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1 Introduction

Statistical reconstruction has become increasingly popular in emission computed tomography (ECT) due to its

ability to accurately model noise and the imaging physics. In addition, information regarding the object can be

incorporated using Bayesian priors. In emission tomography, a Poisson log-likelihood projection data model is

widely used because the photon noise is independently Poisson at each detector bin. Given the Poisson likelihood,

the maximum likelihood (ML) principle is typically invoked as an optimization criterion for statistical reconstruc-

tion. This leads to a variety of iterative ML algorithms of which the expectation-maximization (EM) algorithm

is perhaps the most well known. When Bayesian priors are considered, a maximum a posteriori (MAP) principle

is frequently used as an optimization criterion. There are many log-priors that are convex and well behaved,

which when added to the convex Poisson log-likelihood form a strictly convex log-posterior objective [1]. There

exist many statistical MAP reconstruction algorithms that can determine the global optimum of such log-posterior

MAP objectives. The main drawback of statistical reconstruction algorithms is that they are slow when used for

clinical studies, especially in comparison to the commonly used filtered backprojection algorithm. This is true

regardless of whether likelihood- or MAP-based approaches are being considered.

The slow convergence of statistical reconstruction algorithms has received much attention. Recently, an ordered

subsets EM (OS-EM) algorithm [2], which uses only a subset of the projection data per sub-iteration, has become

quite popular in ECT. This lead to an order of magnitude speedup over conventional (non-OS) EM. However,

OS-EM is heuristically motivated and lacks a proof of convergence. An alternative algorithm, termed row-action

maximum likelihood algorithm (RAMLA) was proposed in [3]. RAMLA used a strong under relaxation parameter

within a modified version of OS-EM to prove convergence. The relaxation parameter has to satisfy certain proper-

ties to guarantee convergence to the true ML solution. In practice, this relaxation schedule must be determined by

trial and error to ensure good speed. Recently in [4], the authors have extended their approach to the MAP case as

well. The new MAP reconstruction algorithm, termed BSREM, continues to use a relaxation parameter to guide

convergence to the MAP solution. In [5], a modified BSREM algorithm was presented that converged under more

general conditions than BSREM. Another convergent algorithm, termed the OS-SPS algorithm, was also presented

in [5]. Both the algorithms in [5] again used a user-determined relaxation schedule to ensure convergence.

In this technical report, we consider new fast iterative algorithms for optimizing the ML and MAP objectives

for ECT. These new algorithms are called COSEM-ML and COSEM-MAP. (COSEM = Complete data Ordered

Subset Expectation Maximization.) They make use of a notion of a complete data objective as well as ordered

subsets. These algorithms were introduced in [6, 7]. Unlike other recent fast methods, they do not need a

user-determined relaxation schedule. Here, we present convergence proofs for both algorithms.

2 Statement of the Problem

We will first mention some conventions used in this report. We chose plain letters to denote scalar variables and

scalar-valued functions. Bold and calligraphic quantities represent vectors or matrices or vector-valued functions.

The distinction between random and non-random quantities will be made clear in context. We consider the object

to be an N -dim lexicographically ordered vector f with elements fj , j = 1, . . . , N . We model image formation by
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Variable Matrix/vector notation Index notation

Projection data instance g {gi}
Source distribution instance f {fj}
Projection matrix H {Hij}
Continuous-valued complete data C {Cij}

Source distribution iterate f (k,l) {f
(k,l)
j }

Complete data iterate C(k,l) {C
(k,l)
ij }

Complete data closed form solution Csol(f) Csol
ij (f)

Source distribution fixed point f̂ {f̂j}

Complete data fixed point Ĉ {Ĉij}
Auxiliary variable P {Pij}
Sum of complete data B {Bj}
Sum of projection matrix D {Dj}
Lagrange parameter µ µ

Lagrange parameter ν {νi}
Lagrange parameter η {ηij}
Prior parameter β β

Prior weight W {wjj′}
Number of sinogram elements M M

Number of pixels/voxels N N

Table 1: Notation and symbols used

a simple Poisson model g ∼ Poisson(Hf), where H is the system matrix whose element Hij is proportional to the

probability of receiving a count in detector bin i that emanates from pixel j, and g is the integer-valued random

data vector (sinogram) whose elements are gi, i = 1, . . . ,M . Other physical quantities used in the remainder of

this report are summarized in Table 1. We note that in the context of MAP formulations, f is technically a random

vector. The incomplete data Poisson likelihood for emission tomography can be written as

Pr(g|f) =
∏

i

e−
∑

j Hijfj (
∑

j Hijfj)
gi

gi!
. (1)

Here, we assumed that the Poisson mean is ḡ = Hf and ignore an affine term s̄, e.g. ḡ = Hf + s̄, that is often

added to account for scatter or randoms. As discussed in Sec. 8, it is easy to extend the proof to include the affine

term. We will consider quadratic priors (regularizers) of the form

Eprior(f) = − log p(f) = β
∑

j

∑

j′∈N (j)

wjj′(fj − fj′)
2 (2)

where p(f) is the probability density function of f , a.k.a. the prior. Here, β > 0 controls the amount of regulariza-

tion and wjj′ are neighborhood weights. The term N (j) is a local neighborhood about j. The weights wjj′ ∈ W

are positive. For a 2-D problem, a typical neighborhood N (j) comprises the eight nearest neighbors of j.

The emission tomography maximum likelihood (ML) problem is written as the minimization of an objective
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function

f̂ = argmin
f≥0

Einc−ML(f) (3)

where the ML objective is given by

Einc−ML(f) = − log Pr(g|f) =
∑

ij

Hijfj −
∑

i

gi log
∑

j

Hijfj . (4)

In (4), we have ignored terms independent of f . We have used the subscript “inc” to anticipate the use of the

observed or “incomplete” data, as opposed to the “complete” data that are used in EM algorithms [8]. The

maximum a posteriori (MAP) problem may be similarly stated as the minimization

f̂ = argmin
f≥0

Einc−MAP(f) (5)

where the MAP objective is given by

Einc−MAP(f) =
∑

ij

Hijfj −
∑

i

gi log
∑

j

Hijfj + β
∑

jj′

wjj′(fj − fj′)
2 = Einc−ML(f) + Eprior(f) (6)

We have again ignored terms independent of f . Our aim is to derive fast algorithms for the minimizations in (3)

and (5) and to prove their convergence to the ML or MAP solutions. We note that (3) and (5) express the natural

constraint f ≥ 0. However, we shall use a slightly modified constraint f > 0. The reason for this is that the

COSEM-MAP and COSEM-ML algorithms allow an initial positive estimate of fj to approach zero as iterations

proceed, but never to equal zero. The well known EM-ML algorithm for ECT has this same behavior.

3 Complete data objective for the ML Problem

The direct minimization of Einc−ML is difficult. A popular alternative way of carrying out the minimization is by

the well-known ML-EM algorithm for ECT. The conventional derivation [9, 10] is statistical in nature, but there

exists an alternate means for deriving this algorithm via a minimization of a so-called complete data objective

function. This objective function is defined as follows:

Ecmp−ML(C, f , ν) = −
∑

ij

Cij log Hijfj +
∑

ij

Hijfj +
∑

ij

Cij log Cij

+
∑

i

νi(
∑

j

Cij − gi) (7)

where the subscript “cmp” means “complete”. Here, Cij (to be discussed in more detail shortly) is the complete

data, roughly analogous to the complete data as used in statistical derivations of ML-EM for ECT. It turns out

that Cij is real and positive, and that it obeys the constraint
∑

j Cij = gi. In (7), this constraint is imposed via

Lagrange parameters νi. Note that in (7), we do not include extra Lagrange terms to impose positivity on C and

f . This is because the COSEM-ML algorithm naturally imposes this constraint, as will be seen in Sec. 4. We will

later show that minimizing Ecmp−ML via our COSEM-ML algorithm yields the solution to the ML problem. We
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will freely intermix notations Ecmp−ML(C, f , ν) with Ecmp−ML(C, f). The latter notation means that the constraint

implicitly holds and does not appear in the objective in a Lagrange form.

To motivate the complete data objective, in this section, we directly derive (7) using convexity arguments and

change of variables transformations. A brief sketch of the approach follows. Using Jensen’s inequality [11], we

show that the original incomplete data negative log-likelihood lies below a new complete data objective function

and touches it for a specific choice of the new complete data variable. Consequently, the new complete data

objective when minimized solely w.r.t. the complete data variable (and not the object f) attains its minimum at

the original incomplete data negative log-likelihood. This approach of using Jensen’s inequality to derive a new

complete data objective is strikingly similar to the pioneering work of de Pierro [12]. The resulting complete data

objective function is also very similar to new objective functions first derived in [13] (Appendix B) and identical

to the new complete data objective functions derived in [14] and in [15]. In the latter, a constructive derivation

of the new complete data objective is notably absent. Finally, the constrained complete data objective function

derived here is the same as (7).

