
A Globally Convergent Regularized Ordered-Subset
EM Algorithm for List-Mode Reconstruction

Parmeshwar Khurd
�

, Student Member, IEEE, Ing-Tsung Hsiao, Member, IEEE
�

, Anand
Rangarajan, Member, IEEE

�

and Gene Gindi, Member, IEEE.
�

�

Department of Electrical & Computer Engineering, SUNY Stony Brook, NY, USA
�

School of Medical Technology, Chang Gung University, Kwei-Shan, Tao-Yuan 333, Taiwan
�

Department of Computer & Information Science and Engineering, University of Florida, Gainesville, FL, USA

Abstract— List-mode (LM) acquisition allows collection of data
attributes at higher levels of precision than is possible with binned
(i.e. histogram-mode) data. Hence it is particularly attractive for
low-count data in emission tomography. A LM likelihood and
convergent EM algorithm for LM reconstruction was presented
in (Parra et al., TMI, v17, 1998). Faster ordered subset (OS)
reconstruction algorithms for LM 3-D PET were presented in
(Reader et al., Phys. Med. Bio., v43, 1998). However, these OS
algorithms are not globally convergent and they also do not
include regularization using convex priors which can be beneficial
in emission tomographic reconstruction. LM-OSEM algorithms
incorporating regularization via inter-iteration filtering were pre-
sented in (Levkovitz et al., TMI, v20, 2001), but these are again
not globally convergent. Convergent preconditioned conjugate
gradient algorithms for spatio-temporal list-mode reconstruction
incorporating regularization were presented in (Nichols, et al.,
TMI, v21, 2002), but these do not use OS for speed-up. In this
work, we present a globally convergent and regularized ordered-
subset algorithm for LM reconstruction. Our algorithm is derived
using an incremental EM approach. We investigated the speed-up
of our LM OS algorithm (vs. a non-OS version) for a SPECT
simulation, and found that the speed-up was somewhat less than
that enjoyed by other OS-type algorithms.

Index Terms— List-mode Reconstruction, Emission Tomogra-
phy.

I. INTRODUCTION

List-mode (LM) acquisition allows collection of data at-
tributes at higher levels of precision than is possible with binned
(i.e. histogram-mode) data [1]. Hence it is particularly attractive
for low-count data in emission tomography where the sinogram
is large, but sparsely occupied. Another advantage of list-mode
acquisition is that event-by-event motion correction can be
performed [2], [3], [4], [5], [6]. A particular example is 3D
PET [7], where the sinogram consists of a large number of very
finely measured lines of response, most of which do not get any
counts in low-count imaging conditions. The lists can be more
abstract. For example, in [8], each list event comprises the list of
signals recorded by photomultiplier tubes (PMT’s) in a modular
gamma camera along with the camera ID. Reconstruction with
this sort of data has been reported in [8].

An Expectation Maximization (EM) algorithm for LM re-
construction was presented in [9]. Faster ordered subset (OS)
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reconstruction algorithms for LM 3D PET were presented in
[7]. However, the algorithms in [7] are not globally convergent
and they also do not include regularization using convex
priors which can be beneficial in emission tomographic recon-
struction. LM-OSEM algorithms incorporating regularization
via inter-iteration filtering were presented in [10], but these
are again not globally convergent. Convergent preconditioned
conjugate gradient algorithms for spatio-temporal list-mode
reconstruction incorporating regularization were presented in
[11], but these do not use OS for speed-up. Also, note that
[11] differs considerably from [9], [7], [10], [8], since it
is concerned with dynamic reconstruction wherein the mean
photon intensities are reconstructed as a function of time using
continuous temporal basis functions. We will not be taking this
approach in our paper. Instead, we will attempt to reconstruct
a static emission object from detected photon attributes. In
this work, we present a globally convergent and regularized
ordered-subset algorithm for LM reconstruction. Our algorithm
is derived using the incremental EM approach in [12] and [13].
We investigate the speed-up of our LM OS algorithm (vs. a
non-OS version) for a SPECT simulation.

