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Abstract

We prove a novel result wherein the density function of the gradients of a thrice dif-

ferentiable function S (obtained via a random variable transformation of a uniformly

distributed random variable) defined on a closed, bounded interval Ω ⊂ R is accurately

approximated by the normalized power spectrum of ϕ = exp
(
iS
τ

)
as the free parame-

ter τ → 0. The result is shown using the well known stationary phase approximation

and standard integration techniques and requires proper ordering of limits. Experimen-

tal results provide anecdotal visual evidence corroborating the result.

1. Introduction

The literature is replete with techniques which attempt to estimate a non-observable

probability density function using observed data believed to be sampled from an under-

lying distribution. Density estimation techniques have a long history and run the gamut

of histogramming, Parzen windows [see Parzen (1962)], vector quantization, wavelets

etc. In the present work, we prove a novel mathematical result relating the density

function of the gradients of a function S [viewed as a random variable transformation

Y = S′(X) where X is uniformly distributed] with the normalized power spectrum of

exp
(
iS
τ

)
as the quantity τ → 0.
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We provide a simple Fourier transform-based technique to determine the density of

Y . Our method computes the gradient density directly from the function S, circum-

venting the need to compute its derivative S′. The approach is based on expressing

the function S as the phase of a wave function ϕ, specifically ϕ(x) = exp
(

iS(x)
τ

)
for

small values of τ and then considering the normalized power spectrum—magnitude

squared of the Fourier transform of ϕ [see Bracewell (1999)]. Using the station-

ary phase approximation—a well known technique in asymptotic analysis [please see

Olver (1974a)]—we show that in the limiting case as τ → 0, the power spectrum of

ϕ converges to the density of Y and hence can serve as its density estimator at small,

non-zero values of τ .

Our new mathematical relationship is motivated by the classical-quantum rela-

tion, wherein classical physics is expressed as a limiting case of quantum mechanics

[please refer to Griffiths (2004); Feynman and Hibbs (1965)]. When S is treated as the

Hamilton-Jacobi scalar field, the gradient of S corresponds to the classical momentum

of a particle [see Goldstein et al. (2001)]. In the parlance of quantum mechanics, the

magnitude square of the wave function expressed either in its position or momentum

basis corresponds to its position or momentum density respectively. Since these repre-

sentations (either in the position or momentum basis) are simply the (suitably scaled)

Fourier transforms of each other, the magnitude square of the Fourier transform of the

wave function expressed in its position basis, is its quantum momentum density [see

Griffiths (2004)]. The principal theorem proved in the article [Theorem (2.5)] states

that the classical momentum density (denoted by P ) can be expressed as a limiting

case (as τ → 0) of its corresponding quantum momentum density (denoted by Pτ ), in

complete agreement with the correspondence principle [see Griffiths (2004)].

2. Equivalence of the gradient density and the power spectrum

As stated above, the density function for the gradients of S (denoted by Y ) can

be obtained via a random variable transformation of a uniformly distributed random

variable X using the derivative S′ as the transformation function, namely, Y = S′(X).

We assume that S is thrice differentiable on a closed, bounded interval Ω = [b1, b2]

(with length L = b2−b1) and has a non-vanishing second derivative almost everywhere
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on Ω, i.e.

µ ({x : S′′(x) = 0}) = 0, (2.1)

where µ denotes the Lebesgue measure. The assumption in (2.1) is made in order to

ensure that the density function of Y exists almost everywhere. This is further clarified

in Lemma 2.2 below.

Define the following sets:

B ≡ {x : S′′(x) = 0},

C ≡ {S′(x) : x ∈ B} ∪ {S′(b1), S
′(b2)}, and

Au ≡ {x : S′(x) = u}. (2.2)

Here, S′(b1) = limx→b+1
S′(x) and S′(b2) = limx→b−2

S′(x). The higher derivatives

of S at the end points b1, b2 are also defined along similar lines using one-sided limits.

The main purpose of defining these one-sided limits is to exactly determine the set C

where the density of Y is not defined. Since µ(B) = 0, we also have µ(C) = 0.

Lemma 2.1. [Finiteness Lemma] Au is finite for every u /∈ C.

