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Abstract

Classification of very high resolution (VHR) remote sensing imagery is a rapidly emerg-
ing discipline but faces several challenges owing to the huge scale of the pixel data involved,
indiscernibility in the traditionally used features to represent various regions, and the lack of
available ground truth data. This paper provides a framework which elegantly overcomes these
hurdles by providing a novel semi-supervised learning approach which employs multiscale super-
pixel tessellation representations of VHR imagery. Superpixels are homogeneous and irregularly
shaped regions which form the backbone of our approach and are used to derive novel features
by learning a decision tree. Our semi-supervised learning approach works on a superpixel graph
and seamlessly combines the large margin capability of a support vector machine (SVM) with a
graph based Laplacian label propagation approach to obtain a novel objective function. Further
we also provide a self-contained and easily parallelizable linear iterative optimization approach
based on the principle of majorization-minimization. We evaluate this approach on four dif-
ferent geographic settings with varying neighborhood types and draw comparisons with the
popular and widely used Gaussian Multiple Instance Learning algorithm. Our results showcase
several advantages in accuracy and efficiency, which coupled with the ease of model building
and inherently parallelizable optimization make our framework a great choice for deployment in
large scale applications like global human settlement mapping and population distribution, and
change detection.

Keywords: remote sensing; superpixel segmentation; ultrametric contour maps; majorization-
minimization; support vector machine; graph Laplacian; semi-supervised learning; Gaussian mul-
tiple instance learning; label propagation; surrogate function.

1 Introduction

Remote sensing technologies and machine learning algorithms intended to characterize, categorize
and classify land cover have received great attention during the past two decades. Due to a surge
in the launch of satellites by private companies like Digital Global (e.g. WorldView-3 in August
2014), images with sub-meter resolution are available easily, thereby making fine-grained classi-
fication possible across several applications like urban settlement mapping, biomass monitoring,
space exploration, etc. New avenues for automatic classification of world-wide natural regions (e.g.
forest, sea, terrains) and man-made structures (e.g. residential and commercial buildings) have
also been extensively provided by such very high resolution (VHR) imagery. A few national labo-
ratories or international agencies such as Oak Ridge National Laboratory (ORNL) and European
Commission Joint Research Center (JRC) have also made great efforts to generate informal and
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Figure 1: An example of the high resolution aerial images obtained from Google Earth Pro that
we use in our experiments for terrain classification. The above image contains more than 1 million
pixels and represents an area of about 1 sq km on the ground.

formal settlement mapping at global scale by developing various new approaches as mentioned in
[23].

Routine application of machine learning algorithms for classification have to be re-examined
because of certain characteristics in remote sensing applications. First, remote sensing data live on a
spatiotemporal grid, so the independent and identically distributed (i.i.d) assumption does not hold
as in the traditional sample-based machine learning approach. For this reason, establishing an image
representation which takes the gridded nature of the data into account is necessary and important.
Hence we adopt a segmentation-driven representation to leverage the spatial remote sensing grid.
Secondly, as the queries in remote sensing become more complicated, newer applications require us
to classify entire homogeneous regions into a single category instead of just performing pixel-level
classification. This is quite different from merely labeling individual samples as in standard machine
learning schemes. Thirdly, these applications produce very large volume (terabytes to petabytes)
and velocity (gigabytes to terabytes per day) of data, so we are required to develop low complexity
and multi-scale algorithms that can be effectively implemented on modern architectures with deep
memory hierarchies—another vital challenge for existing machine learning techniques. Fourthly,
experts are responsible for labeling whole regions rather than individual pixels in many cases, and
we need a semi-supervised approach which does not separate training and testing regimes since the
entire image is available during training. Thus, expert interaction and demarcation of training and
test set are very different in remote sensing. In a nutshell, we will leverage a segmentation-based
image representation and then perform a graph-based semi-supervised classification in our remote
sensing application. Figure 1 shows an example image that we use in this work.

There is one fundamental point of departure which deserves more attention—the use of super-
pixel tessellation representations of remote sensing images. A review of previous literature shows
that either a pixel-based classification approach is used without any consideration of the local region
homogeneity, or pixels are aggregated in rectangular patches to be further classified without con-
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sidering the natural shape as well as the local homogeneity. In sharp contrast to these approaches,
we begin with a superpixel tessellation representation of remote sensing images, by adequately
capturing the common characteristic of coherent local structures. In fact, superpixels are local
homogeneous groupings of pixels and the superpixel tessellation ensures that the image domain
can be covered by non-overlapping superpixels. Since region homogeneity is a function of scale, we
adopt a pyramid of superpixel tessellations with coarser scales using local groupings of superpixels
from finer scales. This results in a scale space of superpixel tessellations—a segmentation-driven
image representation that is fundamental to our framework and which has, by and large, remained
unexploited by other competing remote sensing classification approaches.