Before moving on, we shall make a list of some acronyms
that will be frequently used in this paper: LM = List Mode,
OS = Ordered Subset, ML = Maximum Likelihood, EM =
Expectation Maximization and MAP = Maximum a Posteriori.
We may also lump these acronyms as needed, to form new
acronyms. For example, the LM-EM-ML algorithm stands for
the List Mode - Expectation Maximization - Maximum Like-
lihood algorithm. We can summarize the paper as follows: We
show how to extend a derivation of a LM-EM-ML algorithm
to a globally convergent LM-OS-EM-MAP algorithm.

There is some latitude in choosing subsets for list-mode
reconstruction and this choice is heavily dependent on the
modality under consideration. For example, in 3D PET, the
first subset may comprise the first 1000 events, the second the
next 1000 and so on. On the other hand, in other applications,
such as the SPECT reconstruction discussed in section VI, we
typically form subsets depending on the angle at which an event
occurred.

Each subset corresponds to a sub-iteration and one inter-
pretation of the word “ordering” in OS algorithms is the



permutation of the subsets within a main iteration. One can
decide upon a particular ordering and different convergence
rates may be obtained by choosing different orderings. It has
also been found [14] that changing this ordering from one main
iteration to another according to specific schemes may lead to
fast convergence.

II. THE PARRA-BARRETT MODEL FOR EM-ML

In this section, we summarize in our notation the list-mode
EM-ML algorithm presented in Parra and Barrett [9]. We shall
end up taking a rather different route than the one in [9] in
deriving our algorithm, but our summary of the derivation of
the algorithm in [9] will prove useful. Please refer to [9] for
additional details if needed.

We consider the preset-count(event) form of the LM like-
lihood. It is shown in [9] that both the preset-time and the
preset-count forms of the LM likelihoods lead to the same
ML solution. Let

�
events be detected in time � and let

the measured attributes be �������	�
������������ . An example of
an attribute vector (for SPECT) is ������� (position, gantry
angle, energy) for the ������� count. Yet another attribute vector
is the vector of PMT signals and camera ID reported in [8].
To deal with this variety in the choice of attribute vectors, it is
desirable to express the list-mode likelihood and the list-mode
reconstruction algorithms in a form that are independent of the
nature of the attribute vector.

Let the object be an � -dimensional vector � , where � is the
number of voxels. Then the LM likelihood is:�! #" �$������������	�%���'& �(� �') � �! #" �'& �(� �*)�+ �,.- � �/ " � , & � ) (1)

Here, we have used the fact that the events are independent
which implies the independence of the measured attribute
vectors for each event. The term

�/ " � , & � ) can be expanded
as: �/ " � , & � ) � 012 - � �/ " � , & 3 )4�! #" 35& � ) (2)

where
�/ " � , & 3 ) denotes the probability that the event 6 occurs

due to an emission at voxel 3 and
�! #" 35& � ) is the probability

that an emission occurs at voxel 3 and gets detected. If we
denote the sensitivity function of the imaging system at pixel 3
(i.e. a term proportional to the probability of whether a photon
emission at pixel 3 gets detected at all by the imaging system
) by 7 2 , then: �/ " 38& � ) � 9 2 7 2: 02�; - � 9 2 ; 7 2 ; (3)

The term
�/ " � , & 3 ) depends upon the attributes measured. If

we use 2D SPECT attributes angle < " 6 ) and bin = " 6 ) for event6 , then: �! #" � , & 3 ) �?>$@�A�B ,DCFE � B ,DCHGIE 27 2 (4)

where > is the system matrix and >�@�AJB ,DCKE � B ,DCLGJE 2 is proportional
to the probability that a photon from 3 resulted in list event� , .