Lemma 2.2. [Density Lemma] The probability density of Y on R − C exists and is
given by

P (u0) =
1

L

N(u0)∑
k=1

1

|S′′(xk)|
, (2.3)

where the summation is over Au0 (which is the finite set of locations xk ∈ Ω where
S′(xk) = u0 as per Lemma 2.1), with |Au0 | = N(u0).

Since the density is based on the transformation Y = S′(X), the probability den-

sity function in (2.3) assumes the existence of the inverse of the transformation function

S′ [see Billingsley (1995)]. This is made explicit in the following lemma which is re-

quired by the main theorem.

Lemma 2.3. [Interval Lemma] For every u /∈ C, ∃η > 0 and a closed interval Jη =
[u− η, u+ η] such that Jη ∩ C is empty.

The proofs of the lemmas are available in AppendixA.

We now prove the main result which relates the normalized power spectrum of

exp
(

iS(x)
τ

)
(in the limit as τ → 0) with the probability density of the random variable

Y = S′(X) (denoted by P ).
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Define a function F : R× R+ → C as

F (u, τ) ≡ 1√
2πτL

ˆ b2

b1

exp

(
iS(x)

τ

)
exp

(
−iux

τ

)
dx. (2.4)

For a fixed value of τ , define a function Fτ : R → C as

Fτ (u) ≡ F (u, τ). (2.5)

Observe that Fτ is closely related to the Fourier transform of exp
(

iS(x)
τ

)
. The scale

factor 1√
2πτL

is the normalizing term such that the L2 norm of Fτ is one as seen in the

following lemma (whose proof is straightforward and omitted for lack of space).

Lemma 2.4. With Fτ defined as above, Fτ ∈ L2(R) and ∥Fτ∥ = 1.

Define a function Pτ : R− C → R+ as

Pτ (u) ≡ |Fτ (u)|2 = Fτ (u)Fτ (u). (2.6)

By definition, Pτ ≥ 0. Since µ(C) = 0, from Lemma (2.4),
´∞
−∞ Pτ (u)du = 1.

Hence, treating Pτ (u) as a density function, we have the following theorem statement.

Theorem 2.5. If P and Pτ are defined as above, then the

lim
α→0

1

α
lim
τ→0

ˆ u0+α

u0

Pτ (u)du = P (u0), ∀u0 /∈ C. (2.7)

Before embarking on the proof, we would like to emphasize that the ordering of

the limits and the integral as given in the theorem statement is crucial and cannot be

arbitrarily interchanged. To press this point home, we show below that after solving

for Pτ , the limτ→0 Pτ does not exist. Hence, the order of the integral followed by the

limit τ → 0 cannot be interchanged. Furthermore, when we swap the limits between α

and τ , we get

lim
τ→0

lim
α→0

1

α

ˆ u0+α

u0

Pτ (u)du = lim
τ→0

Pτ (u0) (2.8)

which does not exist. Hence, the theorem statement can be valid only for the specified

sequence of limits and the integral.
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2.1. Brief exposition of the result

To understand the result in simpler terms, let us reconsider the definition of the scaled

Fourier transform given in (2.4). The first exponential exp
(
iS
τ

)
is a varying complex

“sinusoid”, whereas the second exponential exp
(−iux

τ

)
is a fixed complex sinusoid

at frequency u
τ . When we multiply these two complex exponentials, at low values

of τ , the two sinusoids are usually not “in sync” and tend to cancel each other out.

However, around the locations where S′(x) = u, the two sinusoids are in perfect

sync (as the combined exponent is stationary) with the approximate duration of this

resonance depending on S′′(x). The value of the integral in (2.4) can be approximated

via the stationary phase approximation [please see Olver (1974a)] as

Fτ (u) ≈
1√
L
exp

(
±i

π

4

)N(u)∑
k=1

exp

{
i

τ
(S(xk)− uxk)

}
1√

S′′(xk)
(2.9)

where N(u) = |Au|. The approximation is increasingly tight as τ → 0. The squared

Fourier transform (Pτ ) gives us the required result 1
L

∑N(u)
k=1

1
|S′′(xk)| except for the

cross phase factors S(xk) − S(xl) − u(xk − xl) obtained as a byproduct of two or

more remote locations xk and xl indexing into the same frequency bin u, i.e, xk ̸= xl,

but S′(xk) = S′(xl) = u. Integrating the squared Fourier transform over a small

frequency range [u, u+α] removes these cross phase factors and we obtain the desired

result.