We now briefly delve into the specifics of the superpixel tessellation method to be deployed. Es-
sentially, the popular ultrametric contour map (UCM) approach for image segmentation is adapted
to obtain superpixel tessellations. Here we summarize UCM and highlight its use as a feature
extractor since we have not seen this aspect in any other recent work. UCM begins by combining
scale-space oriented image gradients at each pixel. A graph is constructed by joining any pair of
pixels which exhibit good evidence for a line segment connecting them in the actual image. The top
eigenvectors of the graph Laplacian are computed and rearranged in image space thereby adapt-
ing recent techniques in graph partitioning and spectral clustering. Next, gradients are computed
on the eigenvector images and combined with the original image gradients to generate a contour
descriptor at each pixel. An oriented watershed algorithm is executed on the gradient image to
produce the lowest level superpixel tessellation, and these superpixels are merged based on grouping
heuristics to obtain the final ultrametric contour map with superpixel containment across levels
([3]).

Once this image representation is obtained, we can focus on superpixel classification. As men-
tioned earlier, we prefer to classify superpixels at a suitably chosen level instead of individual pixels
of rectangular regions. A semi-supervised machine learning approach is most suitable in remote
sensing as well as in this context of superpixel tessellation representations. The remote sensing ex-
pert is tasked with labeling O (1) superpixels and the subsequent machine learning algorithm labels
all the remaining superpixels. Assuming the expert labels are in place, we now extract features at
each superpixel to achieve the kind of discrimination required in this application—the separation
of remote sensing image data into urban, slum, forest and other categories. To this end, we gather
some useful information (e.g. the density and type of superpixels) which stems from our chosen
UCM-based image representation, and integrate it into distinctive semantic features. While the
aggregated information in these features is similar to that in [34], the process of generating these
features is significantly different. In this work we learn these features using decision trees so as to
obtain a binary feature vector of the size of the number of classes. Because our features are learnt
and do not use fixed parameters, it leads to better generalization capabilities unlike in [34]. These
novel features are concatenated with more standard features (e.g. multi-level color histograms)
to generate the complete feature vector to be used in our semi-supervised superpixel classification
algorithm which we describe below.

Our semi-supervised classification algorithm is an extension of the work in [34], and combines the
SVM and graph Laplacian regularization into a single objective function. SVM is a sample-based
method and does not leverage the advantages offered by the gridded nature of the spatiotemporal
data. This is overcome in [34] by using a two-stage pipeline in which an SVM is learnt from the
sparsely available data and the rudimentary classification obtained as a result of this is further
refined using a graph Laplacian objective function formed by connecting spatially adjacent super-
pixels. However, we believe that this pipeline approach of first performing SVM and then smoothing
using the Laplacian can be eliminated by regularizing the SVM’s hinge loss function with a graph
Laplacian-based regularization term in the same objective function. This is a more robust approach,
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in our opinion, since this minimizes the tendency to overfit when an SVM is trained with just a
sparsely available ground truth data. Further, this combines the maximum margin capabilities of
the SVM with the underlying gridded nature of the data. Finally, in this paper we also provide a
method based on majorization-minimization to optimize our objective function.

We utilize the above approach for labeling regions into different land use and land cover (LULC)
classes (e.g. urban, slums, forests, sea) in VHR aerial images. The rest of the paper is organized
as follows. In Section 2, we briefly introduce the related work of classification on remote sensing
image datasets by using semi-supervised approaches. Our approach is described in detail in Section
3 and the experimental results are reported in Section 4, followed by the conclusions in Section 5.

2 Previous work

There are four major steps involved in current remote sensing classification frameworks: collecting
ground-truth data for a few sample locations, extracting features from the image, building a clas-
sification model, and predicting labels for all pixels in the entire image. Many existing approaches
depend on the spectral features (e.g. RGB and thermal infrared) and derived features (e.g. his-
togram of oriented gradients, scale invariant feature transform, vegetation indices and textons) that
are extracted at each pixel. Reviews of these pixel-based or single instance learning (SIL) based
techniques can be found in [44, 16]. Most of the pixel-based classification models (e.g. Bayesian
classifier, logistic regression, and neural networks) only establish the correlations in feature space
but completely ignore the spatial and structural information of those features. Thus approaches
of [31, 38] using Markov random fields(MRF) which incorporate spatial location and contextual
information were proposed to improve the performance of the traditional classifiers. The utility of
both spectral and spatial information was also proven to be effective in [12, 26] with a kernel-based
setting wherein SVM was used for classifying high resolution images. Since the spatial correlations
and feature correlations are modeled simultaneously, they are also known as spatial classification
schemes which bring about much smoother class distributions in the final classification. Note that,
essentially these spatial classification methods are still single instance learners, so another way to
overcome the single instance limitation is to exploit additional features beyond spectral features.
For example, [41, 16, 49] showed the improvement of SIL methods by adding extended features
(e.g. texture, edge density, morphological features), and [49, 20] introduced the optimal way of
linearly combining the multiple features to obtain low-dimensional representation or constructing
an SVM ensemble to combine the features in multiple levels.