From physical considerations [9], the inter-arrival times for
the events are exponentially distributed. We will assume that the
mean detected activity per unit time is M�� : 02 - � 9 2 7 2 . Then �
is the sum of

�
independent exponentially distributed random

variables and hence
�! #" �'& �
� �*) is given by the following Erlang

(Gamma
"�� ����N
M ) ) density:�! " �'& �
� �*) � �"L�PO � )IQ M � � �SR��UT�V4W "XO MY� ) (5)

The ML estimate of � can be found by maximizing the LM
likelihood in (1). Using (1)-(5) and some algebra, we may write
this negative log-likelihood (ignoring constants) as:Z4[ " � ) �\� 012 - � 9 2 7 2 O

�1 ,.- �^]D_ `
012 - � 9 2 7 2 �/ " � , & 3 )Ka (6)

Direct minimization of (6) while enforcing a positivity con-
straint on � is difficult and one can instead derive simple
closed-form updates by using a general statistical procedure, the
EM algorithm [15]. The EM algorithm is commonly used for
reconstruction from binned-mode data in emission tomography
[16], [17]. The first step in deriving an EM algorithm is the
specification of complete data. By contrast, � � ������^��� � ���
is the “incomplete data” and (6) is the incomplete data log-
likelihood. There are some subtleties in choosing the complete
data and one usually chooses a set of complete data, which
when observed, would make the ML estimation of the unknown
parameters, i.e. � , rather easy. We define complete data vectorsb , which indicate the voxel 3 that caused the event 6 . The binary
components of the vector b , are given by c , 2 �K3'�d�
������e��� and
an element c , 2 is given by:

c , 2 �?f �
� if an emission at voxel j caused event ig � otherwise
(7)

The LM complete data likelihood is given by:�! " �$��� b ��������e���	�%� b �h���'& � ��� ) (8)� �! #" �'& �(� �*)�+ �,.- � �/ " � , & b , ��� )4�/ " b , & � )
Once again, we have used the independence of the detected
events in deriving this expression. Note that�! #" � , & b , ��� ) � 012 - � c , 2 �/ " � , & 3 ) �

0i2 - � �/ " � , & 3 )Xj�kml (9)

and �! #" b , & � ) � 012 - � c , 2 �! #" 35& � ) �
0i2 - � �! " 35& � )Xj�kml (10)

The equalities in (9) and (10) follow from the binary nature
of c , 2 as defined in (7). We may then derive the following
expression for the LM complete data log-likelihood:Z4n^[ " �o��� b ��������e�����%� b �p���q& � ��� ) (11)

� ]D_ �/ " �'& � ��� )^r
�1 ,D- �

012 - � c , 25s ]._ �! " 35& � )^r ]D_ �/ " � , & 3 )Xt



The E-step in the general EM algorithm [15] now requires
the computation of the expectation of the complete data
log-likelihood w.r.t. the conditional distribution of the com-
plete data given the incomplete data and the current estimate
of the unknown parameters, i.e. the conditional distribution�! #" b ��������e� b � & �o������������	�%���p� �� B � C ) . Since the events are in-
dependent, we may write:

�! #" b ��������e� b �h& �$��������e���	�p���p� �� B � C ) � �i,.- � �/ " b , & � , � �� B � C )
(12)

We will use the notation
�/ " 35& � , � �� B � C ) � �/ " c , � � g ��c , � �g �����e��c , 2 � �
������e��c , 0 � g & � , � �� B � C ) to denote the probability

that the 6 ��� detected event was caused by an emission at voxel 3
given that the underlying object distribution was

�� B � C . The termsc , 2 appear in a linear and uncoupled fashion in the complete
data log-likelihood in (11) and hence applying the E-step is
equivalent to computing the expected value of the terms c , 2 ,
yielding the following iterative update for c , 2 :

�c B ��� � C, 2 � �! #" 35& � , � �� B � C ) (13)

� �/ " 38& �� B � C )U�! " � , & 3 ): 2�; �! " 3 � & �� B � C )4�/ " � , & 3 � )
� 7 2 �9 B � C2 �/ " � , & 3 ): 2 ; 7 2�; �9 B � C2�; �/ " � , & 3 � ) � 6 � 3

where
�c B ��� � C, 2 denotes the expected value of c , 2

at iteration � r � w.r.t the conditional distribution�! #" b � ������e� b � & � � ���������� � ���p� �� B � C ) .
For EM, the M-step requires maximizing w.r.t the unknown

parameters, i.e. � , the expectation of the complete data log-
likelihood computed previously in the E-step. This results in
the following iterative update:

�9 B ��� � C2 � : , �c B ��� � C, 2�h7 2 � 3 (14)

Thus, (13) and (14) constitute the LM-EM-ML algorithm of
[9].