2.2. Formal proof

We shall now provide the proof by considering different cases.

case (i): Let us consider the case in which no stationary points exist for the given u0,

i.e, there is no x ∈ Ω for which S′(x) = u0. Let t(x) = S(x) − u0x. Then, t′(x) is

of constant sign in [b1, b2] and hence t(x) is strictly monotonic. Defining v = t(x), we

have from (2.4),

Fτ (u0) =
1√

2πτL

ˆ t(b2)

t(b1)

exp

(
iv

τ

)
g(v)dv. (2.10)
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Here, g(v) = 1
t′(x) where x = t−1(v). Integrating by parts, we get

Fτ (u0)
√
2πτL =

τ

i

[
exp

(
it(b2)

τ

)
g (t(b2))− exp

(
it(b1)

τ

)
g (t(b1))

]
−τ

i

ˆ t(b2)

t(b1)

exp

(
iv

τ

)
g′(v)dv. (2.11)

Then

|Fτ (u0)|
√
2πτL ≤ τ

(
1

|S′(b2)− u0|
+

1

|S′(b1)− u0|
+

ˆ t(b2)

t(b1)

|g′(v)| dv

)
.

(2.12)

Hence, |Fτ (u0)| ≤ γ1(u0)
√
τ , where γ1(u0) > 0 is a continuous function of u0. Then

Pτ (u0) ≤ γ2
1(u0)τ . Since S′(x) is continuous and u0 /∈ C, we can find a ρ > 0 such

that for every u ∈ [u0 − ρ, u0 + ρ], no stationary points exist. The value ρ can also be

chosen appropriately such that [u0 − ρ, u0 + ρ] ∩ C = ∅. If |α| < ρ, then

lim
τ→0

ˆ u0+α

u0

Pτ (u)du = 0. (2.13)

Furthermore, from (2.3) we have P (u0) = 0. The result immediately follows.

case (ii): We now consider the case where stationary points exist. Since we are inter-

ested only in the situation as τ → 0, the stationary phase method in Olver (1974a,b) can

be used to obtain a good approximation for Fτ (u0) defined in (2.4) and (2.5). The phase

term in this function, S(x)−u0x
τ , is stationary only when S′(x) = u0. Consider the set

Au0 defined in (2.2). Since it is finite by Lemma (2.1), let Au0 = {x1, x2, . . . , xN(u0)}

with xk < xk+1, ∀k. We break Ω into disjoint intervals such that each interval has

utmost one stationary point. To this end, consider numbers {c1, c2, . . . , cN(u0)+1}

such that b1 < c1 < x1, xk < ck+1 < xk+1 and xN(u0) < cN(u0)+1 < b2. Let

t(x) = S(x)− u0x. Then,

Fτ (u0)
√
2πτL = G1 +G2 +

N(u0)∑
k=1

(Kk + K̃k) (2.14)
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where

G1 =

ˆ c1

b1

exp

(
it(x)

τ

)
dx,

G2 =

ˆ b2

cN(u0)+1

exp

(
it(x)

τ

)
dx,

Kk =

ˆ xk

ck

exp

(
it(x)

τ

)
dx, and

K̃k =

ˆ ck+1

xk

exp

(
it(x)

τ

)
dx. (2.15)

Note that the integrals G1 and G2 do not have any stationary points. From case (i)

above, we get

G1 +G2 = ϵ1(u0, τ) = O(τ) (2.16)

as τ → 0. Furthermore, ϵ1(u0, τ) ≤ γ2(u0)τ , where γ2(u0) > 0 is a continuous

function of u0. In order to evaluate Kk and K̃k, observe that when we expand the

phase term up to second order, t(x) − t(xk) → Q(xk)(x − xk)
2 as x → xk, where

Q(xk) =
S′′(xk)