However, although these studies showed that the classification accuracy of SIL methods could
be improved by integrating spatial contextual information or adding extended features, the un-
derlying image complexity and interpixel relationships are still not fully exploited. Object-based
classification schemes were proposed based on the idea of grouping the pixels into coherent regions
by investigating the spatial and spectral features. Comparative reviews of [5, 47] revealed the supe-
riority of the object-based approach. One can either use these objects to build a meta classifier on
the features which describe the whole object instead of just a particular pixel, or simply aggregate
and pool all features for pixels (belonging to the same object) into a single feature vector and
then apply any single instance learning algorithm for classification. Nonetheless, we should note
that all these object-based approaches fail to fully consider the important structural and spatial
properties in the aggregation process. To overcome these shortcomings, multiple instance learning
(MIL) methods have been developed among which the seminal work of [11, 28, 1, 21] is the most
notable. In general, MIL methods have better performance than SIL schemes which can be also
seen in the applications of remote sensing image classification. For example, in [39] MIL schemes
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were explored for simultaneously inferring local target labels and global target decision boundaries;
an MIL framework was proposed in [6] for target spectra learning in hyperspectral imagery; an effi-
cient Gaussian Multiple Instance Learning (GMIL) algorithm was developed in [42, 43] in order to
overcome the high computational cost of Citation-KNN ([45, 21]). Even though these approaches
are often computationally expensive and leveraging them for global scale problems is hard, our
work of utilizing irregular patches or homogeneous superpixels and adopting parallelizable machine
learning techniques is able to meet the scale requirements of target applications, and it can also
bypass the need for determining an appropriate size of patch or grid which always impacts the
performance in terms of computation and accuracy.

Concomitantly, we summarize the evolution of graph-based semi-supervised learning (SSL)
methodologies. Earlier work on SSL mainly focused on optimization ([10, 17]), multi-view learning
([32]) and transductive inference ([22, 36]). Since then, it became standard to use graphs in SSL ([15,
37]), where the node labels are assigned by using a weighted combination of its neighbors. Different
principles are also used to design objective functions for label propagation. For example, in [50] a
framework of harmonic energy minimization was proposed over a quadratic objective function based
on a weighted graph formulated in terms of a Gaussian random field model; [4] used a regression
method to determine the weighted combination—first computing the graph Laplacian and then
using a regression objective to estimate a weighted combination of the principal eigenvectors for
predicting the unlabeled nodes; [48] even addressed the multiple-label problem by simultaneously
exploiting the inherent correlations and consistency over the graph.

In this paper, we extend the work of [33, 34] by employing a decision tree to generate semantic
binary features, and combine the SVM hinge loss function with a graph Laplacian based regulariza-
tion in order to implement the semi-supervised classification. Our combined approach—henceforth,
referred as GLSVM—is better capable of exploiting the semantic correlation of the inter-class and
intra-class feature attributes and also significantly reduce the complexity of the pipeline framework
presented in [33, 34]. We will describe the details in the following sections.

3 Approach

In this paper, an efficient image representation and semi-supervised learning approach is described
to analyze large scale remote sensing imagery. The goal of this work is to label all pixels in an image
when only a small fraction of labeled ground truth data is available from the expert. Typically, the
candidate classes are forestry, slums, urban areas and others. Our framework also supports a wide
range of earth science applications that concern classification and predictions.

Our framework which is an efficient modification of the work in [34], mainly includes the fol-
lowing stages:

1. Tessellation of the data into superpixels: This step converts the data into irregular (but
coherent) patches called superpixels. Superpixels correspond to coherent patches or areas in
2D. These coherent superpixels reduce the data complexity since processing is moved to the
superpixel level from the pixel level. Superpixels also have a huge advantage over partitioning
the image into regular patches because regular patches ignore the local variability of the
underlying data w.r.t. the grid.

2. Generating multi-pixel features for each superpixel: At this step we generate features
which are effective in discriminating between terrains present in the spatiotemporal image
data. We exploit intensity, geometry, scale of tessellation to arrive at these features. Other
useful side information is also picked up to produce additional semantic binary features.
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3. Building a superpixel graph: This step constructs a superpixel graph with nodes corre-
sponding to the superpixels and edges connecting the neighborhood nodes.

4. Label propagation algorithm: Labels are only available for a small number of pixels.
This information is used to derive the labels for a subset of superpixels. In order to do so,
we construct a novel classifier which incorporates the maximum margin property of the SVM
along with the smoothness property of the graph Laplacian in the same objective function.
Our algorithm utilizes these partial labels and the features of all superpixels to predict a
labeling field on the superpixels.

In the following subsections we will describe these stages separately. Figure 1 is used as a running
example for illustration. The size of this image is roughly one million pixels.

3.1 Superpixel formation

Since the advent of normalized cuts in [35] and graph-cuts in [13, 7], there has been considerable
interest in segmenting an image into sets of superpixels. There are several techniques available in
the computer vision literature. The ultrametric contour map (UCM) proposed by [3] is a popular
method and sets the groundwork for our approach and therefore, we believe that it warrants a
concise description in this paper for the sake of completeness.