The Jensen’s inequality-based approach to deriving the complete data constrained objective function is as

follows. We begin with the original negative log-likelihood objective function in (4). In this objective, we selectively

replace terms involving log
∑

j Hijfj .

Einc−ML(f) =
∑

ij

Hijfj −
∑

i

gi log
∑

j

Hijfj . (8)

The terms involving − log
∑

j Hijfj are the ones that will be transformed in order to obtain the new objective.

Since − log(·) is a convex function, we have from Jensen’s inequality [11]

− log(
∑

j

αjxj) ≤ −
∑

j

αj log xj (9)

where αj ≥ 0, ∀j,
∑

j αj = 1 and xj > 0, ∀j. Using (9), we may write

− log
∑

j

Hijfj ≤ −
∑

j

γij log
Hijfj
γij

(10)

where γij ≥ 0, ∀ij and
∑

j γij = 1, ∀j and with equality occurring at γij =
Hijfj∑

j′ Hij′fj′
. With this inequality in

place, we may define a new objective function containing γ as an independent variable as

E(γ, f) =
∑

ij

Hijfj −
∑

ij

giγij log
Hijfj
γij

(11)

with the constraints ∑

j

γij = 1, ∀i and γij ≥ 0, ∀ij. (12)

It is easy to show that the new objective function in (11) when minimized solely w.r.t. γ while satisfying the

constraints in (12) attains its minimum at γ?ij =
Hijfj∑

j′ Hij′fj′
. If the objective function E(γ, f) attained its minimum
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at a point γ̆ 6= γ?ij where γ∗ij =
Hijfj∑

j′ Hij′fj′
, then E(γ̆, f) < E(γ?, f). But this violates the inequality in (10). (The

equality E(γ̆, f) = E(γ?, f) is allowed since γ∗ would still be a point at which E(γ, f) attained its minimum). At

the minimum, we have

E(γ?, f) = Einc−ML(f). (13)

The new variable γ is not quite the complete data variable used in the traditional EM algorithm. However, if we

define Cij
def
= giγij and rewrite the new objective function in (11) using the new variable C, we get

E(C, f) =
∑

ij

Hijfj −
∑

ij

Cij log
giHijfj
Cij

. (14)

The constraints in (12) get modified to

∑

j

Cij = gi, ∀i and Cij ≥ 0, ∀ij. (15)

Using the new constraints, the new objective function in (14) is modified to

E(C, f) =
∑

ij

Hijfj −
∑

ij

Cij logHijfj +
∑

ij

Cij log Cij −
∑

i

gi log gi (16)

where we have used the constraint
∑

j Cij = gi to modify the term
∑

ij Cij log gi to
∑

i gi log gi. Dropping terms

in (16) which are independent of both f and C and using a Lagrange parameter ν to express the constraints
∑

j Cij = gi, ∀i, we get

Ecmp−ML(C, f , ν) = −
∑

ij

Cij log Hijfj +
∑

ij

Hijfj +
∑

ij

Cij log Cij

+
∑

i

νi(
∑

j

Cij − gi) (17)

which is the same as (7). As before, we have introduced a Lagrange parameter ν to express the constraint
∑

j Cij = gi, ∀i. A closely related complete data objective was first presented in [13] (Appendix B) and subsequently

modified into the present form in [14].

We will now see that the new constrained optimization problem is designed within the fixed-point preservation

constraint. Differentiating (7) w.r.t. C and setting the result to zero, we obtain a solution for C in terms of f ,

which we call Csol(f).

Csolij (f) = Hijfje
−νi−1. (18)

Summing this solution for Csol over all j in order to enforce the constraint
∑

j Cij = gi, we get

∑

j

Csol
ij (f) =

∑

j

Hijfje
−νi−1 = gi

⇒ Csol
ij (f) = gi

Hijfj∑
nHinfn

∀i, ∀j. (19)
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Name Objective function Constraints
Optimization
problem

Negative
log-likelihood

Einc−ML(f) =
∑

Hijfj
−
∑

i gi log
∑

j Hijfj
{fj > 0, ∀j} f̂ = argminf Einc−ML(f)

Complete data
negative
log-likelihood

Ecmp−ML(C, f) =
∑

ij Hijfj

+
∑

ij Cij log
Cij

Hijfj

{Cij > 0, fj > 0, ∀ij}∑
j Cij = gi

(Ĉ, f̂) = argmin(C,f)

Ecmp−ML(C, f)

Incomplete data
MAP objective

Einc−MAP(f) =
∑

ij Hijfj
−
∑

i gi log
∑

j Hijfj
+
∑

i gi log gi −
∑

i gi
+β

∑
jj′ wjj′(fj − fj′)

2

{fj > 0, ∀j}
f̂ = argminf

Einc−MAP(f)

Complete data
MAP objective

Ecmp−MAP(C, f) =
∑

ij Hijfj

+
∑

ij Cij log
Cij

Hijfj
−
∑

ij Cij

+β
∑

jj′ wjj′(fj − fj′)
2

{Cij > 0, fj > 0, ∀ij}∑
j Cij = gi

(Ĉ, f̂) = argmin(C,f)

Ecmp−MAP(C, f)

Separable
surrogate
MAP objective

Es−MAP(f ; f
(k,l−1), C(k,l)) =

−
∑

ij C
(k,l)
ij log fj +

∑
ij Hijfj

+β
2

∑
jj′ wjj′(2fj − f

(k,l−1)
j − f

(k,l−1)
j′ )2

+β
2

∑
jj′ wjj′(2fj′ − f

(k,l−1)
j − f

(k,l−1)
j′ )2

{fj > 0, ∀j}
f (k,l) = argminf

Es−MAP(f ; f
(k,l−1), C(k,l))

Table 2: Objective functions, constraints and optimization problems

Inserting the just established solution (19) into (17), we can write the identity

Ecmp−ML(C
sol(f), f) =

∑

ij

Hijfj −
∑

i

gi log
∑

j

Hijfj + terms independent of f = Einc−ML(f) (20)

where Einc−ML(f) is the desired negative log-likelihood objective function in (4) which we sought to minimize in the

first place. Note that in (20), we eliminate ν in the argument of Ecmp−ML because the constraint holds at Csol(f).

Thus, we have shown that minimizing Ecmp−ML(C, f) w.r.t. C yields a solution Csol(f) and that the minimum value

of Ecmp−ML(C, f) thus obtained equals Einc−ML(f). Therefore, joint minimization of Ecmp−ML(C, f) will yield a

fixed point (C∗, f∗), where f∗ = f̂ is the solution sought in (3), i.e. the fixed point of (3) is preserved.

4 COSEM-ML Algorithm

The material in this section is closely related to recent work in [16], which was in turn based on the work in [17].

However, the present work was independently derived, with the connection to [16] realized later [18]. The principal

differences between the work in [16] and the material presented here are (i) we derive a new complete data ordered

subsets objective function which was not the goal of [16], (ii) we provide an extension to the MAP case (in Sec.

5) using a separable surrogates approach while the work in [16] is restricted to ML, (iii) we provided experimental

results (in [6, 7, 19]), whereas the work in [16] presents none and (iv) we provide a mathematical “book-keeping”

scheme that reduces memory requirements and enhances speed so that the COSEM algorithms are about as fast

as OSEM. The objective-function approach in (i) leads to advantages. For instance, in [19], we showed how a
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faster “enhanced” COSEM-ML algorithm could be derived based on Ecmp−ML.

Since fast algorithms in the ordered subsets vein are the main goal of this paper, we rewrite (17) using subsets

of projection angles notation. (This choice of subsets is appropriate for SPECT, and we use it for illustrative

purposes. For PET, a different subset definition might be more appropriate. At any rate, the math that follows

does not depend on choice of subsets.) Assume that the set of projection angles is subdivided into L subsets with

the projection data in each subset denoted as {gi, ∀i ∈ Sl} with l ∈ {1, . . . , L}. Corresponding to this division

of the incomplete data, we also have a division of the continuous-valued complete data C which is denoted by

{Cij , ∀i ∈ Sl, ∀j} with l ∈ {1, . . . , L} as before. The complete data objective function in (17) can be re-written

using this subset notation as

Ecmp−ML(C, f , ν) = −
L∑

l=1

∑

i∈Sl

∑

j

Cij log Hijfj +
∑

ij

Hijfj +
L∑

l=1

∑

i∈Sl

∑

j

Cij log Cij +
∑

i

νi(
∑

j

Cij − gi). (21)

We now embark upon an ordered subsets minimization strategy. As with standard OS-EM and OS-EM-like

approaches, the iterations are divided into subiterations using an outer/inner loop structure. In the outer k

loop, we assume that all subsets have been updated, whereas in the inner l ∈ {1, . . . , L} loop, each subiteration l

corresponds to the update of the complete data {Cij , ∀i ∈ Sl, ∀j}. In each inner loop (k, l) subiteration, we update

{Cij , ∀i ∈ Sl, ∀j} and {fj , ∀j}.