III. RE-DERIVATION OF LM-EM-ML VIA COMPLETE DATA

ENERGY

We will now re-derive the LM-EM-ML algorithm in the pre-
vious section via a totally different approach. This alternative
approach will allow us to derive new algorithms in section V
that use the OS notion for speedup. The new approach makes
use of a “complete data energy” objective

Z n " b ��� ) that is a
function of � as well as of b , a variable analogous, as explained
below, to the complete data as used conventionally. The key
point is that joint minimization on b and � yields a solution
for � that is also the solution to

Z [ " � ) . We will show that the
LM-EM-ML algorithm specified by (13) and (14) can also be
derived by a constrained alternating joint minimization of a

complete data energy function. The complete data energy is:Z4n " b ��� ) � O �1 ,.- �
012 - � c , 2 s ]._ " 7 2 9 2 )r ]._ "L�! " � , & 3 )�) t r

�1 ,D- �
012 - � c , 2 " ]D_ c , 2 O � ) r

� 012 - � 7 2 9 2 r
�1 ,.- � 	 , "XO � r

012 - � c , 2 ) (15)

In this minimization, 	 , ��6S�P�
�����e� � are Lagrange multipliers
that enforce the constraint

: 2 c , 2 � � and c , 2�
� g ����K��6'��
�����e� � �K3 � �(������5��� are treated as continuous variables
rather than binary variables. The vector b is the concatenation
of the vectors b , ��6S�P�
�����e� � . Though c , 2 is termed “complete
data” here, it is not the same as

�c , 2 in (13) or the binary c , 2
in the previous section. Instead, the new c , 2 is a continuous
(within � g ���� ) variable that attains the expected value of the
(old) binary complete data c , 2 in the previous section whenZ4n " b ��� ) is minimized w.r.t. the new c , 2 . Note that the complete
data objective function in (15) differs from the complete data
log-likelihood in (11). The LM-EM-ML algorithm can now be
derived by a grouped coordinate descent on (15), where we
alternately update b , ��6'� �
������e� � and � , while holding the
other fixed.

To perform grouped coordinate descent w.r.t b , , we need the
following expression:
� Z4n " b ��� )� c , 2 � O s ]._ " 7 2 9 2 )
r ]._ "��/ #" � , & 3 )�)�tpr ]._ c , 2 r 	 , (16)

Equating this expression to zero, we get an update for c , 2 in
terms of the Lagrange multipliers:

�c B ��� � C, 2 � TJV4W "XO 	 , ) 7 2 9 B � C2 �/ " � , & 3 ) (17)

The Lagrange multipliers may be eliminated from these ex-
pressions by enforcing the constraint

: 2 c , 2 � � . Enforcing
the constraint yields:TJV4W "�O 	 , ) � �: 2 7 2 9 B � C2 �! #" � , & 3 ) (18)

Substituting (18) in (17), we obtain the update in (13). To per-
form grouped coordinate descent w.r.t � , we need the following
expression:

� Z n " b ��� )� 9 2 � O 1 , c , 2 �9 2 r �h7 2 (19)

Equating this expression to zero, we get the update in (14).
Thus, the justification of (15) is that it yields the desired

ML solution for � and that grouped coordinate descent on (15)
re-generates the actual EM-ML equations (13) and (14). We
naturally inherit all the convergence properties of the LM-EM-
ML algorithm. For an extended discussion of our approach
to re-deriving an EM algorithm via a complete data energy
function as applied to conventional binned data, see [18], [13].