UCM uses local and global cues to produce a hierarchy of tessellations at different scales ranging
from fine to coarse. These tessellations respect the containment property, that is every fine scale
tessellation is contained within the next higher (or coarse) scale tessellation. We use UCM in two
different ways: (i) The first usage is more traditional and direct in the sense that a fine scale
tessellation is obtained which is used for classifying (or labeling) each superpixel (as against each
individual pixel). (ii) The second usage is more subtle because the tessellations obtained at the
coarser scales are used as features for classifying the superpixels at the finer scale selected in (i). For
example, for the target application, the tessellation at a coarser scale mostly picks up prominent
boundaries thus increasing the probability of detecting urban regions. Furthermore, the density
of superpixels is greater in slum regions than in other regions like urban, forests etc. thereby
making it a suitable feature for slum detection. Therefore, these cues aid in generating novel and
discriminating features for superpixels at the selected finer scale of classification. In Figure 2, we
show the superpixels obtained for the image in Figure 1 corresponding to fine and coarse scales.

UCM employs the gPb contour detector ([29, 3]) to obtain a probability map of the existence
of boundaries at various orientations over all pixels in the image. The soft boundary map obtained
from this process does not produce closed contours. Therefore, the oriented watershed transform is
used to obtain closed segments from the boundary map. These segments are hierarchically merged
using a greedy algorithm to obtain an ultrametric contour map. Below we summarize the steps
used in this superpixel estimation process using the gPb framework: (i) feature extraction using
oriented scale-space gradients, (ii) graph construction, (iii) eigenvector computation, (iv) scale-space
gradient computation on the eigenvector image, (v) combination of local and global information and
(vi) oriented watershed transform to produce non-uniform tessellations, and (vii) region merging
to obtain the tessellation hierarchy. While this sequence is somewhat of a simplification, the
major steps have been highlighted. Note that the UCM approach obtains local and global contour
information by combining information from the original image and weighted graph eigenvector
“images”. This perceptual grouping property is mainly responsible for obtaining good superpixel
tessellations. We now detail the individual steps in the overall sequence:

Step 1: Multiscale local feature extraction: Gradient maps are obtained at multiple orientations
and multiple scales for each of the feature (brightness, color, and the texton map) channels obtained
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(a) Superpixels obtained at a finer scale. (b) Superpixels obtained at a coarser scale.

Figure 2: Superpixels obtained at different scales for Figure 1. Different scales capture different
properties. Coarser scales mostly pick up strong boundaries while the finer scale can be leveraged
to obtain the varying density of superpixels contained in coarser superpixels. Coarser superpixels
contain higher density of finer superpixels near slum regions but lower density in urban and forest
regions, which is useful side information that can be exploited to encode binary features as shown
in Figure 4.

from the given input image. To achieve this, a circular disc is placed at each pixel and the image
discontinuity is measured by splitting the disc into two halves at various angles and by taking the
difference of feature histograms on both sides of the disc. Varying the size of the disc yields a
multiscale oriented gradient signal G(x, θ) for every feature channel. This results in a set of local
features which are linearly combined to obtain a multiscale oriented signal:

Ilocal (x, θ) =
∑
s

∑
i

wi,sGi,s (x, θ) (1)

where {wi,s} is a set of weights that depend on the channels and scales.
Step 2: Weighted graph construction: While the above step only considers local information

for deciding the boundary, this step brings in the global information pertaining to most salient
curves existing in the image. For this purpose, a weighted graph is constructed using the local
filter responses above. Following the intervening contour cue ([14]) strategy, pixels within a certain
distance of each other are linked by a weighted edge using the relation

W (x,y) = exp

{
−α max

z(x,y)
max
θ
Ilocal (z (x,y) , θ)

}
(2)

where α is a constant and z (x,y) is any point lying on the line segment connecting x and y.
Step 3: Eigenvector computation from the weighted graph W (x,y): Following the standard

strategy of spectral clustering, the top K eigenvectors corresponding to the K smallest eigenvalues
of the weighted graph are computed. Since these eigenvectors are in location space, the result is a
set {ek (x)} (usually rescaled using the eigenvalues of the weighted graph).

Step 4: Spectral information obtained from the top K eigenvectors: Since gradient informa-
tion computed from the scaled eigenvectors can be expected to contain complementary spectral
information ([3]), a set of gradient operations in different orientations are computed to obtain

Ispectral (x, θ) =
∑
k

∇θ (ek (x)) (3)
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(a) Corners (magenta points) detected by Harris corner de-
tector.

(b) Texton map generated by filter bank, using different gray
levels to show 32 kinds of clusters.

Figure 3: Examples of two features used on finer-scale superpixels.

Step 5: Combination of local and spectral information: The information in equations (1) and
(3) is linearly combined to obtain the final, global contour probability measure.

Step 6: Oriented watershed transform applied to the global contour measure: Since the global
contour probability map may not always produce closed curves and therefore may not divide the
image into regions, another operation is required to extract closed contours. UCM employs the
Oriented Watershed Transform (OWT) ([3]) to construct closed contours. Here, the orientation
that maximizes the response of the contour detection approach (gPb) is used to construct a set of
regions. Further, real valued weights are associated with each possible segmentation by averaging
the gPb values available at different orientations along the boundary.