The update equations can be obtained by directly differentiating (21) w.r.t. Cij and fj and setting the result

to zero (while satisfying the constraints on C). Adding iteration superscripts to the resulting relations result in a

grouped coordinate descent algorithm. To perform grouped coordinate descent w.r.t Cij , j = 1, · · · , N i ∈ Sl, we

need the following expression:

∂Ecmp−ML(C, f)

∂Cij
= − log(Hijfj) + ln Cij + 1 + νi (22)

Equating this expression to zero, we get an update for Cij in terms of the Lagrange multipliers:

Cij = exp(−νi − 1)Hijfj (23)

The Lagrange multipliers may be eliminated from these expressions by enforcing the constraint
∑

j Cij = gi.

Enforcing the constraint yields:

exp(−νi − 1) =
gi∑

j Hijfj
(24)

Substituting (24) in (23), we obtain the update:

Cij = gi
Hijfj∑
nHinfn

(25)
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To perform grouped coordinate descent w.r.t f , we need the following expression:

∂Ecmp−ML(C, f)

∂fj
= −

L∑

m=1

∑

i∈Sm

Cij
1

fj
+
∑

i

Hij (26)

Here, we have replaced the subset index l in (21) by m since we will be using l as a sub-iteration index later.

Equating this expression to zero, we get the update:

fj =

∑L
m=1

∑
i∈Sm

Cij∑
iHij

, ∀j (27)

The set of update equations with the appropriate iteration indices are summarized below

C
(k,l)
ij = gi

Hijf
(k,l−1)
j

∑
nHinf

(k,l−1)
n

, ∀i ∈ Sl, ∀j (28)

C
(k,l)
ij = C

(k,l−1)
ij , ∀i /∈ Sl, ∀j (29)

f
(k,l)
j =

∑L
m=1

∑
i∈Sm

C
(k,l)
ij∑

iHij
, ∀j. (30)

We clarify the notation used. The symbol C
(k,l)
ij denotes the update of the continuous-valued complete data variable

at detector bin index i and voxel j at outer iteration k and subset iteration l. The subtlety here is that at iteration

(k, l), we only update the complete data Cij over all detector bins in subset Sl and all voxels j ∈ {1, . . . , N} as

shown in (28). However, the update of the source distribution f
(k,l)
j in (30) requires the summation over all the

complete data C
(k,l)
ij , ∀i ∈ Sm, ∀m ∈ {1, . . . , L}, ∀j ∈ {1, . . . , N}. Due to this, we define the the “copy” operation

C
(k,l)
ij = C

(k,l−1)
ij , ∀i /∈ Sl, ∀j in the complete data update as shown in (29).

This implies that the summation
∑L

m=1

∑
i∈Sm

C
(k,l)
ij can be divided into two disjoint subsets

L∑

m=1

∑

i∈Sm

C
(k,l)
ij =

∑

i∈Sl

C
(k,l)
ij +

∑

i/∈Sl

C
(k,l)
ij

=
∑

i∈Sl

(C
(k,l)
ij − C

(k,l−1)
ij ) +

∑

i∈Sl

C
(k,l−1)
ij +

∑

i/∈Sl

C
(k,l)
ij

=
∑

i∈Sl

(C
(k,l)
ij − C

(k,l−1)
ij ) +

∑

i∈Sl

C
(k,l−1)
ij +

∑

i/∈Sl

C
(k,l−1)
ij (31)

since C
(k,l)
ij = C

(k,l−1)
ij , ∀i /∈ Sl, ∀j. Combining the two terms

∑
i∈Sl

C
(k,l−1)
ij and

∑
i/∈Sl

C
(k,l−1)
ij together into one
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term
∑

i C
(k,l−1)
ij , we get

B
(k,l)
j

def
=

L∑

m=1

∑

i∈Sm

C
(k,l)
ij =

∑

i∈Sl

(C
(k,l)
ij − C

(k,l−1)
ij ) +

∑

i

C
(k,l−1)
ij

=
∑

i∈Sl

(C
(k,l)
ij − C

(k,l−1)
ij ) +B

(k,l−1)
j (32)

where B
(k,l−1)
j

def
=

∑
i C

(k,l−1)
ij and B

(k,l)
j

def
=

∑
i C

(k,l)
ij . The definition and implementation of B

(k,l)
j is quite important

in our overall COSEM scheme. From (32), we may write

B
(k,l)
j =

∑

i∈Sl

(C
(k,l)
ij − C

(k,l−1)
ij ) +B

(k,l−1)
j (33)

with the understanding that B
(k+1,0)
j = B

(k,L)
j . After all the complete data are updated over all L subsets, we

end up at C
(k,L)
ij with the corresponding B

(k,L)
j =

∑
i C

(k,L)
ij . After all L subsets are updated at iteration k, the

k counter is incremented and we begin at (k + 1, 0). We define C
(k+1,0)
ij

def
= C

(k,L)
ij and B

(k+1,0)
j

def
= B

(k,L)
j . The

iteration (k = 0, l = 0) is a special case. At (k = 0, l = 0), all C are initialized to C
(0,0)
ij = 0 and therefore B

(0,0)
j = 0.

Similarly, the f update is carried over from k to k+1. The update f (k+1,0) def
= f (k,L). With this change in notation,

the update equations in (28) and (30) are re-written as

C
(k,l)
ij = gi

Hijf
(k,l−1)
j

∑
nHinf

(k,l−1)
n

, ∀i ∈ Sl, ∀j, (34)

C
(k,l)
ij = C

(k,l−1)
ij , ∀i /∈ Sl, ∀j (35)

B
(k,l)
j =

∑

i∈Sl

(C
(k,l)
ij − C

(k,l−1)
ij ) +B

(k,l−1)
j , ∀j (36)

f
(k,l)
j =

B
(k,l)
j

Dj
, ∀j, (37)

where Dj
def
=

∑
iHij is the voxel sensitivity at voxel j. Note that (37) imposes positivity on fj .

The double loop algorithm is summarized below.

• The COSEM-ML Algorithm

• Initialize {f
(0,0)
j = f init

j , ∀j ∈ {1, . . . , N}} where f init
j ∈ (0,∞), ∀j

• Initialize {C
(0,0)
ij , ∀i ∈ Sm, ∀m ∈ {1, . . . , L} and ∀j ∈ {1, . . . , N}} by C

(0,0)
ij = gi

Hijf
(0,0)
j∑

n Hinf
(0,0)
n

• B
(0,0)
j =

∑L
m=1

∑
i∈Sm

C
(0,0)
ij , ∀j

• Begin k-loop [k ∈ {0, 1, . . .}]

– C
(k,0)
ij = C

(k−1,L)
ij , ∀ij and k > 0.
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– B
(k,0)
j = B

(k−1,L)
j , ∀j and k > 0.

– f
(k,0)
j = f

(k−1,L)
j , ∀j and k > 0.

– Begin l-loop [l ∈ {1, . . . , L}]

∗ C
(k,l)
ij = gi

Hijf
(k,l−1)
j∑

n Hinf
(k,l−1)
n

, ∀i ∈ Sl, ∀j .

∗ C
(k,l)
ij = C

(k,l−1)
ij , ∀i /∈ Sl, ∀j

∗ B
(k,l)
j =

∑
i∈Sl

(C
(k,l)
ij − C

(k,l−1)
ij ) +B

(k,l−1)
j , ∀j

∗ f
(k,l)
j =

B
(k,l)
j

Dj
, ∀j ∈ {1, . . . , N}.

– End l-loop

• End k-loop

We note that for zero bins gi = 0, the corresponding Cij will equal zero and would remain zero throughout its

update. Therefore, we eliminate these Cij ’s from the problem. Also, if one knows a priori that some fj are zero,

then these are fixed to zero and eliminated from the problem. The Cij corresponding to these fj = 0 will also be

zero and are thus eliminated from the problem.