2 . Furthermore, in the open intervals (ck, xk) and (xk, ck+1), t′(x) =

S′(x)−u0 is continuous and is of constant sign. From Theorem 13.1 in Olver (1974a),

we get

K̃k = Kk =
1

2
exp

(
± iπ

4

)
Γ

(
1

2

)
exp

(
it(xk)

τ

)√
2τ

|S′′(xk)|
+ ϵ2(u0, τ). (2.17)

From Lemma 12.3 in Olver (1974a), it can be verified that ϵ2(u0, τ) = o(
√
τ) as τ → 0

and can also be uniformly bounded by a function of u0 (independent of τ ) for small

values of τ . In (2.17), Γ is the Gamma function and the sign in the phase term depends

on whether S′′(xk) > 0 or S′′(xk) < 0. Plugging the values of these integrals in (2.14)

and noting that Γ
(
1
2

)
=

√
π, we get

Fτ (u0)
√
2πτL =

N(u0)∑
k=1

exp

(
i

τ
[S(xk)− u0xk]

)√
2πτ

|S′′(xk)|
exp

(
± iπ

4

)
+ϵ1(u0, τ) + ϵ2(u0, τ). (2.18)

Hence,

Fτ (u0) =
1√
L

N(u0)∑
k=1

exp
(
i
τ [S(xk)− u0xk]

)√
|S′′(xk)|

exp

(
± iπ

4

)
(2.19)

+ϵ3(u0, τ), (2.20)

7



where ϵ3(u0, τ) =
ϵ1(u0,τ)+ϵ2(u0,τ)√

2πτL
= o(1) as τ → 0.

From the definition of Pτ (u) in (2.6), we have

Pτ (u0) =
1

L

N(u0)∑
k=1

1

|S′′(xk)|

+
1

L

N(u0)∑
k=1

N(u0)∑
l=1;l ̸=k

cos
(
1
τ [S(xk)− S(xl)− u0(xk − xl)] + θ(xk, xl)

)
|S′′(xk)|

1
2 |S′′(xl)|

1
2

+ϵ4(u0, τ), (2.21)

where ϵ4(u0, τ) includes both the magnitude square of ϵ3(u0, τ) and the cross terms

involving the main (first) term in (2.19) and ϵ3(u0, τ). Notice that the main term in

(2.19) can be bounded by a function of u0 independent of τ as∣∣∣∣exp( i

τ
[S(xk)− u0xk]

)∣∣∣∣ = 1, ∀τ (2.22)

and S′′(xk) ̸= 0, ∀k. Since ϵ3(u0, τ) = o(1), we get ϵ4(u0, τ) = o(1) as τ → 0.

Additionally, θ(xk, xl) = 0, π
2 (or) −π

2 and θ(xl, xk) = −θ(xk, xl).

The first term in (2.21) exactly matches the expression for P (u0) as seen from

Lemma (2.2). But, since limτ→0 cos
(
1
τ

)
is not defined, limτ→0 Pτ (u0) does not exist

and hence the cross cosine terms do not vanish when we take the limit. We now show

that integrating Pτ (u) over a small non-zero interval [u0, u0 + α] and then taking the

limit with respect to τ (followed by the limit with respect to α) does yield the density

of Y .

From Lemmas (2.1) and (2.3), we see that for a given a ∈ Au0 , when u is varied

over the interval Jη = [u0 − η, u0 + η], the inverse function (S′)
−1

(u) is well defined

with (S′)
−1

(u) ∈ Na, where Na is some small neighborhood around a. For each

a ∈ Au0 , define the inverse function (S′
a)

−1
(u) : Jη → Na as

(S′
a)

−1
(u) = x iffu = S′(x) and x ∈ Na. (2.23)

Unfortunately, when we move from a fixed value u0 to a variable u defined in the inter-

val Jη, the locations xk and xl which previously were fixed in (2.21) now also vary over

the interval Jη. This makes the notation somewhat cumbersome and unwieldy. Using

the inverse functions defined in (2.23) and defining ak ≡ xk(u0) [and consequently
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al = xl(u0)], we define xk(u) ≡
(
S′
ak