Step 7: Hierarchical construction: Average strength of the common boundary is computed
between two adjacent regions using the weights on the region boundaries. This quantifies the dis-
similarity between two adjacent regions and is used to construct an ultrametric contour map (UCM)
by gradually combining adjacent regions with the weakest dissimilarity to the strongest dissimilar-
ity. Thus a hierarchical tree of closed regions is generated. By thresholding the UCM at a specific
threshold, a set of resulting closed contours obtained can be seen either as a segmentation or as
the output of the super-pixellization. Further it can be seen that the uncertainty of a segmentation
can be represented: at low thresholds, the image can be oversegmented respecting even the least
probable boundaries and as the threshold is increased only very strong boundaries survive. This
has the benefit of introducing a trade off between the extreme ends of the segmentation.

The resulting tessellation for the image in Figure 1 is given in Figure 2. It shows that areas
of significant variation require smaller patch sizes while areas with less variations are captured by
larger patch sizes. We believe that this variability is one of the major strengths of the proposed
approach.

3.2 Superpixel Descriptor

Each superpixel at a finer level is described using four kinds of features—intensity histograms,
textons, corner density and a binary feature derived from the coarser levels. For the intensity
histograms, we quantize the grayscale intensities into 64 bins and obtain a 64 dimensional feature
vector for each superpixel. For the textons, we use a regular texton filter bank ([40]) and cluster
the responses of each pixel to 32 centers (Figure 3b). These 32 centers act as words of a texton
vocabulary which are used to compute a 32 dimensional histogram describing the frequency of
texton features in each superpixel.
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(a) Binary descriptor to mark urban-like area.

(b) Binary descriptor to mark slum-like area.

(c) Binary descriptor to mark forest-like area.

(d) Binary descriptor to mark sea-like area.

Figure 4: Region overlayed with the binary descriptors, where the white parts correspond to 1 in
each binary descriptor and signify a higher likelihood of being in the same semantic group.
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We use the Harris corner detector ([19]) to obtain a density measure of the corners per unit
area for each superpixel. As Figure 3a shows, corners can play an important role in discriminating
between regions with human buildings and regions with water or vegetation. To further exploit
the difference between various classes, we utilize much of the side information to derive effective
semantic binary features. For example, the histograms of each color channel help to reveal the
unique color properties of some classes, like green describes the forest and blue describes the
sea. Similarly, the containment density of superpixels—the density of superpixels at a finer level
contained within the superpixel at a coarser level—can also be used to distinguish between urban
and slum dwellings, based on the visual observation that slums have a higher superpixel density
relative to forest and urban settlements at the same level of the superpixel pyramid. Another key
factor for distinguishing between different kind of human settlements (slum versus urban) is the size
of superpixels found at coarse scales. As UCM inherently involves a combination of dense features
like textons and color histograms and only keeps prominent boundaries at coarser scale, the task
of determining urban regions is greatly simplified with the output of much larger superpixels. This
is because urban regions have well defined boundaries which get picked up at the coarser level
of the UCM hierarchy, while the weaker boundaries mostly representing slum regions get filtered
out. Therefore, at the coarser levels of the UCM hierarchy regions like slums get agglomerated
into big chunks while the urban regions are retained as they are. Therefore, this side information
can be used to learn binary feature vectors discriminating various classes. Unlike the traditional
features such as dense SIFT, HOG, etc. which can be used to detect these regions but suffer from
the problem of determining the appropriate scale, this side information is also greatly helpful to
simplify the task of discriminating the urban regions from the other classes.

We collect all these useful clues (i.e. side information attributes) and percolate them down
the UCM hierarchy to each finer scale superpixel. All the finer superpixels contained in the larger
superpixels get the same value as that of their larger parent superpixel. A decision tree is then
constructed to pick up the essential attributes for dividing the superpixels into a set of groups with
least possible overlap. The output of each superpixel is a binary vector of size equal to the number
of groups. The occurrence of one represents the membership of a group at each superpixel and the
occurrence of zero denotes the absence of that group at a particular superpixel. We constrain the
number of groups to equal the number of classes (different terrains to be classified), so semantically
we obtain a series of binary descriptors of slum, urban, forest, etc. respectively (as illustrated in
Figure 4). These descriptors can be seen as a semantic complement to the four kinds of finer level
features mentioned above and used in [46], since we integrate the suitable side information into
the representation of a superpixel. Further, average RGB values corresponding to each superpixel
are also used. Finally, we concatenate all these kinds of features to form a long feature vector to
describe each superpixel of the finer tessellation. Other features like HOG ([8]) and dense SIFT
([27]) can also be added to the above framework if needed.

3.3 Semi-supervised Learning and Classification

Owing to the large size of the underlying datasets but given only a limited number of experts
to label the data, it is not practical to obtain ground truth labels except at a small number of
pixels. Therefore, an efficient semi-supervised learning approach has to be employed to deal with
this scalability problem.