5 COSEM-MAP Algorithm

Consider the complete data MAP objective function, obtained by adding the prior to (21) and using the subset

scheme

Ecmp−MAP(C, f , ν) =
∑

ij

Hijfj+
L∑

l=1

∑

i∈Sl

N∑

j=1

Cij log
Cij

Hijfj
−

L∑

l=1

∑

i∈Sl

N∑

j=1

Cij+β
∑

jj′

wjj′(fj−fj′)
2+

∑

i

νi(
∑

j

Cij−gi)

(38)

An extra term (−
∑L

l=1

∑
i∈Sl

∑N
j=1 Cij) has also been added which does not change the minima of the new

complete data MAP objective function provided the constraints
∑N

j=1 Cij = gi, ∀i and Cij > 0, ∀ij are satisfied.

Thus
∑L

l=1

∑
i∈Sl

∑N
j=1 Cij =

∑L
l=1

∑
i∈Sl

gi, which is just an additive constant in (38). This minor modification

simplifies the convergence proof in Sec. 6. Note that in (38), we do not include extra Lagrange terms to impose

positivity on C and f . This is because the COSEM-MAP algorithm naturally imposes this constraint, as will be

seen in Sec. 5. We now proceed to derive a constrained grouped coordinate descent algorithm for (38). In Sec.

5.1, we consider the C update and in Sec. 5.2 the f update.

5.1 Complete data C update for the MAP case

The objective function w.r.t. C alone can be written from (38). We write down only the terms that are dependent

on C to get (in ordered subsets notation)

Ecmp−MAP(C) = −
L∑

l=1

∑

i∈Sl

∑

j

Cij log Hijfj +
L∑

l=1

∑

i∈Sl

∑

j

Cij log Cij −
L∑

l=1

∑

i∈Sl

N∑

j=1

Cij +
∑

i

νi(
∑

j

Cij − gi) (39)
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Except for the (constant) additional term
∑L

l=1

∑
i∈Sl

∑N
j=1 Cij , this objective function, when examining only the

terms dependent on C alone, is identical to the earlier COSEM-ML case (21). Consequently, the update equation

for C remains (for subset Sl) at (k, l)

C
(k,l)
ij = gi

Hijf
(k,l−1)
j

∑
nHinf

(k,l−1)
n

, ∀i ∈ Sl, ∀j. (40)

C
(k,l)
ij = C

(k,l−1)
ij , ∀i /∈ Sl, ∀j. (41)

5.2 Object f update for the MAP case

The prior in (6)
(
β
∑

jj′ wjj′(fj − fj′)
2
)
introduces a coupling between different source voxels fj . Since we seek a

closed-form parallel-update of all voxels, this coupling presents a problem; it is difficult to derive a parallel update

for all voxels while respecting the positivity constraint and still guaranteeing convergence. While a positivity-

preserving sequential update or a parallel, positivity-preserving gradient descent-based update are possible options,

we instead use the method of separable surrogates. For a general convex prior Ecnvx−prior(f), the separable

surrogates approach decouples the prior and allows for separate, parallel 1-D optimization of all source voxels fj .

Since this optimization is 1-D, imposition of the positivity constraint is trivial. For the quadratic prior Eprior(f)

considered in (2), the 1-D optimization becomes a closed form expression that implicitly preserves positivity.

Assume that we are step (k, l) where k is the outer loop iteration index and l the inner subsets loop iteration

index. (This notation is identical to the notation used in the earlier COSEM-ML algorithm.) Separable surrogate

priors depend on the current estimate f (k,l−1), and are also separable in f . Therefore, they have the general form

Es−prior(fj ; f
(k,l−1)) where “s” stands for surrogate. In order to maintain convergence, we need [20, 21, 22, 23] to

satisfy the following conditions:

Ecnvx−prior(f) ≤
∑

j

Es−prior(fj ; f
(k,l−1)) (42)

and

Ecnvx−prior(f
(k,l−1)) =

∑

j

Es−prior(f
(k,l−1)
j ; f (k,l−1)) (43)

Instead of descending on the original complete data MAP objective function, we descend on the combination

of the complete data negative log-likelihood and surrogate prior to get an update f (k,l)

f (k,l) = argmin
f>0

−
L∑

m=1

∑

i∈Sm

N∑

j=1

C
(k,l)
ij log Hijfj +

∑

ij

Hijfj +
∑

j

Es−prior(fj ; f
(k,l−1)) (44)

with Es−prior(fj ; f
(k,l−1)) yet to be specified. In (44), we have included only terms that are dependent on f . An

important and subtle point is that the summation over all subsets is denoted as
∑L

m=1

∑
i∈Sm

and not
∑L

l=1

∑
i∈Sl

.

At subiteration l, we have C(k,l) and the objective function w.r.t. f requires a summation over all subsets which

is denoted by
∑L

m=1

∑
i∈Sm

. Please note that the surrogate prior is constructed anew at each step (k, l) which is

why the update C
(k,l)
ij appears in (44). Since the surrogate prior objective is always constructed anew at each step

to be above the original prior objective, a descent step in f taken w.r.t. the separable surrogate objective in (44)
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is guaranteed to be a descent step in f w.r.t. the original complete data MAP objective.

We now specialize Ecnvx−prior(f) to the quadratic prior of (2) repeated here:

Eprior(f) = β
∑

jj′

wjj′(fj − fj′)
2. (45)

We construct the surrogate to have the properties in (42) and (43). At step (k, l), assuming that we have f (k,l−1),

we observe that [20, 21]

(fj − fj′)
2 ≤

1

2

[
(2fj − f

(k,l−1)
j − f

(k,l−1)
j′ )2 + (2fj′ − f

(k,l−1)
j − f

(k,l−1)
j′ )2

]
(46)

which leads to the following separable surrogate objective function w.r.t. f at time step (k, l)

Es−MAP(f ; f
(k,l−1), C(k,l)) = −

L∑

m=1

∑

i∈Sm

N∑

j=1

C
(k,l)
ij log fj +

∑

ij

Hijfj

+
β

2

∑

jj′

wjj′

[
(2fj − f

(k,l−1)
j − f

(k,l−1)
j′ )2 + (2fj′ − f

(k,l−1)
j − f

(k,l−1)
j′ )2

]
. (47)

Having specified the separable surrogate objective function w.r.t. f which depends on both C (k,l) and f (k,l−1), we

now derive the update for f (k,l). The objective function in (47) is separable w.r.t. fj and the objective function

w.r.t. each fj can be written as:

E
(k,l)
s−MAP(fj ; f

(k,l−1), C(k,l)) = −
∑

i

C
(k,l)
ij log fj +

∑

i

Hijfj +
β

2

∑

j′

vjj′(2fj − f
(k,l−1)
j − f

(k,l−1)
j′ )2 (48)

where vjj′
def
= (wjj′+wj′j). Since this objective function is a simple, convex 1-D objective w.r.t. fj , we can trivially

find that f
(k,l)
j which minimizes it. Setting the derivative of E

(k,l)
s−MAP(fj ; f

(k,l−1), C(k,l)) w.r.t. fj to zero, we get

−
B

(k,l)
j

f
(k,l)
j

+Dj + 2β
∑

j′

vjj′(2f
(k,l)
j − f

(k,l−1)
j − f

(k,l−1)
j′ ) = 0 (49)

where B
(k,l)
j =

∑
i C

(k,l)
ij =

∑L
m=1

∑
i∈Sm

C
(k,l)
ij as before, with Dj =

∑
iHij being the sensitivity as before. We

now solve for f
(k,l)
j in (49) to get

f
(k,l)
j =

2β
∑

j′ vjj′(f
(k,l−1)
j + f

(k,l−1)
j′ )−Dj +

√
[2β

∑
j′ vjj′(f

(k,l−1)
j + f

(k,l−1)
j′ )−Dj ]2 + 16βB

(k,l)
j

∑
j′ vjj′

8β
∑

j′ vjj′
. (50)

Note that this update f
(k,l)
j is guaranteed to be positive since we take only the positive root when solving the

quadratic equation. The negative root leads to a spurious negative solution.

• The COSEM-MAP Algorithm
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• Initialize {f
(0,0)
j = f init

j , ∀j ∈ {1, . . . , N}} where f init
j ∈ (0,∞), ∀j

• Initialize {C
(0,0)
ij , ∀i ∈ Sl, ∀l ∈ {1, . . . , L} and ∀j ∈ {1, . . . , N}} by C

(0,0)
ij = gi

Hijf
(0,0)
j∑

n Hinf
(0,0)
n

• B
(0,0)
j =

∑L
m=1

∑
i∈Sm

C
(0,0)
ij , ∀j

• Begin k-loop [k ∈ {0, 1, . . .}]

– C
(k,0)
ij = C

(k−1,L)
ij , ∀ij and k > 0.