IV. LM-EM-MAP: ADDITION OF REGULARIZATION

Though not done in [9], one could add regularization to this
EM algorithm to derive a non-OS list mode MAP algorithm.
We start with adding a regularization term to the negative
log-likelihood in (6). The regularization term may assume
various forms, but here, we will use a quadratic prior term� : 2 ;���� B 2 C�� 2F2�; " 9 2 O 9 2�; ) � . Here,

��� g
controls the amount

of regularization and � 2F2 ; are neighborhood weights. The term	 " 3 ) is a local neighborhood about 3 . The weights are sym-
metrical � 2F2 ; � � 2 ; 2 and positive. For a 2-D problem, a typical
neighborhood

	 " 3 ) comprises the eight nearest neighbors of3 . The new incomplete data objective function, replacing (6),
is given by:Z�
 " � ) �\� 012 - � 9 2 7 2 O

�1 ,.- � ]D_ `
012 - � 9 2 7 2 �/ " � , & 3 ) a (20)r � 1 2 12 ;���� B 2 C
� 2F2�; " 9 2 O 9 2�; ) �

The corresponding new complete data objective function, re-
placing (15), is given by:Z n�
 " b ��� ) � O �1 ,D- �

012 - � c , 2 s ]._ " 7 2 9 2 )^r ]._ "��/ " � , & 3 )�) t r�1 ,D- �
012 - � c , 2 " ]D_ c , 2 O � )�r � 012 - � 7 2 9 2 r

� 1 2 12 ; ��� B 2 C
� 2F2 ; " 9 2 O 9 2 ; ) � r �1 ,.- � 	 , "�O � r

012 - � c , 2 ) (21)

Note that the updates in (13) and (14) are parallel, but the
coupling between pixels 9 2 , 9 �2 introduced by the regularization
term in (21) apparently destroys this parallel nature of the
update. We can recover a parallel update that incorporates regu-
larization by using the separable surrogates idea [19]. Here, we
seek to derive a surrogate function

ZUn�
 E ������ " b ����� �� B � C ) in order
to replace

Z4n�
 " b ��� ) at each iteration � . We choose surrogate
objective functions that are easier to minimize than

ZYn�
 " b ��� )
and whose iterative minimization leads to the same final solu-
tion. We desire that this surrogate function be separable in pixel
space, i.e.

Z n�
 E ������ " b ����� �� B � C ) � : 2 Z n�
 E ������ " b � 9 2 � �� B � C ) and
hence lead to parallel updates. The surrogate function needs
to satisfy three properties [20] in order to obtain a convergent
algorithm:

1)
Z n�
 E ������ " b � �� B � C � �� B � C ) � Z n�
 " b � �� B � C ) ,

2) ��� Z4n�
 E ������ " b ����� �� B � C ) ����� Z4n�
 " b ��� ) at � � �� B � C and
3)

Z4n�
 E ������ " b ����� �� B � C )�� Z4n�
 " b ��� ) .
For convex priors, De Pierro [19] has developed an inequality
that leads to separable surrogate functions with the desired
properties. This inequality as it applies to our quadratic prior
is given by:" 9 2 O 9 2�; ) � � �! " ! 9 2 O �9 B � C2 ; O �9 B � C2 ) � r�! " ! 9 2 ; O �9 B � C2 ; O �9 B � C2 ) � (22)

A separable surrogate function may now be derived. It is given
by: Z4n�
 E ������ " b ����� �� B � C ) � O �1 ,D- �

012 - � c , 2 s ]._ " 7 2 9 2 )^r
]D_ "��! �" � , & 3 )�)�t r

�1 ,.- �
012 - � c , 2 " ]._ c , 2 O � )�r � 012 - � 7 2 9 2 r

� 1 2 12�; ��� B 2 C
� 2F2�; " ! 9 2 O �9 B � C2 O �9 B � C2 ; ) � r�1 ,.- � 	 , "�O � r
012 - � c , 2 ) (23)

In deriving (23), we used the fact that � 2F2�; � � 2�; 2 . Note that
this surrogate function is separable in pixel space and so we can
separately optimize for each pixel 9 2 . The surrogate function
for pixel 9 2 is given below:Z4n�
 E ������ " b � 9 2 � �� B � C ) � � 9 2 7 2 O �1 ,.- � c , 2 ]D_ " 7 2 9 2 )^r (24)