)−1
(u) [and therefore xl(u) =

(
S′
al

)−1
(u)]

for u ∈ Jη. Finally, define the functions pkl(u) and qkl(u) over Jη as

pkl(u) ≡ S (xk(u))− S (xl(u))− u (xk(u)− xl(u)) , and (2.24)

qkl(u) ≡ 1

|S′′ (xk(u))|
1
2 |S′′ (xl(u))|

1
2

. (2.25)

Observe that

p′kl(u) = S′(xk(u))x
′
k(u)− S′(xl(u))x

′
l(u)− (xk(u)− xl(u))− u (x′

k(u)− x′
l(u))

= xl(u)− xk(u) (2.26)

as u = S′(xk(u)) = S′(xl(u)). In particular, if xl(u0) > xk(u0), then xl(u) > xk(u)

and vice versa. Hence, p′kl(u) never vanishes and is also of constant sign over Jη.

Then, it follows that pkl(u) is strictly monotonic and specifically bijective on Jη. We

will use this result in the subsequent steps.

Now, let |α| < η. Since the additional error term ϵ4(u0, τ) in (2.21) converges to

zero as τ → 0 and can also be uniformly bounded by a function of u0 for small values

of τ , we have

lim
τ→0

ˆ u0+α

u0

ϵ4(u0, τ)du = 0. (2.27)

Then, we get

lim
τ→0

ˆ u0+α

u0

Pτ (u)du = I1 + I2 (2.28)

where

I1 ≡ 1

L

N(u0)∑
k=1

ˆ u0+α

u0

1

|S′′ (xk(u))|
du, and (2.29)

I2 ≡ 1

L

N(u0)∑
k=1

N(u0)∑
l=1;l ̸=k

lim
τ→0

I3(k, l). (2.30)

Here, I3(k, l) is given by

I3(k, l) ≡
ˆ u0+α

u0

qkl(u) cos

[
pkl(u)

τ
+ θ (xk(u), xl(u))

]
du. (2.31)

When |α| < η, the sign of S′′ (xk(u)) around xk(u0) and the sign of S′′ (xl(u))

around xl(u0) do not change over the interval [u0,u0 + α]. Since θ(xk(u), xl(u)) de-

pends on the sign of S′′, θ is constant on [u0,u0+α] and equals θkl = θ(xk(u0), xl(u0)).
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Now, expanding the cosine term in (2.31), we get

I3(k, l) = cos(θkl)

ˆ u0+α

u0

qkl(u) cos

(
pkl(u)

τ

)
du

− sin(θkl)

ˆ u0+α

u0

qkl(u) sin

(
pkl(u)

τ

)
du. (2.32)

Since pkl(u) is bijective, we get via a standard change of variables:

I3(k, l) = cos(θkl)I4(k, l)− sin(θkl)I5(k, l) (2.33)

where

I4(k, l) =

ˆ β
(2)
kl

β
(1)
kl

cos
(v
τ

)
gkl(v)dv, and (2.34)

I5(k, l) =

ˆ β
(2)
kl

β
(1)
kl

sin
(v
τ

)
gkl(v)dv. (2.35)

Here, β(1)
kl = pkl(u0), β

(2)
kl = pkl(u0 + α) and gkl(v) =

qkl(p
−1
kl (v))

p′
kl(p

−1
kl (v))

.

Integrating I4(k, l) by parts, we get

I4(k, l) = τ sin

(
β
(2)
kl

τ

)
gkl

(
β
(2)
kl

)
− τ sin

(
β
(1)
kl

τ

)
gkl

(
β
(1)
kl

)
−τ

ˆ β
(2)
kl

β
(1)
kl

sin
(v
τ

)
g′kl(v)dv. (2.36)

Then,

|I4(k, l)| ≤ τ

(
gkl

(
β
(2)
kl

)
+ gkl

(
β
(1)
kl

)
+

ˆ β
(2)
kl

β
(1)
kl

|g′kl(v)| dv

)
. (2.37)

It is worth mentioning that qkl and hence gkl are differentiable over their respective

intervals as the sign of S′′(xk(u))S
′′(xl(u)) does not change over the interval [u0, u0+