– B
(k,0)
j = B

(k−1,L)
j , ∀j and k > 0.

– f
(k,0)
j = f

(k−1,L)
j , ∀j and k > 0.

– Begin l-loop [l ∈ {1, . . . , L}]

∗ C
(k,l)
ij = gi

Hijf
(k,l−1)
j∑

n Hinf
(k,l−1)
n

, ∀i ∈ Sl, ∀j .

∗ C
(k,l)
ij = C

(k,l−1)
ij , ∀i /∈ Sl, ∀j

∗ B
(k,l)
j =

∑
i∈Sl

(C
(k,l)
ij − C

(k,l−1)
ij ) +B

(k,l−1)
j , ∀j

∗ f
(k,l)
j =

2β
∑

j′ vjj′(f
(k,l−1)
j +f

(k,l−1)

j′
)−Dj+

√
[2β

∑
j′ vjj′ (f

(k,l−1)
j +f

(k,l−1)

j′
)−Dj ]2+16βB

(k,l)
j

∑
j′ vjj′

8β
∑

j′ vjj′
, ∀j ∈ {1, . . . , N}

– End l-loop

• End k-loop

As before, the zero bins gi = 0 and the zero voxels, i.e. the voxels fj known to be zero a priori, are eliminated

from the problem. The corresponding Cij and Bj may also be removed.

6 Convergence Proof for COSEM-MAP

In this section, we prove that the minimization of Ecmp−MAP(C, f , ν) by the COSEM-MAP algorithm yields a

solution (C∗, f∗), and that f∗ = f̂ is the unique solution to the MAP problem as stated in (5).

6.1 Strict convexity of the Einc−MAP objective

According to ([1], Lemma 1) and ([24], Theorem 1), our objective Einc−MAP(f) is strictly convex over the set D

under the condition that gTH1 6= 0, where 1 is a vector of 1′s. The definition of the set D is the set of f ≥ 0 such

that [Hf ]i > 0 or gi = 0 ∀i. Since f > 0 in our case and Hij ≥ 0, we are in a subset of D. The strict convexity

of Einc−MAP will always apply in practice. This is because [5] the condition gTH1 6= 0 is equivalent to HTg 6= 0,

i.e. the backprojection of the data is a non-zero image. One could invent an H such that HTg = 0 for non-zero

g, but this H would be highly unrealistic. The strict convexity guarantees that f̂ in (5) is unique.
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6.2 “Touching” property of Ecmp−MAP and Einc−MAP

In Sec. 3, we showed (20) that the incomplete and the complete versions of the ML objective “touch” at C = C sol(f).

Ecmp−ML(C
sol(f), f) = Einc−ML(f)

where as in (19)

Csol
ij (f) = gi

Hijfj∑
nHinfn

∀i, ∀j.

If we add a prior to Ecmp−ML and to Einc−ML, then it is easy to show (by the same steps used in deriving (20))

that this “touching” property holds for the MAP versions:

Ecmp−MAP(C
sol(f), f) = Einc−MAP(f) (51)

6.3 Ecmp−MAP is bounded from below by Einc−MAP

In this section, we demonstrate an interesting property on the boundedness of Ecmp−MAP by Einc−MAP, but this

result is not needed in our proof.

We begin by re-writing the incomplete data penalized negative log-likelihood objective function in (6) using

the ordered subset notation and adding an extra entropy term
∑

i gi log gi −
∑

i gi (which is independent of f) for

reasons that will shortly become obvious:

Einc−MAP(f) =
∑

ij

Hijfj −
L∑

m=1

∑

i∈Sm

gi log
N∑

j=1

Hijfj +
∑

i

gi log gi −
∑

i

gi + β
∑

jj′

wjj′(fj − fj′)
2 (52)

The additional entropy term does not affect the fixed points.

First, we show that the complete data MAP objective function in (38) is bounded from below by Einc−MAP(f).

Using the fact that x log x
y − x+ y ≥ 0 for x, y > 0, we get

Ecmp−MAP(C, f)− Einc−MAP(f) =
∑

ij

Cij log
Cij

gi
Hijfj∑
n Hinfn

−
∑

ij

Cij +
∑

ij

gi
Hijfj∑
nHinfn

≥ 0 (53)

with equality occurring only at Cij = gi
Hijfj∑
n Hinfn

, ∀ij. We have used the constraint
∑

j Cij = gi, ∀i. The extra

entropy term
∑

i gi log gi is useful here. Without the extra entropy term, we could not have easily obtained (53).

Therefore, we have that Ecmp−MAP(C, f) ≥ Einc−MAP(f). Consequently, the complete data MAP objective function

in (38) is bounded from below by the original incomplete data MAP objective function in (6).

We can also derive this boundedness condition in another way. From Sec. 3, we observe

Csol(f) = argmin
C

Ecmp−MAP(C, f , ν) (54)

Then

Ecmp−MAP(C, f) ≥ min
C

Ecmp−MAP(C, f) = Ecmp−MAP(C
sol(f), f) = Ecmp−MAP(f) (55)
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where the first equality follows from (54) and the second from (51).

6.4 Convexity of the Ecmp−MAP(C, f) objective

We will show that the complete data MAP objective function (38) is convex in both C and f . In fact, we

will show that Ecmp−MAP(C, f) is convex, whether or not the constraints on C hold. Since the prior is convex

w.r.t. f , we need only show that the complete data negative log-likelihood is convex w.r.t. (C, f). If each term

Cij log
Cij

Hijfj
− Cij +Hijfj is convex w.r.t. both Cij and Hijfj , then the complete data likelihood is convex w.r.t.

(C, f) since it is a sum of such terms. Note that in order to show convexity w.r.t. Cij and fj , it is enough to show

convexity w.r.t. Cij and Hijfj . This is because Hij is just a constant (independent of fj) and hence, convexity

w.r.t. both Cij and Hijfj implies convexity w.r.t. both Cij and fj . We need to show that

φ(x, y)
def
= x log

x

y
− x+ y (56)

is convex w.r.t. x and y for x, y > 0. (Here, we associate x with Cij and y with Hijfj .) For this, we need

φ[αx+ (1− α)z, αy + (1− α)w]− αφ(x, y)− (1− α)φ(z, w) ≤ 0 (57)

for α ∈ [0, 1] and x, y, z, w > 0. Substituting (56) in (57), we get

[αx+ (1− α)z] log
αx+ (1− α)z

αy + (1− α)w
− αx− (1− α)z + αy + (1− α)w − α[x log

x

y
− x+ y]

−(1− α)[z log
z

w
− z + w] = αx log [

αx+ (1− α)z

αy + (1− α)w
·
y

x
] + (1− α)z log [

αx+ (1− α)z

αy + (1− α)w
·
w

z
]

≤ αx

[
αx+ (1− α)z

αy + (1− α)w
·
y

x
− 1

]
+ (1− α)z

[
αx+ (1− α)z

αy + (1− α)w
·
w

z
− 1

]

≤ 0 (58)

where we have used the fact that log x ≤ x− 1. A similar result on the convexity of the KL-divergence involving

probabilities is given in [11]. We have shown that the complete data negative log- likelihood and hence the complete

data MAP objective function is convex w.r.t. both C and f .