In this work, we achieve semi-supervised learning through GLSVM which follows the simi-
lar principle as in [30], so that we can fully utilize the ground truth data available from only a
small number of superpixels as labeled by experts and the derived features of all the superpix-
els. Majorization-minimization is used to train our classifier and this iterative method is very fast
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(a) Spatial graph connecting adjacent superpixels. (b) Final result obtained after GLSVM. The output labels are
smoothed during the model training.

Figure 5: Graph and resulting labels for image in Figure 1. The colors red, gray, green, yellow and
blue correspond to slum, urban, forest, sand and sea regions respectively.

w.r.t. reasonable stopping conditions. By applying a spatial graph in the classifier optimization,
our classification can also avoid artifacts such that neighboring regions which belong to the same
class may get labeled incorrectly due to the independence assumption in conventional sample-based
classifiers like SVM or k-nearest neighbors (KNN). We relegate the details of our objective function
comprising the SVM hinge loss term and `2 graph Laplacian regularizer along with the iterative
optimization algorithm to the Appendix.

The image in Figure 5a below shows the spatial graph we are using and Figure 5 shows the
resulting labels obtained from our GLSVM algorithm based on majorization-minimization.

4 Experiments

We conduct extensive experiments on VHR imagery to evaluate the accuracy and efficiency of our
classification approach. In this section we describe the data used for our experiments and the
parameters used in our classification algorithm.

The image data are collected from three different geographic settings. The first five images
are obtained from Rio, Brazil by using Google Earth Pro. All of these images are around one
million pixels corresponding to 1 square kilometer of area. The Rio images contain two major
types of settlement—formal (e.g. high-rise apartments and commercial complexes) and informal
(e.g. favelas). Another two images are obtained from Madison and Milwaukee suburbs respectively
from Wisconsin, USA and the last image is obtained from Sterling Heights (Detroit metropolis),
Michigan, USA. All these images correspond to about 4 square kilometers with the same resolution
of 1 meter as in the Rio images. The Madison image represents two distinct categories of commercial
complexes and suburban residential communities, while the Milwaukee image consists of downtown
and residential neighborhoods. Sterling Heights is the second largest suburb of metropolitan Detroit
and the fourth largest city in the state of Michigan. The chosen subregion consists of commercial
and residential areas. In addition to the major settlements, these images also contain a set of
diverse categories such as forests and isolated trees (mixed with houses), grass fields and lawns,
barren lands and rock outcrops, water bodies and sandy areas along the shore. Classification
results of the first five Rio images are shown in Figure 5 and Figure 6. The Madison, Milwaukee,
and Detroit images are shown in Figure 7.

Before the superpixel tessellation is obtained using the method given in [2], we convert our
color images to grayscale and then perform Gaussian smoothing on the grayscale version of the
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color images. The support of the Gaussian filter is set to 10 pixels wide and the standard deviation
is chosen to be 15. Note that this heavy smoothed image data is only utilized for computing
UCM ([2]), since the high resolution detail provided by the images can lead to the generation of
an enormous number of superpixels which are not needed for classification purposes. Thus, it is an
important step to blur the images for reducing the number of superpixels. Once the UCM hierarchy
is obtained, the original images are used at every other stage of our framework.

We extract grayscale intensity histograms, RGB values averaged over each superpixel at multiple
levels of the UCM hierarchy, corner density and textons for each superpixel. As explained in
Section 3.2, binary descriptors are extracted from the useful side information in the UCM hierarchy
and encoded into several semantic groups, which can be intuitively seen as urban-like, slum-like,
forest-like, etc. regions.

The intensity histograms are obtained by quantizing the intensities into 64 bins. The texton
features are generated by clustering and pooling into 32-dimensional vectors. The average RGB
values comprise a 3-dimensional vector of average color values. The corner density feature obtained
is a scalar which is multiplied by a factor of 100. The number of semantic binary features, which
integrate the auxiliary attributes like coarse-scale superpixel size and multilevel superpixel con-
tainment density, is equal to the number of different neighborhood categories. All these weighted
features were concatenated together to obtain a long feature vector to describe each superpixel.

To train the GLSVM classifier, we follow the same experimental setting as in [34]. The ground
truth labels are provided to only about 1% (see Table 1) of the superpixels at the finest level, and
this is further reduced for the Milwaukee (0.52%) and Detroit (0.26%) images. The constant value
of τ is set to 2 and the stopping threshold δ of iterative majorization-minimization is set to 0.001.
For all the images, we compute the misclassification error (see Table 1) by taking the weighted
average of each misclassified superpixel where the weight for each one is the ratio of its covering
area to the total image area.

The total time required for the overall processing (including UCM) is about 20 minutes on a
sequential machine.

We compare our proposed framework against the recent GMIL algorithm in [42, 43] which
showed good improvement over standard per-pixel based classification schemes. The accuracy esti-
mates for these three images are summarized in Table 2. Results from our approach are comparable
to GMIL, however, it should be noted that GMIL is computationally expensive and also requires
more ground truth training data compared to our technique. Similar to the analysis in [34], our
semi-supervised method preserves the advantages of (i) generating irregular coherent and hierarchi-
cal segments instead of rectangular blocks, (ii) requires only a fraction of ground-truth superpixels,
(iii) has lower computation cost and better classification map.

