
gin by assuming some form of brightness constancy reminiscent of optical flow
methods [2]. Most methods in this class attempt to minimize an energy function
that consists of two terms. The first term simply sums over the square of the
intensity differences between the two images at each pixel. The second term is an
elastic matching term which is typically derived from considerations of smooth-
ness of the displacement field [7]. A free parameter is used to tradeoff between
these two terms. The principal difficulty with this entire class of methods is that



the brightness constancy assumption is frequently violated. Recently, there has
been considerable interest in using entropy and mutual information-based inten-
sity distance measures [30, 16] to overcome these limitations. A second problem
with these methods is related to the lack of explicit object modeling. Since no
attempt is made to construct object models, these methods cannot enforce corre-
spondence constraints on structures that are a priori known to match. Recently
[5], there has been some effort to overcome this limitation by including region
segmentation information into the computation of optical flow. However, it is fair
to say that at the present time, intensity-based image matching methods have
yet to fully solve the aforementioned (two) problems by incorporating segmenta-
tion information into mutual information-based estimation of displacement, fields
(flow).

Feature-based image matching methods form the second class of methods.
In contrast to the optical flow-based intensity matching methods, feature-based
methods are more varied. One way of dividing the space of feature-based meth-
ods is along the lines of sparse versus dense features. Labeled landmark points
are the most popular kind of sparse features since non-rigid matching of land-
marks does not require a solution to the point-to-point correspondence problem
For instance in [6], thin-plate splines (TPS) [31] are used to characterize the de-
formation of landmarks. Basically, the non-rigid matching problem is solved by
minimizing the bending energy of a thin-plate spline while forcing correspond-
ing landmarks extracted from the two images to perfectly match. Landmark
positioning “jitter” can be accounted for in this model by allowing a trade-
off between the landmark position least-squares matching energy term and the
spline bending energy term. This is analogous to the “vanilla” optical flow image
matching method mentioned above. The major drawback of this method is the
over-reliance on a few landmarks. Extracting labeled and corresponding land-
marks from the two images is a difficult problem. Moreover, the method is quite
sensitive to the number and choice of landmarks.

Dense feature-based matching methods run the gamut of matching points,
lines, curves, surfaces and even volumes [4]. These methods usually begin with
an object parameterization. Then, the allowable ways in which the object can
deform is specified [18, 23]. The methods that fall into this class differ in object
parameterizations and in the specification of the kinds of allowed deformations.
In most cases, curves and/or surfaces are first fitted to features extracted from
the images and then matched [18, 28, 27, 10]. These methods work well when the
surfaces (and curves) to be matched are reasonably smooth. Also, the surface
fitting step that precedes matching is predicated on good feature extraction.
These methods have not been widely accepted in domains such as brain matching
due to the extreme variability of cortical surfaces.

One of the principal reasons for the emphasis on object modeling in non-
rigid matching is that it allows us to circumvent the correspondence problem.
For example, once a smooth curve is fitted to a set of feature points, the match-
ing can be taken up at the curve level rather than at the point level. Curve
correspondence is easier than point correspondence [28] due to the strong con-



straint imposed by the smooth curve on the space of possible point-to-point
correspondences. While the surface case is more complicated, surfaces can be
approximately matched when they are smooth and the allowed deformations are
not very complex [18, 27]. The downside is the lack of robustness. Sensor noise
sometimes makes it difficult to fit smooth curves and surfaces to an underly-
ing set of feature points. In such cases, while point feature locations may still
be trustworthy, the fitting of surface normals and other higher-order features
becomes problematic. Consequently, these higher-order features cannot be used.