6.5 The change in Ecmp−MAP at each COSEM-MAP sub-iteration

We define ∆E
(k,l)
cmp−MAP

def
= Ecmp−MAP(C

(k,l−1), f (k,l−1)) − Ecmp−MAP(C
(k,l), f (k,l)) which is essentially the change

in the objective (38) from step (k, l − 1) to step (k, l). In this section, we first show that the C (k,l) and f (k,l)

COSEM-MAP updates are descent steps in the complete data MAP objective function (38), i.e. ∆E
(k,l)
cmp−MAP ≥ 0,

and that useful conditions obtain when ∆E
(k,l)
cmp−MAP = 0.
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Using (38), we obtain

∆E
(k,l)
cmp−MAP =

L∑

m=1

∑

i∈Sm

N∑

j=1

[
C

(k,l−1)
ij log

C
(k,l−1)
ij

Hijf
(k,l−1)
j

− C
(k,l)
ij log

C
(k,l)
ij

Hijf
(k,l)
j

]
+
∑

ij

Hij(f
(k,l−1)
j − f

(k,l)
j )

+β
∑

jj′

wjj′

[
(f

(k,l−1)
j − f

(k,l−1)
j′ )2 − (f

(k,l)
j − f

(k,l)
j′ )2

]
. (59)

The basic inequality (46) that is used in the surrogate transformation of the prior is repeated here:

(fj − fj′)
2 ≤

1

2

[
(2fj − f

(k,l−1)
j − f

(k,l−1)
j′ )2 + (2fj′ − f

(k,l−1)
j − f

(k,l−1)
j′ )2

]
. (60)

From (60), we get that

−(f
(k,l)
j − f

(k,l)
j′ )2 ≥ −

1

2
[(2f

(k,l)
j − f

(k,l−1)
j − f

(k,l−1)
j′ )2 + (2f

(k,l)
j′ − f

(k,l−1)
j − f

(k,l−1)
j′ )2]. (61)

Using (61),(59), we may write

∆E
(k,l)
cmp−MAP ≥

L∑

m=1

∑

i∈Sm

N∑

j=1

[
C

(k,l−1)
ij log

C
(k,l−1)
ij

Hijf
(k,l−1)
j

− C
(k,l)
ij log

C
(k,l)
ij

Hijf
(k,l)
j

]
+
∑

ij

Hij(f
(k,l−1)
j − f

(k,l)
j )

+
β

2

∑

jj′

wjj′

[
(2f

(k,l−1)
j − f

(k,l−1)
j − f

(k,l−1)
j′ )2 − (2f

(k,l)
j − f

(k,l−1)
j − f

(k,l−1)
j′ )2

]

+
β

2

∑

jj′

wjj′

[
(2f

(k,l−1)
j′ − f

(k,l−1)
j − f

(k,l−1)
j′ )2 − (2f

(k,l)
j′ − f

(k,l−1)
j − f

(k,l−1)
j′ )2

]
. (62)

Note that at step (k, l), only the values of {C
(k,l)
ij , ∀i ∈ Sl, ∀j} are changed with all other values of C held fixed.

Using this fact, we get

∆E
(k,l)
cmp−MAP ≥

∑

i∈Sl

N∑

j=1

[
C

(k,l−1)
ij log

C
(k,l−1)
ij

C
(k,l)
ij

+ (C
(k,l−1)
ij − C

(k,l)
ij ) log

C
(k,l)
ij

Hijf
(k,l−1)
j

]

+
L∑

m=1

∑

i∈Sm

N∑

j=1

[
C

(k,l)
ij log

f
(k,l)
j

f
(k,l−1)
j

+Hij(f
(k,l−1)
j − f

(k,l)
j )

]

+
β

2

∑

jj′

wjj′

[
(2f

(k,l−1)
j − f

(k,l−1)
j − f

(k,l−1)
j′ )2 − (2f

(k,l)
j − f

(k,l−1)
j − f

(k,l−1)
j′ )2

]

+
β

2

∑

jj′

wjj′

[
(2f

(k,l−1)
j′ − f

(k,l−1)
j − f

(k,l−1)
j′ )2 − (2f

(k,l)
j′ − f

(k,l−1)
j − f

(k,l−1)
j′ )2

]
. (63)
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From the update equation (40) for C(k,l) which is C
(k,l)
ij = gi

Hijf
(k,l−1)
j∑

n Hinf
(k,l−1)
n

, ∀i ∈ Sl, ∀j, we get

∑

j

(C
(k,l−1)
ij − C

(k,l)
ij ) log

C
(k,l)
ij

Hijf
(k,l−1)
j

=
∑

j

(C
(k,l−1)
ij − C

(k,l)
ij ) log

gi∑
nHinf

(k,l−1)
n

. (64)

Using (64), we may write

∆E
(k,l)
cmp−MAP ≥

∑
i∈Sl

N∑

j=1

[
C

(k,l−1)
ij log

C
(k,l−1)
ij

C
(k,l)
ij

+ (C
(k,l−1)
ij − C

(k,l)
ij ) log

gi∑
nHinf

(k,l−1)
n

]

+

L∑

m=1

∑

i∈Sm

N∑

j=1

[
C

(k,l)
ij log

f
(k,l)
j

f
(k,l−1)
j

+Hij(f
(k,l−1)
j − f

(k,l)
j )

]

+
β

2

∑

jj′

wjj′

[
(2f

(k,l−1)
j − f

(k,l−1)
j − f

(k,l−1)
j′ )2 − (2f

(k,l)
j − f

(k,l−1)
j − f

(k,l−1)
j′ )2

]

+
β

2

∑

jj′

wjj′

[
(2f

(k,l−1)
j′ − f

(k,l−1)
j − f

(k,l−1)
j′ )2 − (2f

(k,l)
j′ − f

(k,l−1)
j − f

(k,l−1)
j′ )2

]
. (65)

Also, from the fact that the constraint
∑

j Cij = gi is always satisfied, we have the identity

∑

i∈Sl

N∑

j=1

(C
(k,l−1)
ij − C

(k,l)
ij ) log

gi∑
nHinf

(k,l−1)
n

= 0. (66)

Using (65) and (66), we may write

∆E
(k,l)
cmp−MAP ≥

∑

i∈Sl

N∑

j=1

C
(k,l−1)
ij log

C
(k,l−1)
ij

C
(k,l)
ij

+
L∑

m=1

∑

i∈Sm

N∑

j=1

[
C

(k,l)
ij log

f
(k,l)
j

f
(k,l−1)
j

+Hij(f
(k,l−1)
j − f

(k,l)
j )

]

+
β

2

∑

jj′

wjj′

[
(2f

(k,l−1)
j − f

(k,l−1)
j − f

(k,l−1)
j′ )2 − (2f

(k,l)
j − f

(k,l−1)
j − f

(k,l−1)
j′ )2

]

+
β

2

∑

jj′

wjj′

[
(2f

(k,l−1)
j′ − f

(k,l−1)
j − f

(k,l−1)
j′ )2 − (2f

(k,l)
j′ − f

(k,l−1)
j − f

(k,l−1)
j′ )2

]
. (67)

We will now show that the first term on the right of (67) can be expressed as a non-negative I-divergence of the

form x log x
y − x+ y. Since

∑
j C

(k,l−1)
ij =

∑
j C

(k,l)
ij = gi, we may write

N∑

j=1

C
(k,l−1)
ij log

C
(k,l−1)
ij

C
(k,l)
ij

=
N∑

j=1

[C
(k,l−1)
ij log

C
(k,l−1)
ij

C
(k,l)
ij

− C
(k,l−1)
ij + C

(k.l)
ij ] ≥ 0 (68)

with equality occurring only if C
(k,l)
ij = C

(k,l−1)
ij , ∀i ∈ Sl, ∀j.

The update equation (50) for f in COSEM-MAP is chosen such that the objective function (47) is minimized.
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For convenience, we repeat (47) here:

Es−MAP(f ; f
(k,l−1), C(k,l)) = −

L∑

m=1

∑

i∈Sm

N∑

j=1

C
(k,l)
ij log fj +

∑

ij

Hijfj

+
β

2

∑

jj′

wjj′

[
(2fj − f

(k,l−1)
j − f

(k,l−1)
j′ )2 + (2fj′ − f

(k,l−1)
j − f

(k,l−1)
j′ )2

]
. (69)

Apart from the terms forming the I-divergence, the remaining terms on the right of (67) can be seen to be

Es−MAP(f
(k,l−1); f (k,l−1), C(k,l))− Es−MAP(f

(k,l); f (k,l−1), C(k,l))

=

L∑

m=1

∑

i∈Sm

N∑

j=1

[
C

(k,l)
ij log

f
(k,l)
j

f
(k,l−1)
j

+Hij(f
(k,l−1)
j − f

(k,l)
j )

]

+
β

2

∑

jj′

wjj′

[
(2f

(k,l−1)
j − f

(k,l−1)
j − f

(k,l−1)
j′ )2 − (2f

(k,l)
j − f

(k,l−1)
j − f

(k,l−1)
j′ )2

]

+
β

2

∑

jj′

wjj′

[
(2f

(k,l−1)
j′ − f

(k,l−1)
j − f

(k,l−1)
j′ )2 − (2f

(k,l)
j′ − f

(k,l−1)
j − f

(k,l−1)
j′ )2

]
≥ 0 (70)

with equality occurring if f (k,l) = f (k,l−1). This is due to the fact that the update equation in (50) is guaranteed

to minimize Es−MAP(f ; f
(k,l−1), C(k,l)). Consequently, the change in the complete data MAP objective function at

step (k, l) is

∆E
(k,l)
cmp−MAP ≥

∑

i∈Sl

N∑

j=1

[C
(k,l−1)
ij log

C
(k,l−1)
ij

C
(k,l)
ij

− C
(k,l−1)
ij + C

(k.l)
ij ]

+Es−MAP(f
(k,l−1); f (k,l−1), C(k,l))− Es−MAP(f

(k,l); f (k,l−1), C(k,l))

≥ 0 (71)

with equality occurring if and only if C
(k,l)
ij = C

(k,l−1)
ij , ∀i ∈ Sl, ∀j and f

(k,l)
j = f

(k,l−1)
j , ∀j.

