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ABSTRACT
Context-based unmixing has been studied by several re-
searchers. Recent techniques, such as piece-wise convex
unmixing using fuzzy and possibilistic clustering or Bayesian
methods proposed in [11] attempt to form contexts via clus-
tering. It is assumed that the linear mixing model applies to
each cluster (context) and endmembers and abundances are
found for each cluster. As the clusters are spatially coher-
ent, hyperspectral image segmentation can significantly aid
unmixing approaches that perform cluster specific estimation
of endmembers. In this work, we integrate a graph-cuts seg-
mentation algorithm with piece-wise convex unmixing. This
is compared to fuzzy clustering (FCM) with results obtained
on two datasets. The results demonstrate that the integrated
approach achieves better segmentation and more precise end-
member identification (in terms of comparisons with known
ground truth).

Index Terms— endmember extraction, hyperspectral im-
age analysis, graph cuts, Markov random fields, piece-wise
convex, segmentation

1. INTRODUCTION

The past decade has seen an upsurge in the acquisition and
processing of hyperspectral imagery. Our ability to integrate
the disparate information present in different frequencies
in hyperspectral images is now mainly limited by the lack
of suitable mathematical and algorithmic machinery. In re-
motely sensed hyperspectral image segmentation, we often
need a good segmentation prior to endmember extraction es-
pecially when estimating region specific endmembers. With-
out segmentation, downstream components like endmember
extraction suffer since unmixing lacks crucial information
regarding spatial coherence.

Motivated by an information integration perspective, we
bring together hyperspectral segmentation, endmember ex-
traction and abundance estimation in a coherent manner with
each part harmoniously influencing the entire system. First,
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hyperspectral image segmentation is set up using a Markov
random field (MRF) framework with unary segmentation
likelihoods and pairwise smoothness priors on the pixels.
Subsequently, we show that graph cuts are a suitable algo-
rithmic framework for obtaining good (albeit suboptimal)
segmentations. Next, we use the obtained segmentation
to drive unmixing. Piece-wise convex endmember extrac-
tion and abundance estimation follow—with both depending
heavily on the graph cut-based segmentation. The result
is an integrated system for hyperspectral image processing
called GRENDEL (Graph-based endmember extraction and
labeling).

2. PREVIOUS WORK

Unmixing is the process of decomposing each pixel in the im-
age into a set of constituent spectral signatures or endmem-
bers and a set of fractional abundances. Endmembers are
usually identified globally while abundances are estimated for
each pixel. Statistical approaches used when the spectral mix-
tures are highly mixed, try to determine both the endmembers
and abundance parameters via estimation theory. Sparse re-
gression approaches are also popular and have recently taken
advantage of semi-supervised machine learning by assuming
the knowledge of a few pure spectral signatures in advance
[6]. Generative approaches try to minimize the volume of the
simplex with many assuming pixel purity—the presence of at
least one pure pixel endmember. Vertex Component Analysis
(VCA) [9] which projects data onto the space orthogonal to
the subspace of endmembers and Iterative Constrained End-
members (ICE) [1] which replaces the volume of the simplex
with the sum of squared distances between all the simplex ver-
tices are the standard bearers for this class of approaches. All
of these methods assume that the image comes from a single
convex region—a simplistic assumption in real-world data.

An approach that goes beyond global endmembers is
piece-wise convex multiple-model endmember detection
(PCOMMEND) [11], wherein the image is divided into sev-
eral convex regions with linear unmixing performed per
region. Convex regions are represented as clusters but this
does not leverage the underlying grid. Newer methods ex-
ploit the correlation between spatial and spectral neighbors



and use support vector machine (SVM) training [3], mini-
mum spanning forests [10] or multinomial logistic regression
with active learning [6]. Nonlinear unmixing rounds out the
set of approaches but we deem these beyond the scope of
this work. Finally, we point out the pioneering effort in [8]
which employs graph cuts for hyperspectral segmentation.
Our work follows in this lineage but carries it forward to
include region-based endmember detection.