� 12�; ��� B 2 C
� 2F2 ; " ! 9 2 O �9 B � C2 O �9 B � C2�; ) �

Differentiating this function leads to a quadratic equation
resulting in the following M-update:

�9 B ��� � C2 � O#" r%$ " � O'&)(+*
! ( � 3 (25)

where
( � , � : 2 ;���� B 2 C)� 2F2 ; ,

" � � 7 2 O
& � : 2 ;���� B 2 C�� 2F2�; " �9 B � C2 r �9 B � C2�; ) ,

* � O : �,.- � �c B ��� � C, 2 .
The update (13) remains unchanged. Thus, (13) and (25)
comprise a LM-EM-MAP algorithm. We can establish [13],
[21] that the fixed point of (20) is unique and that a constrained
joint minimization of the complete data objective function
(21) always yields a fixed point of the original incomplete
data log-posterior in (20) . Since our LM-EM-MAP algorithm
converges to a fixed point of (21), which is also a fixed point
of (20), this algorithm converges to the MAP solution. Note
that the update equations for 9 2 automatically preserve the
positivity of 9 2 .
V. LIST-MODE ORDERED SUBSETS EM-MAP ALGORITHM

Now, we are in position to derive our final goal, an ordered
subset regularized version of the LM-EM-ML algorithm in
(13) and (14) by using the approach in [13] or [12], [22].
However, in order to more clearly explain the incorporation of
the OS notion into the optimization, we will first deal with the
unregularized case and derive an LM-OS-EM-ML algorithm.

We will now modify the method of minimization of the
complete data energy function to a different form of grouped
coordinate descent, which uses the notion of ordered-subsets
to obtain faster convergence. Suppose that the detected events
are divided into subsets -/.���0 � �
�����e��1 . We can re-state



(15) in an OS representation simply by replacing
: �,.- � with: [

. - � : , � ��� : Z n " b ��� ) � O [1
. - � 1, � ���

012 - � c , 2 s ]._ " 7 2 9 2 )r ]D_ "��! #" � , & 3 )�) t r
[1
. - � 1, � ���

012 - � c , 2 " ]._ c , 2 O � )�r
� 012 - � 7 2 9 2 r

[1
. - � 1, � � � 	 , "�O � r

012 - � c , 2 ) (26)

Now, we will alternately update b , ��6 
 - . and � in each
" �5��0 )

iteration. Using the expressions (16) and (19), and following
similar steps as before, we can obtain the following incremental
EM algorithm:

�c B � E . C, 2 � 7 2 �9 B � E . R�� C2 �! #" � , & 3 ): 2�; 7 2�; �9 B � E . Re� C2 ; �! #" � , & 3 � ) � 6 
 - . � 3 (27)

�9 B � E . C2 � : �,D- � �c B � E . C, 2�h7 2 � 3 (28)

Details of a convergence proof for the LM-OS-EM-ML algo-
rithm given by (27) and (28) can be found in [21].

A MAP (regularized) version of (27) and (28) can now be
obtained by performing a constrained joint minimization on
the complete data objective function (21) which incorporates
a regularization term. However, now we re-express (21) in OS
notation by replacing

: �,.- � with
: [
. - � : , � ��� . We can once

again derive a separable surrogate objective function using a
modified version of (22) and proceed to use the same grouped
coordinate descent strategy that was used to derive the updates
in (27) and (28). Equation (22) would have to be modified by
replacing

�9 B � C2 by
�9 B � E . R�� C2 . The update equations for c , 2 will

remain the same as in (27). We may write the modified form
of the M-step (28) as follows:

�9 B � E . C2 � O#" r%$ " � O'&)(+*
! ( � 3 (29)

where now
( � , � : 2 ; ��� B 2 C�� 2F2 ; ,

" � �h7 2 O
& � : 2 ; ��� B 2 C)� 2F2�; " �9 B � E . Re� C2 r �9 B � E . Re� C2 ; )

,
* � O : �,D- � �c B � E . C, 2 .