We also compare our proposed framework with the scalable machine learning scheme in [34].
Our single-step GLSVM result shows competitive performance when compared with the pipeline-
based classification approach in [34] which contains two separate stages of graph label initialization
and label refinement. Further, unlike the approach in [34], we do not manually threshold the slum
feature and the urban feature. Instead we automatically generate the binary descriptors by using all
suitable side information attributes through a decision tree. This makes our features more generic
and not limited to the slum or urban terrain classes. Further, the robustness and flexibility of our
features overcomes the challenges faced in similar-looking categories that are difficult to distinguish
or several special categories for which we have no prior information. Additionally, unlike the
label initialization which only utilizes a very small proportion of feature data with ground-truth in
model training, our semi-supervised GLSVM approach makes full use of the features of unlabeled
superpixels and is also able to rapidly achieve convergence. All these advantages demonstrate that
our framework is capable of being deployed at global scale and in other applications.
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Figure 6: Results for 4 more images from Rio, Brazil. The left column shows the actual image
and the right column corresponds to our GLSVM classification results. The colors red, gray, green,
blue, and orange correspond to slum, urban, forest, sea, sand, and farm regions respectively.
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Figure 7: Results for images from Madison (top), Milwaukee (middle), and Detroit (bottom). The
left column shows the actual images and the right column corresponds to our GLSVM classification
results. The colors red, gray, dark green, light green, orange, and blue correspond to residential
areas, commercial areas, forests, grass, road, and water.
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Image Labeled Data (%) Misclassification Error (%)

Rio-1 1.21 13.76

Rio-2 1.49 10.83

Rio-3 1.14 11.58

Rio-4 1.38 13.19

Rio-5 1.30 9.27

Madison 1.01 5.68

Milwaukee 0.52 8.28

Detroit 0.26 8.49

Table 1: Quantitative results for the images in Figure 1, Figure 6 and Figure 7.

Image Error Grids or Superpixels (%)
GMIL GLSVM

Madison 6.8 6.87

Milwaukee 17.2 9.16

Detroit 15.39 5.49

Table 2: Results obtained with GMIL and GLSVM for the first Rio image in Figure 6 and the 3
images belonging to Madison, Milwaukee, and Detroit as shown in Figure 7.

5 Conclusions

In this paper, we have developed a novel and scalable machine learning framework for classifying dif-
ferent terrain types in VHR images. Accurate identification is critical for many applications, includ-
ing global scale high-resolution population databases, national security, human health, and energy.
To meet these challenges, we have also derived features which can effectively discriminate between
different categories. This approach combines a superpixel image tessellation representation with
an efficient and non-pipeline semi-supervised classification based on a majorization-minimization
approach. The superpixel representation naturally coheres with local boundary information and is
a major reason for obtaining good classification. Experimental evaluation on three different geo-
graphic settings shows good classification performance. Our future work will focus on extending
this approach to temporal data as well as on integrating the feature extraction, selection and clas-
sification into a single scheme to improve the correlation between superpixels and model training.
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Appendix

Here we provide a detailed mathematical description of our semi-supervised majorization-minimization
(SSMM) learning method outlined in Section 3.3. Before we provide the description, we note that
our method runs on the finer layer of superpixels extracted from the UCM hierarchy. The coarser
layers of UCM were only used to obtain the features for each superpixel of this finer layer. Therefore,
all the superpixels referred to in this description only belong to the finer layer.

Let sL denote the set of superpixels for which the ground truth labels are available, and similarly
let sU denote the set of superpixels which are unlabeled. Then our goal is to obtain the label for
each superpixel in the set sU . Because there are K > 2 classes we run our SSMM algorithm K
times (once for each class) in a one-versus-rest manner. Let k ∈ {1, 2, . . . ,K} index the classes,
and let i index each superpixel. Then the standard linear SVM hinge loss function for kth class at
the ith superpixel, and i ∈ sL is defined as

f
(i)
H (wk, bk) = max

[
0, 1− yik

(
wT
k x

(i) + bk

)]
(4)

where x(i) denotes the feature vector describing the ith superpixel, wk and bk are the weight vector
and bias to be learnt in the algorithmic execution corresponding to the kth class, and yik = 1
indicates that x(i) belongs to the kth class and −1 otherwise. We note in passing that the above
SVM hinge loss is only defined for the superpixels belonging to the set sL.

In order to perform graph Laplacian smoothing akin to [34, 2], we construct a graph connecting
adjacent superpixels in the spatial domain (and not in the feature domain). For every superpixel j

adjacent to the ith superpixel, the edge weight is set as Wij = exp
(
−‖x

(i)−x(j)‖2
2τ2

)
. For every other

superpixel not adjacent to the superpixel i, Wij = 0. Now similar to the work of [2], we define the
penalty for the difference between two neighboring superpixels as

fS (wk, bk) =
∑

i,j∈sL∪sU

Wij

∣∣∣∣∣wT
k x

(i) + bk√
Dii

−
wT
k x

(j) + bk√
Djj

∣∣∣∣∣
2

(5)

where Dii =
∑

j∈sL∪sUWij . Once again, we note in passing that the above penalty function is
defined for both the sets sL and sU of superpixels.