The above discussion is highly suggestive of the need for
integrating segmentation algorithms into piece-wise convex
unmixing—the overall goal of this work.

3. GRENDEL: GRAPH-BASED ENDMEMBER
EXTRACTION AND LABELING

Unsupervised image segmentation is a challenging problem,
mainly addressed by the computer vision community and
adapted by us to the hyperspectral realm. A standard ap-
proach employs maximum a posteriori (MAP) estimation
using a Markov random field (MRF) prior with graph cuts
as the optimization algorithm of choice. We now briefly de-
scribe the approach, first for pedagogical reasons using binary
image segmentation as an example, followed by the more re-
alistic case of a hyperspectral image with many intensity
levels in each band.

Exact MAP estimation with an MRF prior can be obtained
by solving a minimum cut problem on a well defined graph.
This is based on the work in [4]—the first to use graph cuts
for finding the exact MAP estimate in binary image segmen-
tation. Assume an image X where each pixel is either black
or white (xi = 0 if the pixel is black and xi = 1 otherwise).
You observe a corrupted image Y with n pixels y1, y2, . . . , yn
conditionally dependent on their corresponding xi with the
conditional density function p(Y |X) = Πif(yi|xi). Since
the original image is binary, image estimation and segmenta-
tion coincide. The prior distribution on the pixel labels can be
written as an MRF with pairwise interactions

p(X) ∝ exp

1

2

∑
ij

βij [xixj + (1− xi)(1− xj)]

 (1)

where βij is zero if i and j are not neighbors in the pixel graph
G(V,E) and is a constant otherwise. Given the likelihood
p(Y |X) and the MRF prior p(X), the posterior maximization
problem becomes

X̂ = arg max
X
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X
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The maximization problem in (2) can be equivalently for-
mulated via a minimum cut on the graph G(V,E) of image

pixels augmented with a source and sink. If the log-likelihood
ratio λi ≡ log

{
f(yi|1)
f(yi|0)

}
is positive, an edge exists from the

source to pixel i, else an edge is created from pixel i to the
sink. Neighboring pixels (i, j) ∈ E are connected with an
edge weight βij . A two set partition of the vertices (a.k.a. a
graph cut) has a cost

E(X) =

n∑
i=1

[xi max(0,−λi) + (1− xi) max(0, λi)]

+
1

2

∑
ij

βij(xi − xj)2 (3)

which is proportional to (2) above. Graph algorithms based
on the equivalence of maximum flow to the minimum cut can
be used to find the minimizer of (3) in polynomial time.

Although the work in [4] was limited to binary images,
the graph cut algorithm has expanded to include multiple la-
bels [2] over the past decade. The graph cut approach can be
readily adapted for segmenting hyperspectral images with a
large number of bands. Here, we observe an image Y with
n pixels {y1,y2, . . . ,yn} where yi denotes a vector of re-
flectance values at different wavelengths. The MRF neigh-
borhood is again driven by the pixel graph G(V,E). A binary
set S = {S1, S2, . . . , Sn} represents the segmentation where
Si = {si1, si2, . . . siK} denotes the one-of-K region mem-
bership of a pixel (sia ∈ {0, 1} ,

∑
a sia = 1). The graph

cuts partition cost is

E(S) = −λ
n∑

i=1
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[sia log f(yi|rega)] (4)
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where “reg” denotes region, f(yi|rega) is the region specific
density, and dist(i, j) is the grid distance between pixels. The
graphG(V,E) now has multiple terminals each of which rep-
resents a segmentation into a particular region. A segmenta-
tion with optimal cost is the one that partitions all terminals
into isolated segments. This multi-partition graph cut seg-
mentation is a generalization of (3) with multiple labels re-
placing the binary ones. While this problem is NP-complete,
a set of α-expansion moves can efficiently find a good, albeit
approximate solution in polynomial time. For more details
please see [2].