Thus (27) and (29) comprise our final goal, a convergent
LM-OS-EM-MAP algorithm. Since (27) and (29) minimize
(21), they also minimize (20). Hence, the LM-OS-EM-MAP
algorithm converges to the MAP solution. More details on the
convergence proof for this LM-OS-EM-MAP algorithm can be
found in [21].

Now, we will describe efficient implementations of the LM-
OS-EM-ML algorithm given by (27) and (28), and the LM-
OS-EM-MAP given by (27) and (29). Our goal is to come
up with implementations which have the same computational
complexity per � iteration as the LM-EM-ML algorithm in
(13) and (14). This is accomplished by recursively updating
the term

" B � E . C2 � : �,.- � �c B � E . C, 2 in each
" �5��0 ) iteration, so that

projections and backprojections only over the events in the

subset -/. are required. By considering the equations (14), (25),
(28) and (29), we may observe that iterative updating of

" 2
is the crucial computation in the M-steps or modified M-steps
of all algorithms considered in this paper. For example, we
may re-write the term

*
in (29) in the LM-OS-EM-MAP

algorithm as follows:
* � O#" B � E . C2 . Other than

*
, the other

terms in (29) can be quickly computed. An iterative update
of
" 2 first requires a projection to update

�c , 2 in the E-step,
followed by a backprojection over all events. For our OS
algorithms, we need to reduce this computation to a projec-
tion and backprojection only over a subset of events. Define( B � E . C2 � : , � ��� �c B � E . C, 2 � � - . ��0 � �
������e��1 . Then our recursive
update scheme is given by:

" B � E . C2 � ( B � E . C2 O ( B � E . R�� C2 r�" B � E . Re� C2 � � 3 (30)

Thus, our primary computation reduces to iteratively update( B � E . C2 in each
" �5��0 ) iteration and this requires projections and

backprojections only over the events in the subset - . . Our re-
cursive updates do imply some additional memory requirements
( 1 r � extra images need to be stored), but this is not a severe
requirement.

VI. SIMULATIONS AND DISCUSSION

We used the object in Fig. 1 (left) and simulated 2D SPECT
with attenuation effects. SPECT with conventional attributes is
not an application that usually benefits significantly from list-
mode data acquisition, but it has been shown to be advantageous
in [23], [24]. Here, our aim is to merely demonstrate the
efficacy of our algorithm. We have imitated [23] in choosing the

Fig. 1.
� ����� � ���

Object (left) with Reconstruction (right)

conditions for our list-mode SPECT simulations. We collected	�g(g
g(g
LM events, < " 6 ) ��= " 6 ) ��6S�d�(������e� 	
g
g
g(g over � ! , angles

and � 	�
�� bins. Note that we are measuring the bin-position
with tremendous accuracy and hence list-mode reconstruction is
desirable. We followed the procedure given below in simulating
list-mode data:

1) Generate noiseless (floating point) projection data.
2) Scale projection data so mean count level typically  �

at each bin.
3) Add Poisson noise using this low mean. Typically, we

realized 0 counts in a bin, with a few counts = 1 and
even fewer = 2.

4) Re-organize counts into a list.
The value of the regularization parameter

�
was

	�g(g
.



An important issue in the reconstruction process is the esti-
mation of the pixel sensitivity functions 7 2 . (The image formed
by 7 2 �K3 � �(������e��� is referred to as the efficiency image
in [25].) It was shown in that [25] that errors in estimating7 2 can significantly reduce image quality. Estimation of 7 2 is
a difficult task and different strategies are mentioned in [25].
Here, we adopted a simple approach. We backprojected over all
bins on a lower resolution (we used � ��! bins instead of � 	�
�� )
and then scaled the efficiency image appropriately.