In this paper, we begin with an integrated pose and correspondence formula-
tion using point features. Essentially, we modify the pose parameters to include
non-rigid deformations. We now turn to a review of recent approaches that at-
tempt to integrate the search for correspondence in non-rigid matching. While
the correspondence problem has a long history in rigid, affine and projective
point matching [14], there is relatively a dearth of literature on non-rigid point
matching. Recently, there has been some interest in using point-based correspon-
dence strategies in non-rigid matching [23, 10, 29, 32, 21]. The modal matching
approach in [23] relies on the point correspondence approach pioneered in [24]
and further developed in [25]. The basic idea here is to use a pairing matrix that
is built up from the Gaussian of the distances between any point feature in one
set and the other. The modes of this matrix are used to obtain the correspon-
dence. In [23], following [8], the deformation modes of the point-sets are obtained
from the principal components of the covariance matrix of a pre-specified train-
ing set of shapes. The main drawback of this approach is that it does not use the
spatial relationships between the points in each set to constrain the search for
the correspondences and the mapping. In [9], after pointing out this drawback,
the inter-relationships between the points is taken into account by building a
graph representation from Delaunay triangulations. The search for correspon-
dence is accomplished using inexact graph matching [26]. However, the spatial
mappings are restricted to be affine or projective. In [1], decomposable graphs
are hand-designed for deformable template matching and minimized with dy-
namic programming. However, the graphs are not automatically generated and
there is no direct relationship between the deformable model and the graphs
that are used. In [17], a maximum clique approach [20, 12] is used to match
relational sulcal graphs. Again, the graphs are hand designed and not related to
spatial deformations.

3 Deriving the distance measure

We first present background material on the thin-plate spline—our choice for
the non-rigid spatial mapping. Then, we bring in the unknown correspondences
and proceed with the derivation of the new distance measures.

3.1 Thin-plate splines

Our main reason for choosing the thin-plate spline is due its well understood
behavior in landmark matching [6]. Essentially, the thin-plate spline produces a



smoothly interpolated spatial mapping (with adherence to landmarks handled
by the data term). The thin-plate spline (TPS) formulation required here is
for 2D and 3D point matching. In both cases, we’ll consider smoothness terms
comprising of second-order derivatives of the interpolating function. Lack of
space does not permit us to present the thin-plate spline in great detail. Instead,
we merely present a “bare-bones” derivation. The interested reader is referred
to [31] for the general formulation and to [6] for the application to landmark
matching. In Figure 1, we depict an example thin-plate spline warping. Note the
decomposition into the affine and warping components—a special characteristic
of thin-plate spline mappings.

Two 2D Point Sets. TPS = affine + warping
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Fig.1. Top Left: Original and warped point-sets. Top Right: Visualization of the
thin-plate mapping. Bottom Left: Affine component of the mapping. Bottom right.
Warping component of the mapping.

Assume for the moment that we have N pairs of corresponding points in
either 2D or in 3D. Denote the two point-sets by Z and X respectively. The
representations of the point-set Z is shown for the cases of 2D and 3D below:

[1 2] 22 [1 2] 22 23

123 23 123 23 23

123 22 123 22 23
In2DZ=|- - - |,andin3DZ=|- - - (1)

1,2 1,2 .3

|12y 2 | L1 2n 28 2N |

A similar representation holds for the point-set X as well. The representations
in (1) are the so called homogeneous coordinates.



We now set up a thin-plate spline mapping from X to Z. Thin-plate splines
are asymmetric in the sense that a mapping from X to Z cannot be easily in-
verted to yield a mapping from Z to X. Minimizing the following energy function
gives us a smooth spline interpolant capable of warping points in X arbitrarily
close to points in Z. A regularization parameter \ determines the closeness of
the fit. In 2D,

N
Eqps(f) = Z 1Z; — £(X3)|1?

I o [(%)2 vo (2L + (8;‘3‘;@2)2] st (2

A similar expression holds in 3D.
Define t = (z*,22,...,27) where D = 2 for 2D and D = 3 for 3D. Then

def . def .
ti = (z},27,...,20). Also, in 2D, [$1(t),$2(t),45(t)] = [1,2",2%] with a
straightforward extension to 3D. For the thin-plate spline energy function given

in (2), it is possible to show that there exists a unique minimizer f) given by

D+1

N
@)= didn(t) + ) eB(t—t), ®3)
k=1 i=1

where E(t —t;) is the Green’s function for the thin-plate spline: E(1) = 72 logT

in 2D and —|7| in 3D. Here |t — t;| = \/EkD:l(a:k — z¥)2. The minimizer f of

the thin-plate spline energy function given in (3), is specified in terms of two
unknowns ¢ and d. Using (3), it is possible to eliminate f from the thin-plate
spline energy function. When this is done, we get