Piece-wise Convex Endmember Detection (PCOMMEND)
[11] extends the single set linear mixing approach by consid-
ering the presence of multiple sets of endmembers. In order
to achieve this, PCOMMEND divides the image into a spe-
cific number of clusters with a clustering algorithm used for

A MATLAB implementation is available at http://www.wisdom.
weizmann.ac.il/˜bagon/matlab.html.



Fig. 1. Comparison between the endmembers found by GRENDEL, PCOMMEND and Pavia ground-truth: GRENDEL end-
members (yellow) and PCOMMEND endmembers (red). The mean spectrum and ±1 standard deviation of the pixels from the
ground-truth class in the Pavia University test set are shown in blue. The y-axis is in reflectance units and the x-axis corresponds
to wavelength (in nanometers).

partitioning the image. Clustering is more suitable for vector
space patterns that do not have an underlying grid. Conse-
quently, a good segmentation should considerably alleviate
PCOMMEND. The principal argument in this paper is that
graph cut segmentation integrates well with PCOMMEND
since the latter estimates a set of endmembers for each seg-
mentation region. The result is GRENDEL (Graph-based
Endmember Extraction and Labeling)—an integrated suite
comprising graph cuts driven hyperspectral image segmenta-
tion with the extraction of multiple sets of endmembers, one
for each region.

4. RESULTS

In the following, GRENDEL is tested using two real hyper-
spectral datasets.

A. Pavia University: The Pavia hyperspectral data set was
collected over an urban area of Pavia, in northern Italy by
the ROSIS spectrometer on July 8, 2002 [11]. The image
contains 610×341 pixels with 103 bands. The ROSIS sen-
sor collected data over the 430–850nm wavelength range at a
4nm spectral sampling interval. The data was collected over
the 430–850-nm wavelength range at a 4nm spectral sampling
interval. Data has been atmospherically corrected by the Ger-
man Remote Sensing Data Center of the German Aerospace
Center (DLR) [5]. The image contains both natural and ur-

ban regions. We have used Pavia results to compare GREN-
DEL to PCOMMEND which already outperforms VCA and
ICE. We applied GRENDEL with the following parameters:
a = 0.6, b = 0.001, C = 2,M = 3 and considered 2 differ-
ent clusters each of them containing 3 endmembers detected
in the Pavia University image which are: Metal roofing, Ce-
ment/Sidewalk, shadow, soil, asphalt and vegetation. Com-
parison results in Fig. 1 indicate that we have reduced the
endmember estimation error in comparison to PCOMMEND
(which in the main outperforms VCA and ICE).

B. NEON: the results of segmenting the NEON dataset are
shown (with no endmember comparisons since we don’t have
ground truth). The National Ecological Observatory Network
(NEON) has conducted a series of airborne flights and sup-
porting ground measurements in two study areas located near
Gainesville, Florida since 2010. Major plant communities ex-
ist within the region and these diverse targets are populated
by sandhill, mixed forests, basin swamp, basin marsh, marsh
lake, etc. [7]. We conducted manual preprocessing to remove
the very noisy bands. The image used in the experiments has
358×317 pixels with 174 different bands. Segmentation com-
parisons were conducted against fuzzy clustering and visual
inspection reveals improvement. Both of the segmentation re-
sults are for 5 different clusters shown in gray scale. Graph
cuts yields much smoother results than FCM. The roads and
the area around the lake in FCM are noisy and with white dots



present. These and other artifacts are not present in graph cuts
(Fig. 3)

5. DISCUSSION

When we seek to estimate multiple sets of endmembers, the
spatial coherence of hyperspectral imagery naturally suggests
a strong role for segmentation. Consequently, we integrated
graph cut-based segmentation approaches with region spe-
cific, piece-wise convex endmember detection resulting in
GRENDEL. Initial results when compared against ground-
truth endmembers are very encouraging with coherent re-
gions leading to more consistent endmembers. Future work
will focus on tighter integration with unified estimation of
segmentation regions, endmembers and abundances.
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Fig. 4. Scatter plots of partitions 1 and 2.