α]. We then have |I4(k, l)| ≤ τM where M is some constant independent of τ . Hence,

limτ→0 I4(k, l) = 0, ∀k, l. By a similar argument, limτ→0 I5(k, l) = 0,∀k, l. From

(2.30) and (2.33), we get I2 = 0. Since

lim
α→0

1

α
I1 =

1

L

N(u0)∑
k=1

1

|S′′(xk)|
= P (u0), (2.38)

the main result expressed in Theorem (2.5) follows.
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Below, we show comparisons between our Fourier transform approach and the stan-

dard histogramming technique on some trigonometric and exponential functions sam-

pled on a regular grid between [−0.125, 0.125] at a grid spacing of 1
215 . For the sake

of convenience, we normalized the functions such that its maximum gradient value is

1. Using the sampled values Ŝ, we computed the Fast Fourier transform of exp
(

iŜ
τ

)
at τ = 0.00001, took its magnitude squared and then normalized it to compute the

gradient density. We also computed the discrete derivative of S at the grid locations

and then determined its gradient density by histogramming using around 220 bins. The

plots shown in Figure (1) provide anecdotal empirical evidence supporting the math-

ematical result stated in Theorem (2.5). Notice the near-perfect match between the

gradient densities computed via standard histogramming and the gradient densities de-

termined using our Fourier transform method.

Figure 1: Comparison results. (i) Left: Gradient densities obtained from histogramming, (ii) Right : Gradient
densities obtained from squared Fourier transform of the wave function

3. Discussion

Observe that the integrals

Iτ (u0) =

ˆ u0+α

u0

Pτ (u)du, I(u0) =

ˆ u0+α

u0

P (u)du (3.1)
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give the interval measures of the density functions Pτ and P respectively. Theo-

rem (2.5) states that at small values of τ , both the interval measures are approxi-

mately equal, with the difference between them being o(1). Recall that by definition,

Pτ is the normalized power spectrum [see Bracewell (1999)] of the wave function

ϕ(x) = exp
(

iS(x)
τ

)
. Hence, we conclude that the power spectrum of ϕ(x) can po-

tentially serve as a density estimator for the gradients of S at small values of τ . The

experimental results shown above serve as a demonstration, anecdotally attesting to the

verity of the result.

Our result is directly inspired by the three-way relationships between the classical

momentum ∇S, the quantum momentum operator −i~ ∂
∂x and its spatial frequency

spectrum. Since these relationships hold in higher dimensions as well, we are likewise

interested in extending our density estimation result to higher dimensions. This is a

fruitful avenue for future work.
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AppendixA. Proof of Lemmas

1. Proof of Finiteness Lemma

We prove the result by contradiction. Observe that Au is a subset of the compact set

Ω. If Au is not finite, then by Theorem (2.37) in Rudin (1976), Au has a limit point

x0 ∈ Ω. Consider a sequence {xn}∞n=1, with each xn ∈ Au, converging to x0. Since

S′(xn) = u,∀n, from the continuity of S′ we get S′(x0) = u and hence x0 ∈ Au.

Then

lim
n→∞

S′(x0)− S′(xn)

x0 − xn
= 0 = S′′(x0). (A.1)

Based on the definitions given in (2.2), we have x0 ∈ B and hence u ∈ C resulting in a

contradiction.

2. Proof of Interval Lemma

Observe that B is closed because if x0 is a limit point of B, from the continuity of S′′

we have S′′(x0) = 0 and hence x0 ∈ B. B is also compact as it is a closed subset of

Ω. Since S′ is continuous, C = S′(B) ∪ {S′(b1), S
′(b2)} is also compact and hence

R − C is open. Then for u /∈ C, there exists an open neighborhood Nr(u) for some

r > 0 around u such that Nr(u)∩C = ∅. By defining η = r
2 , the proof is complete.

3. Proof of Density Lemma

Since the random variable X is assumed to have a uniform distribution on Ω, its density

is given by fX(x) = 1
L for every x ∈ Ω. Recall that the random variable Y is obtained

via a random variable transformation from X , using the function S′. Hence, its density

function exists on R−C— where we have banished the image (under S′) of the measure

zero set of points where S′′ vanishes—and is given by (2.3). The reader may refer to

Billingsley (1995) for a detailed explanation.
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