The change in the complete data objective function between steps (k − 1, L) and (k, L) is

∆E
(k)
cmp−MAP

def
= Ecmp−MAP(C

(k−1,L), f (k−1,L))− Ecmp−MAP(C
(k,L), f (k,L)), k > 0

=

L∑

l=1

∆E
(k,l)
cmp−MAP ≥ 0 (72)

∆E
(k)
cmp−MAP becomes equal to zero if and only if C

(k,l)
ij = C

(k,l−1)
ij , ∀i ∈ Sl, ∀l ∈ {1, . . . , L}, ∀j and f

(k,l)
j =

f
(k,l−1)
j , ∀j, ∀l ∈ {1, . . . , L}.

Define k∗ as the iteration at which ∆E
(k∗)
cmp−MAP = 0. Then C(k∗,1) = C(k∗,2) = · · · = C(k∗,L) def

= C∗. We similarly

get f (k
∗,1) = f (k

∗,2) = · · · = f (k
∗,L) def

= f∗. We automatically have f (k∗+1,0) = f (k
∗,L) and C(k∗+1,0) = C(k∗,L) which

means that nothing can change once we have reached k∗.
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¿From the COSEM-MAP update (40), we get:

C∗ij = C
(k∗,l)
ij = gi

Hijf
(k∗,l−1)
j

∑
nHinf

(k∗,l−1)
n

∀i, ∀j, ∀l ∈ {1, · · · , L} = gi
Hijf

∗
j∑

nHinf∗n
(73)

Therefore, from (19), we get

C∗ = Csol(f∗) (74)

From the definition of Csol(f) in Sec. 3, we may see that (74) is equivalent to the two conditions

∇CEcmp−MAP(C, f , ν)|(C∗,f∗) = 0 and ∇νEcmp−MAP(C, f , ν)|(C∗,f∗) = 0.

Now, we will show that ∇fEcmp−MAP(C, f , ν)|(C∗,f∗) = 0. We need to show that

∂Ecmp−MAP(C, f , ν)

∂fj
|(C∗,f∗) = −

∑
i C
∗
ij

f∗j
+Dj + 2β

∑

j′∈N (j)

vjj′(f
∗
j − f∗j′) = 0 ∀j (75)

Since the f updates are chosen to satisfy (49), we may write

−

∑
i C

(k∗,l)
ij

f
(k∗,l)
j

+Dj + 2β
∑

j′∈N (j)

vjj′(2f
(k∗,l)
j − f

(k∗,l−1)
j − f

(k∗,l−1)
j′ ) = 0 ∀j (76)

Since f (k
∗,1) = f (k

∗,2) = · · · = f (k
∗,L) = f∗, we may see that (75) follows from (76).

Thus, we have shown that the full gradient of Ecmp−MAP(C, f , ν) at (C∗, f∗) is zero, i.e.

∇Ecmp−MAP(C, f , ν)|(C∗,f∗,ν) = 0.

6.6 Convergence to the fixed point of Einc−MAP

Define Γ as the set (possibly singleton) of global minima of Ecmp−MAP(C, f). We may argue that (C∗, f∗) ∈ Γ

as follows: ∆E
(k,l)
cmp−MAP = 0 is equivalent to the fact that C

(k,l)
ij and f

(k,l)
j are no longer changing. We note that

an algorithm can lead to a repeating (C
(k,l)
ij , f

(k,l)
j ) that is not an element of Γ. But this cannot happen because

the COSEM-MAP algorithm is a grouped coordinate descent algorithm, and because Ecmp−MAP is convex. The

COSEM-MAP algorithm would continue to descend along coordinate directions whenever possible. Hence, if one

approaches a condition where (C
(k,l)
ij , f

(k,l)
j ) are repeating, then these are in Γ. Hence, (C∗, f∗) ∈ Γ.

We now show that f ∗ is a global minimum of Einc−MAP(f). We prove this by contradiction. Assume an f̌

such that Einc−MAP(f
∗) > Einc−MAP(f̌). Since C∗ = Csol(f∗), we have by the touching property in Sec. 6.2 that

Ecmp−MAP(C
sol(f∗), f∗) = Einc−MAP(f

∗). This implies

Ecmp−MAP(C
sol(f∗), f∗) = Einc−MAP(f

∗) > Einc−MAP(f̌) = Ecmp−MAP(C
sol(f̌), f̌), (77)

but this is a contradiction because (Csol(f∗), f∗) ∈ Γ is a global minimum of Ecmp−MAP. In fact, f∗ is the unique

global minimum f̂ of Einc−MAP(f), because Einc−MAP(f) is strictly convex, as we established in Sec. 6.1.

This completes the proof, in that we have established that f ∗, obtained from the COSEM-MAP algorithm, is

indeed equal to f̂ in (5), which is the result we have sought. Thus, minimizing the complete data objective (38)
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(in our case, by the COSEM-MAP algorithm) yields a solution (C∗, f∗), where f∗ = f̂ , our sought-after solution in

(5).

6.7 Strict convexity of Ecmp−MAP

Though this result is not needed, we now demonstrate the interesting consequence that Ecmp−MAP(C, f , ν) is, in

fact, strictly convex. First we show that ∀(C, f) ∈ Γ, C = Csol(f). This follows from the fact that ∀(C, f) ∈ Γ,

∇CEcmp−MAP(C, f , ν) = 0 and ∇νEcmp−MAP(C, f , ν) = 0. Please refer to Sec. 3 for details.

Next we will show that Γ is a singleton set. Let (C ′, f ′) ∈ Γ where f ′ 6= f∗. Then C′ = Csol(f ′). By the

definition of Γ, Ecmp−MAP(C
sol(f ′), f ′) = Ecmp−MAP(C

sol(f∗), f∗). Hence by the touching property in Sec. 6.2, we

get Einc−MAP(f
′) = Einc−MAP(f

∗) which contradicts the fact that f ∗ is the unique global minimum of Einc−MAP.

So, since Ecmp−MAP has been shown to be convex (in Sec. 6.4) and it has a unique minimum, it is strictly convex.

7 Convergence Proof for COSEM-ML

This proof differs somewhat from the proof in Sec. 6 because we do not know whether the ML problem has a

unique solution. In this section, we prove that the minimization of Ecmp−ML(C, f , ν) by the COSEM-ML algorithm

yields a solution (C∗, f∗), and that f∗ = f̂ is a solution to the ML problem in (3).

7.1 “Touching” property of Ecmp−ML and Einc−ML

In Sec. 3, we showed (20) that

Ecmp−ML(C
sol(f), f) = Einc−ML(f)

where as in (19)

Csol
ij (f) = gi

Hijfj∑
nHinfn

∀i, ∀j.

7.2 Ecmp−ML is bounded from below by Einc−ML

In this section, we mention an interesting property, but it is not needed in our proof. This follows from the results

in Sec. 6.3. If we remove the prior from the expressions in Sec. 6.3, we easily obtain that (53) applies to the ML

case. The proof then follows.

7.3 Convexity of the Ecmp−ML(C, f) objective

This follows from the results in Sec. 6.4. In particular, Ecmp−MAP = Ecmp−ML + Eprior. Eprior is convex and in

Sec. 6.4, we showed that Ecmp−ML was convex.

7.4 The change in Ecmp−ML at each COSEM-ML sub-iteration

We define ∆E
(k,l)
cmp−ML

def
= Ecmp−ML(C

(k,l−1), f (k,l−1))−Ecmp−ML(C
(k,l), f (k,l)) which is essentially the change in the

objective (21) from step (k, l− 1) to step (k, l). In this section, we first show that the C (k,l) and f (k,l) COSEM-ML
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updates are descent steps in the complete data ML objective function (21), i.e. ∆E
(k,l)
cmp−ML ≥ 0, and that useful

conditions obtain when ∆E
(k,l)
cmp−ML = 0.