Therefore, in order to combine the capabilities of both the SVM and the graph Laplacian
regularization, we combine the above two terms, fH and fS , with the quadratic term wT

kwk, and
minimize the following objective function:

L (wk, bk) =
1

2
wT
kwk + λH

∑
i∈sL

f
(i)
H (wk, bk) + λSfS (wk, bk) (6)

where λH and λS are positive parameters to control the trade-off among the maximum margin
based regularization term, hinge loss and the graph Laplacian smoothing penalty.

The gradient descent optimization method cannot be directly used because the first term, fH
is not differentiable when yik

(
wT
k x

(i) + bk
)

= 1. While most strategies deflect the optimization of
SVM objective functions to the dual formulation, we instead follow the approach given in [25, 18]
wherein a sharp quadratic surrogate function ([18, 9]) is used to majorize this hinge loss. The
majorized version of (4) can be written as

g
(i)
H (wk, bk, z) =

1

4zik

[
1− yik

(
wT
k x

(i) + bk

)
+ zik

]2
(7)
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where zik is a hidden latent variable that is always non-negative. It has been shown in [9, 25] that
this is, in fact, the best quadratic majorizer of (4). Taking the derivative of (7) w.r.t zik and setting

it to zero to get the minimum, i.e.
∂g

(i)
H (wk,bk,zik)

∂zik
= 0, we obtain

zik =
∣∣∣1− yik (wT

k x
(i) + bk

)∣∣∣ . (8)

Note that (7) has a singularity at zik = 0. So we simply fix this problem by bounding zik from
below by a small positive constant ε such that

zik = max
[
ε,
∣∣∣1− yik (wT

k x
(i) + bk

)∣∣∣] . (9)

Letting z∗ik denote the value of zik when (7) reaches its minimum, the new loss function can be
rewritten as

LM (wk, bk, {z∗ik}) =
1

2
wT
kwk + λH

∑
i∈sL

g
(i)
H (wk, bk, z

∗
ik) + λSfS (wk, bk) . (10)

Now the hinge loss has been converted to a sequence of weighted least-squares problems. Let

w̃k =
(
bk,w

T
k

)T
and x̃(i) =

(
1,
(
x(i)
)T)T

, so that wT
k x

(i) + bk and wT
kwk can be compactly written

as w̃T
k x̃

(i) and (Rw̃k)
T (Rw̃k), where R is a N ×N diagonal matrix with 1 on its diagonal except

the first element being 0. Plugging w̃k and R back into (10) and taking the gradient w.r.t. w̃k, we
obtain

∂LM
∂w̃k

= Rw̃k − λH
∑
i∈sL

1

2z∗ik

(
1− yikw̃T

k x̃
(i) + z∗ik

)T
yikx̃

(i)

+ 2λS
∑

i,j∈sL∪sU

WijC
(ij)w̃k

(11)

where C(ij) =

(
x̃(i)
√
Dii
− x̃(j)√

Djj

)(
x̃(i)
√
Dii
− x̃(j)√

Djj

)T
is a symmetric matrix as can be seen from the

expression in (11) above. After substituting each minimizer z∗ik, (11) can be set to zero to solve for

w̃k at every iteration. Assuming x
(i)
p is the value at the pth dimension of the vector x̃(i), we get a

set of linear equations in the form of Aw̃k = d, where the elements in matrix A and vector d are
defined as

Apq ≡ Rpq + λH
∑
i∈sL

1

2z∗ik
x(i)p x

(i)
q + 2λS

∑
i,j∈sL∪sU

WijC
(ij)
pq . (12)

and

dp ≡
∑
i∈sL

1 + z∗ik
2z∗ik

yikx
(i)
p . (13)

Thus, a sequence of updates can be obtained by alternating between weighted least-squares
solutions for w̃k and all z∗ik, until the `2 norm of the difference of w̃k between two sequential
iterations is less than a small constant δ or the maximum number of iterations is reached. This
whole process of alternating updates bears sharp resemblance to the EM algorithm ([24]). The step
in (7) is similar to the E (expectation) step of the EM algorithm where the missing data (zik in our
case) is filled in by using a surrogate function. And the step in (11) is akin to the M (maximization)
step of the EM algorithm wherein a much simpler surrogate function is optimized. And similar
to EM, our method therefore incorporates all the advantages of the EM algorithm in that it is
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numerically stable, and avoids wildly overshoots or undershoots of the maximum likelihood of the
data along its current direction of search for the optimum parameters ([24]): this is due to the fact
that line search parameters need not be estimated at each step.

After repeating this one-versus-rest method for all K classes, finally the ith superpixel in sU is
assigned to the category which corresponds to the maximum score, i.e.

li = arg max
k=1,2,...,K

{
w̃T
k x̃

(i)
}

(14)
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