Eipsr(c,d) = ||Z — Xd — Kel|* + X trace c' Ke. (4)

In (4), Z and X are the N x (D + 1) point-sets, d is a (D + 1) x (D + 1) affine
transformation consisting of translation, rotation and shear components, ¢ is a
N x (D + 1) matrix of warping parameters (with all entries in the first column
set to zero), and K is a N x N matrix corresponding to the Green’s function
(which is different for 2D and 3D). The principal difference between E(t — t;)
and K is that the latter is defined only at the landmark points: the matrix entry
K,’j = E(tz — t]‘).

As it stands, finding least-squares solutions for the pair (¢,d) by directly
minimizing (4) is awkward. Instead, a QR decomposition is used to separate the
affine and warping spaces. For more details, please see [31]:

x -0l ) 5

where Q1 and @2 are N x (D +1) and N x (N — D — 1) orthonormal matri-
ces, respectively. R is upper triangular. With this transformation in place, (4)



becomes

Bups a1 (1,d) = 1Q3 Z = Q1 KQ2I* + |Q1 Z — Rd — QT K Q2
+M Q2 KQry,  (6)

where ¢ = Q27 and vis a (N—D —1) x (D +1) matrix. Given this definition of ¢,
XT¢ = 0. The least-squares energy function in (6) can be first minimized w.r.t.
v and then w.r.t. the affine transformation d. The final result after minimization
is R

§=(Q;KQa + /\I(N_D—l))_leTZ: andd =R (Q{X —KQ»). (7)

The bending energy of the thin-plate spline after eliminating (c,d) is
Ebending(Z) = trace [Z7Q2(Q3 KQ2 + M n_p-1) "' Q3 Z] . (8)

3.2 A Platonist formulation

Having described the thin-plate spline spatial mapping in its two conventional
(integral and matrix kernel) forms, we turn to the integrated pose and corre-
spondence formulation.

First, we no longer assume that the correspondence between the point-sets
Z and X is known. We introduce a correspondence matrix M which obeys the
following constraints.

1. The correspondences are binary: M,; € {0,1}.

2. Every point in X is matched to one point in Z: ) M,; = 1.

3. Every point in Z is matched to one point in X or is an outlier w.r.t. X:
Zz’ Mu,z' S 1.

In informal terms, M is a matrix with binary entries whose columns sum to one
and whose rows may either sum to one or be all zero. The one-to-one corre-
spondence constraint is not sacrosanct and can be modified to a classification
(many-to-one) constraint. This is because, in non-rigid mapping, a one-to-one
constraint is incorrect when, for example, points are deformed into lines.

The bending energy of the thin-plate spline needs to be modified to take into
account the introduction of the correspondence matrix M. Note that M allows
us to generalize to the case of unequal point counts between X and Z.

We now write a probabilistic generative model for obtaining Z given X and
a set of spline parameters (¢, d). Since the correspondence M is unknown, it is
included in the generative model as a hidden variable.

€xp [_El (Z7 M7 ¢, d)]

Z partl

p(Z, M|X,¢c,d) = 9)

where

Ey(Z,M,c,d) =Y Mqil| Zg — (Xd); — (Kc)s|. (10)
In (10), (Xd); and (Kc); are the i*® elements of the vectors Xd and Kc re-
spectively. The partition function Z,a¢1 is a normalization constant. Equation



(10) is reminiscent of a Gaussian mixture model with Z playing the role of the
cluster centers and M being the complete data classification matrix [15]. If M is
presumed known, the least-squares term in (10) reduces to the thin-plate spline
least squares term.
The pure bending energy term is exactly the same as in the thin-plate spline:
p(e,d| X, \) = M, where Fy(c) = A trace ¢! Ke. (11)
Zpartz
The two energy terms in (10) and (11) can be combined into one. The result-
ing probabilistic generative model for Z can be written (after some algebraic
manipulation) as