A reconstruction is shown in Fig. 1 (right). A speed com-
parison of our LM-OS-EM-MAP algorithm in (27) and (29)
with 1, 4, 8, 16, 32 and 64 subsets is shown in Fig. 2. In
this plot, an iteration corresponds to a pass through all subsets.
Subsets were chosen by angle. For example, for 1 � &

, the
first subset consisted of events whose angle attribute index
was

g � & ��,Y������ , the second subset consisted of events whose
angle attribute index was �
� 	 � � ������ and so on. The figure
plots (on a log scale) the normalized energy difference, defined
by � � 7 � ��� B ���� C R ��� B ����	��
 C��� B �� � C R ��� B �� ���
 C vs. iteration � . Here,

���� is the
convergent solution obtained by running � g(g
g iterations of our
algorithm at 1 � � &

, and
�� B � C , the initial estimate, was a

constant image scaled to the appropriate count level.
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Fig. 2. Normalized Energy Distance (NED) vs. iteration for LM-OS-EM-
MAP algorithm using different numbers of subsets. Note ��� �

corresponds
to LM-EM-MAP.

The use of 1d� &
subsets led to an approximate factor of


speed-up. However, the use of higher numbers of subsets
( 1 � ,U�� � � 
�! � � & ) led to only slight further increases in speed.
This behavior is unlike that of conventional OS-type algorithms
where use of subsets leads to a typically greater speed-up.
We have explored a new idea in [26], [27] for binned-mode
data in which an automatically computed parameter controls a
tradeoff between application of a fast traditional OS algorithm
and a binned-mode version of our convergent OS algorithm.
The resulting algorithm is still convergent, yet the OS- speedup
factor is considerably enhanced. It appears likely that we can
extend this idea to our LM-OS-EM-MAP algorithm to achieve
greater OS speed-up.

We plan to conduct more realistic simulations modeling
physical effects such as depth-dependent detector response
and scatter. We also plan to explore different subset schemes
and compare the speed of the resulting variants. We have

used quadratic regularizers in our algorithms because they
lead to simple closed form updates that automatically enforce
positivity. One can use convex non-quadratic edge preserving
regularizers, but this destroys the closed form updates of our
LM-OS-EM-MAP algorithm. One needs to use a bent line
search to perform 1-D optimizations during each sub-iteration,
but this does not increase overall computation much.

The modified BSREM (Block Sequential Regularized EM)
algorithm in [28] is a recent fast, globally convergent OS
algorithm for MAP reconstruction. It was derived using a
penalized binned-mode likelihood. One may derive a modified
BSREM algorithm starting from a penalized LM likelihood.
However, this algorithm requires a carefully chosen relaxation
schedule in order to ensure convergence. An advantage of our
LM-OS-EM-MAP algorithm is that no relaxation schedule is
needed in order to obtain convergence.

Finally, we will mention an alternative approach to deriving
the OS algorithms described in this paper. This approach is
in the same spirit as in [7]. We may start with the final form
of the iterative updates of our convergent OS-EM-ML [29],
[21] and OS-EM-MAP [13], [21] algorithms for binned-mode
data and then algebraically manipulate them into a list-mode
representation to get our OS algorithms in the previous section.
The algebraic manipulation involves replacing weighted sums
over all sinogram bins, where the weights are the measured
counts in each bin, by sums over all measured events.

Thus, following the spirit of the Parra-Barrett approach [9],
we have derived a LM-OS-EM-MAP algorithm starting from
the concept of a list-mode likelihood, albeit using the LM likeli-
hood via a complete data objective formulation. One could take
an alternate path and derive the LM-OS-EM-MAP algorithm
beginning with a binned-mode likelihood and applying suitable
transformations. Our approach is nevertheless valuable since it
starts from first principles and is more flexible. We point to one
example where the use of LM likelihood approaches can be of
value: An important fact that distinguishes the list-mode deriva-
tion of the EM-type algorithms in this paper from the binned-
mode derivations [16] is the binary nature of our complete data.
EM algorithms that use binary complete data are commonly
employed for parameter estimation in mixture models. Faster
variants of EM algorithms [30] have been successfully used
for such mixture models. In the future, we plan to investigate
whether such fast variants can be developed for emission
tomography. Such variants depend on the binary nature of the
complete data and are naturally developed starting from a LM
likelihood formulation. Other advances may similarly benefit
from a LM likelihood formulation.
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