€xXp [_E(Z7 M7 C,d]

p(Z,M,c,d|X,\) = 7 , (12)
part
where
E(Z,M,c,d) = ||MZ — Xd— Kc||> + X trace ¢" K¢
+trace 27 [diag() | Ma;) — M M)Z. (13)
i

The diag operator above takes a vector and rearranges it into a square matrix
with the vector entries appearing along the diagonal. The remaining entries are
zero. The binary nature of the entries of M makes the last term redundant since
it is zero. However, the term should be kept in mind if and when the binary
constraint on the entries of M are relaxed; in that event, the last term becomes
significant once again.

A few key observations can be made regarding the integrated correspondence-

spline energy function in (13). After we define Zyerm Nz , note that the form

of the energy function is exactly the same as that of the original thin-plate spline
bending energy in (4). (The last term does not contain the warping parameters
(¢,d) and from the perspective of solving for (¢, d) the previous statement holds.)
Consequently, we can exploit all of the properties of the thin-plate spline that
were briefly derived in the previous section to separate out the warping and
affine spaces. We can eliminate (¢, d) from (13) and this step is quite similar to
the work in [33]. The bending energy [after eliminating (c,d)] is

Eecorr—bend(Z, M) = trace[ZT MTGM Z), (14)

where
G % Qa(QFKQz+ \n-p-1) Q] (15)
In deriving (14), we have dropped the last term in (13).

We are now in a position to extend this formulation to the simultaneous non-
rigid matching of several point-sets X', X2, ..., X*. We find that the traditional
Platonist metaphor suits us admirably. The point-set Z assumes the role of the
“light beyond the cave” and each point-set X¥ is cast in the role of a “shadow
perceived on the cave wall.” We model the Platonist super point-set Z as a



superset of all the points present in each of the real-world point-sets X* k €
{1,...,K}. We assume the following generative model for obtaining the real-
world point-sets from the archetype Z. Each real-world point-set X* is obtained
by (i) warping Z using a thin-plate spline, (ii) removing a subset of points from
Z, (iii) adding additive white Gaussian noise (AWGN) to the remaining points
and finally, (iv) erasing or forgetting the correspondence information between Z
and the newly created point-set X*.

Since we have already worked out the bending energy expression [in (14)]
between Z and a single real-world point-set X, we now extend the formulation
to cover the simultaneous matching of Z to all of the real-world points-sets
X* k € {1,...,K}. Henceforth, we denote the set comprising all real-world
point-sets by X. The sets of all correspondences, warping and affine parameters
are denoted by M, ¢ and d respectively.

The likelihood model for the Platonist super point-set Z is

exp [— K B(Z, M*,ck, dk)]

p(Z,M,c,d|X) =
Zpartall
£ exp [~E(Z, M*, ¢k, d")]
=11 o . (16)
k=1 part
Platonist Formulation Real-World Reformulation

Eliminate {c,d}, Integrate out Z

Fig. 2. Left: Platonist Formulation. Right: Real-world reformulation.

An important (and somewhat remarkable) fact about (16) is its separability.
The Platonist super point-set Z is the sole bottleneck in the network of connec-
tions between the real-world point-sets X. Consequently, with Z fixed, we can
easily solve in closed-form for the entire set of thin-plate spline warping parame-
ters ¢ and d. Note that the set of correspondence matrices M is also held fixed.
This calculation is merely a generalization of the earlier calculation involving
Z and X. Here, we have a set of point-sets X and Z. Our approach schema is



depicted in Figure 2. On the left in Figure 2 is the original Platonist formulation
with the Platonist super-point set Z acting as a generator for the point-sets X*.
On the right in Figure 2 is the real world reformulation. With (c,d) eliminated
and Z integrated out, we obtain a distance measure between all of the real-world
point-sets. Note that the point-sets X* have been replaced by the corresponding
graphs G*.

3.3 Eliminating the spatial mapping

The spline parameter set (c,d) is eliminated exactly as before in (14). The
only difference is that the elimination is carried out K times—once for each set
of parameters {c¥,d*}, k € {1,..., K}. We will not repeat this derivation. The
bending energy after eliminating (¢, d) is now a sum over all K bending energies:

K
Ecorr—bend—total(Z7 M) = Z trace [ZT(Mk)TGkMkZ] ’ (17)
k=1

where 1
G* & QL [(@)TK" QS + My-p1] T (@F)T.

With the above solution for the spatial mapping parameters (¢, d), we may write
the likelihood for Z as

K k
A e —FEcorr—bend— Z, M
p(Z,M,é,d|X) _ H Xp [ co l;kd total( )] ) (18)
k=1 part

3.4 Integrating out the Platonist super point-set

Before integrating out Z, we wish to point out the need for this step. In a
standard Bayesian formulation [3], integrating out the latent variables is recom-
mended because the probabilistic structure is preserved by integration.

The distance measure between the real-world point-sets X is defined as

DM) ¥ —log / p(Z,M|X)dZ. (19)

Note that the distance measure is a function of the unknown correspondences
between each real-world point set X* and the Platonist super point-set Z.

In (19), we have used p(Z, M|X) as shorthand for p(Z, M, ¢,d|X). The Pla-
tonist super point-set Z is now integrated out:

K
—log / exp |—-2Z% <Z(M’“)TG’“M’“> Z
k=1
1 K
k\NT ~k ark
Elogdet LX:I(M Y'G*M

D(M)

dZ + terms indep. of M

(20)




This is our non-rigid matching distance measure. It is a function of only the
set of correspondences M. The thin-plate spline warping parameters have been
eliminated and the Platonist super point-set Z has been integrated out.

We now specialize to the case of non-rigid matching of two point-sets X and
Y. The distance measure between X and Y is

Diog—aet(MX, MY) = Llogdet [(MX)TGXMX + (MV)TGYMY], | (21)

where the “graph” GX is defined as
-1
G¥ =2Q3 [(@NTEXQY + I (@), (22)

with a similar expression holding for GY. The graph G¥X has the nice property
that it is symmetric and non-negative definite. It can easily be made positive
definite which aids in the computation of (21).

3.5 Comparison with traditional quadratic assignment distance
measures

The new log-det distance measure in (21) can be directly compared with more
traditional quadratic assignment (QAP) distance measures. The QAP distance
measure is the obvious foil for comparison since it is the basic quadratic distance
measure that is popular and widely used. All the comparisons below are based on
the non-rigid matching of two point-sets X and Y. The QAP distance measure
is a quadratic distance between the two “graphs” GX and GY. Note that the
derivation of the “graphs” from thin-plate spline kernels is a new contribution—
one which is quasi-independent of the choice of distance between the two graphs.
The QAP distance measure is

Daap(MX, MY) = —trace (M*X)TGX MX (MY)TGY MY. (23)

Due to the cyclical property of the trace operator, the QAP distance can be sim-
plified as D(MXY) = —trace (MXY)TGX MXY GY where MXY %" X (M¥)T.

4 Results

Figures 3 and 4 compare the QAP distance with the new log-det distance. In
Figure 3, we’ve compared the log-det distance measure with the quadratic dis-
tance measure. There are no outliers going from the Platonist super point-set
to the two real-world point-sets shown at the top left of the figure. All three
distance measures perform well with the log-det distance showing the greatest
separation. In Figure 4, we’ve compared the log-det distance measure with the
quadratic distance measure. Somewhat surprising is the degree to which the log-
det distance measure outperforms the quadratic distance. On the x-axis, we’ve
plotted permutations over a fixed number of points.
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Fig. 3. Top Left: Two warped 2D 20 point-sets originating from a 20 point-set. Top
Right: Log-det distance measure. Bottom Left: Quadratic distance measure. Bottom
right: Platonic distance measure. The distance measures (ordinate) are plotted against
permutations (abscissa). The abscissa value indicates how many points were permuted
to obtain the distances. When zero points are permuted, the distance corresponding
to the “true” answer is obtained [@ is the true distance and + is a distance point for
a given permutation] and is plotted at the extreme left on the figure.
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As more points are permuted, the distance measure ought to increase. We find
that this is the case for the log-det distance measure but not for the quadratic
distance. The Platonic distance is the quadratic distance between Z and the real-
world point-sets. Since Z contains all the information, this idealized distance
performs quite well. Note that there is obviously a question as to what the
“true” answer ought to be. However, the bending energy returned by the log-det
distance seems to concur with the Platonic bending energy which is reassuring
since the latter is the closest you can get to a “gold standard.”
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Fig. 5. The topology of the same weighted graph is shown using different thresholds.
The node attributes and link weights are absent from this figure. As the threshold is
increased (left to right), the topology becomes sparser as expected. The regularization
parameter A is held fixed while the threshold (for displaying a graph weight) is in-
creased. The interplay between the regularization parameter and the graph topology
needs to be further investigated.
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In Figure 5, we show a point-set with 20 points and associated weighted
graphs that have been derived from the spline kernel corresponding to the point-
set. We wanted to explore the topology of the graph to see if the spline kernel
seemed to use nearest neighbor heuristics in assigning weights. We thresholded
the graphs (with increasing thresholds from left to right) after taking teh absolute
value of each element. The topology clearly has a nearest neighbor bias which is
more evident at larger thresholds. (The threshold for getting a certain number
of connections is proportional to the regularization parameter \.)

In Figure 6, we took a point-set and obtained several point-sets from it by
progressively increasing the warping. We depict the topology (using the same
threshold for all graphs) for all the warped point-sets. It should be clear from
the figure that the topology gets increasingly distorted relative to the origianl
topology as you go from smaller to larger warps. However, a family resemblence
to the original parent is unmistakeable.

5 Discussion and Conclusion

The two main contributions of this paper are: i) a new definition of weighted
graphs based on the thin-plate spline kernel and ii) a new non-quadratic distance
measure that significantly outperforms the conventional quadratic assignment



Fig. 6. On the top an original point-set is shown along with its graph depicted for
a certain threshold. Below, we show four different thin-plate warped point-sets and
their associated graphs. The warping increases as you go from left to right. Note the
increased distortion in the topology going from left to right. The same threshold was
used for all the graphs.

distance measure. To a certain extent, these two contributions are independent
of one another. For instance, it should be possible to take our definition of
weighted graphs and use a different distance measure. From the weighted graph
standpoint, we have seen that the topology of the thin-plate spline kernel graphs
(after thresholding) is somewhat similar to graphs derived from Delaunay trian-
gulations with the important difference being that the spline-based graphs are
not planar. The similarity stems from the fact that local connections are favored
over more long range ones. We can also use different deformation mappings which
should lead to different weighted graph definitions. For example, if we used a
radial basis function (RBF) spline for the spatial mapping [33], the weighted
graph would have a RBF kernel at its core. From the standpoint of the distance
measure, we think that it is very significant that the new log-det distance mea-
sure outperforms the quadratic assignment distance. For binary graphs, it has
already been shown that non-quadratic distance measures outperform QAP dis-
tances [11] and that seems to apply here as well. Enthusiasm must be tempered,
however, until fast algorithms can be designed to find good, local minima of the
new log-det distance measure.

There are several ways to proceed on the algorithm front. First, it may be pos-
sible to extend current deterministic annealing algorithms to the new distance.
For instance, we could reduce the difficulty of algorithm design by choosing ap-
propriate Legendre transformations [19] or by using Taylor series approximations
of the log-det distance. Another approach would be to take the two topologies (af-
ter suitable thresholding) and apply the new maximum clique-based algorithms
developed in [22]. After matching the topologies, further refinement using the
weights can be performed using the softassign weighted graph matching algo-



rithm [13].

In summary, we have shown that weighted graphs arise naturally in non-rigid
point matching problems. The graphs directly depend on the parameterization of
the deformations. In addition, we have found that a principled Bayesian Platon-
ist formulation of the problem naturally leads to a new non-quadratic distance
measure that outperforms the traditional quadratic assignment distance mea-
sure. It remains to be seen if effective algorithms can be designed that can take
advantage of the better properties of the new distance measure.
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