Using (21), we obtain

∆E
(k,l)
cmp−ML =

L∑

m=1

∑

i∈Sm

N∑

j=1

[
C

(k,l−1)
ij log

C
(k,l−1)
ij

Hijf
(k,l−1)
j

− C
(k,l)
ij log

C
(k,l)
ij

Hijf
(k,l)
j

]
+
∑

ij

Hij(f
(k,l−1)
j − f

(k,l)
j ). (78)

Note that at step (k, l), only the values of {C
(k,l)
ij , ∀i ∈ Sl, ∀j} are changed with all other values of C held fixed.

Using this fact, we get

∆E
(k,l)
cmp−ML ≥

∑

i∈Sl

N∑

j=1

[
C

(k,l−1)
ij log

C
(k,l−1)
ij

C
(k,l)
ij

+ (C
(k,l−1)
ij − C

(k,l)
ij ) log

C
(k,l)
ij

Hijf
(k,l−1)
j

]

+
L∑

m=1

∑

i∈Sm

N∑

j=1

[
C

(k,l)
ij log

f
(k,l)
j

f
(k,l−1)
j

+Hij(f
(k,l−1)
j − f

(k,l)
j )

]

From the update equation (34) for C(k,l) which is C
(k,l)
ij = gi

Hijf
(k,l−1)
j∑

n Hinf
(k,l−1)
n

, ∀i ∈ Sl, ∀j, we get

∑

j

(C
(k,l−1)
ij − C

(k,l)
ij ) log

C
(k,l)
ij

Hijf
(k,l−1)
j

=
∑

j

(C
(k,l−1)
ij − C

(k,l)
ij ) log

gi∑
nHinf

(k,l−1)
n

. (79)

Using (79), we may write

∆E
(k,l)
cmp−ML ≥

∑
i∈Sl

N∑

j=1

[
C

(k,l−1)
ij log

C
(k,l−1)
ij

C
(k,l)
ij

+ (C
(k,l−1)
ij − C

(k,l)
ij ) log

gi∑
nHinf

(k,l−1)
n

]

+
L∑

m=1

∑

i∈Sm

N∑

j=1

[
C

(k,l)
ij log

f
(k,l)
j

f
(k,l−1)
j

+Hij(f
(k,l−1)
j − f

(k,l)
j )

]
. (80)

Also, from the fact that the constraint
∑

j Cij = gi is always satisfied, as in Sec. 6.5, we again have the identity

∑

i∈Sl

N∑

j=1

(C
(k,l−1)
ij − C

(k,l)
ij ) log

gi∑
nHinf

(k,l−1)
n

= 0. (81)

Using (80) and (81), we may write

∆E
(k,l)
cmp−ML ≥

∑

i∈Sl

N∑

j=1

C
(k,l−1)
ij log

C
(k,l−1)
ij

C
(k,l)
ij

+

L∑

m=1

∑

i∈Sm

N∑

j=1

[
C

(k,l)
ij log

f
(k,l)
j

f
(k,l−1)
j

+Hij(f
(k,l−1)
j − f

(k,l)
j )

]
. (82)

We will now show that the first term on the right of (82) can be expressed as a non-negative I-divergence of the
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form x log x
y − x+ y. Since

∑
j C

(k,l−1)
ij =

∑
j C

(k,l)
ij = gi, we may write

N∑

j=1

C
(k,l−1)
ij log

C
(k,l−1)
ij

C
(k,l)
ij

=

N∑

j=1

[C
(k,l−1)
ij log

C
(k,l−1)
ij

C
(k,l)
ij

− C
(k,l−1)
ij + C

(k.l)
ij ] ≥ 0 (83)

with equality occurring only if C
(k,l)
ij = C

(k,l−1)
ij , ∀i ∈ Sl, ∀j.

We may observe that the update equation (30) for f in COSEM-ML is chosen such that the following objective

function is minimized:

Es−ML(f ; C
(k,l)) = −

L∑

m=1

∑

i∈Sm

N∑

j=1

C
(k,l)
ij log fj +

∑

ij

Hijfj . (84)

Apart from the terms forming the I-divergence, the remaining terms on the right of (82) can be seen to be

Es−ML(f
(k,l−1); C(k,l))− Es−ML(f

(k,l); C(k,l))

=

L∑

m=1

∑

i∈Sm

N∑

j=1

[
C

(k,l)
ij log

f
(k,l)
j

f
(k,l−1)
j

+Hij(f
(k,l−1)
j − f

(k,l)
j )

]
> 0 (85)

with equality occurring if f (k,l) = f (k,l−1). This is due to the fact that the update equation in (30) is guaranteed to

minimize Es−ML(f ; C
(k,l)). Consequently, the change in the complete data ML objective function at step (k, l) is

∆E
(k,l)
complete ML ≥

∑

i∈Sl

N∑

j=1

[C
(k,l−1)
ij log

C
(k,l−1)
ij

C
(k,l)
ij

− C
(k,l−1)
ij + C

(k.l)
ij ]

+Es−ML(f
(k,l−1); C(k,l))− Es−ML(f

(k,l); C(k,l))

≥ 0 (86)

with equality occurring if and only if C
(k,l)
ij = C

(k,l−1)
ij , ∀i ∈ Sl, ∀j and f

(k,l)
j = f

(k,l−1)
j , ∀j.

The change in the complete data objective function between steps (k − 1, L) and (k, L) is

∆E
(k)
cmp−ML

def
= Ecmp−ML(C

(k−1,L), f (k−1,L))− Ecmp−ML(C
(k,L), f (k,L)), k > 0

=
L∑

l=1

∆E
(k,l)
cmp−ML ≥ 0 (87)

∆E
(k)
cmp−ML becomes equal to zero if and only if C

(k,l)
ij = C

(k,l−1)
ij , ∀i ∈ Sl, ∀l ∈ {1, . . . , L}, ∀j and f

(k,l)
j =

f
(k,l−1)
j , ∀j, ∀l ∈ {1, · · · , L}.

As in Sec. 6.5, define k∗ as the iteration at which ∆E
(k∗)
cmp−ML = 0. Then C(k∗,1) = C(k∗,2) = · · · = C(k∗,L) def

= C∗.

We similarly get f (k
∗,1) = f (k

∗,2) = · · · = f (k
∗,L) def

= f∗. We automatically have f (k∗+1,0) = f (k
∗,L) and C(k∗+1,0) =

C(k∗,L) which means that nothing can change once we have reached k∗.
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From the COSEM-ML update (34), we once again get:

C∗ij = C
(k∗,l)
ij = gi

Hijf
(k∗,l−1)
j

∑
nHinf

(k∗,l−1)
n

∀i, ∀j, ∀l ∈ {1, · · · , L} = gi
Hijf

∗
j∑

nHinf∗n
(88)

Therefore, from (19), we get

C∗ = Csol(f∗) (89)

From the definition of Csol(f) in Sec. 3, we may see that (74) is equivalent to the two conditions

∇CEcmp−ML(C, f , ν)|(C∗,f∗) = 0 and ∇νEcmp−ML(C, f , ν)|(C∗,f∗) = 0.

Since the f updates are chosen to zero the expression for
∂Ecmp−ML(C,f ,ν)

∂fj
in (26), we note that

∇fEcmp−ML(C, f , ν)|(C∗,f∗) = 0.

Thus, we have shown that the full gradient of Ecmp−ML(C, f , ν) at (C∗, f∗) is zero, i.e.

∇Ecmp−ML(C, f , ν)|(C∗,f∗,ν) = 0.

7.5 Convergence to a fixed point of Einc−ML

Define Γ as the set (possibly singleton) of global minima of Ecmp−ML(C, f). We may argue that (C∗, f∗) ∈ Γ as

follows: ∆E
(k,l)
cmp−ML = 0 is equivalent to the fact that C

(k,l)
ij and f

(k,l)
j are no longer changing. We note that an

algorithm can lead to a repeating (C
(k,l)
ij , f

(k,l)
j ) that is not an element of Γ. But this cannot happen because

the COSEM-ML algorithm is a grouped coordinate descent algorithm, and because Ecmp−MAP is convex. The

COSEM-ML algorithm would continue to descend along coordinate directions whenever possible. Hence, if one

approaches a condition where (C
(k,l)
ij , f

(k,l)
j ) are repeating, then these are in Γ. Hence, (C∗, f∗) ∈ Γ.

We now show that f ∗ is a global minimum of Einc−ML(f). We prove this by contradiction. Assume an f̌

such that Einc−ML(f
∗) > Einc−ML(f̌). Since C∗ = Csol(f∗), we have by the touching property in Sec. 6.2 that

Ecmp−ML(C
sol(f∗), f∗) = Einc−ML(f

∗). This implies

Ecmp−ML(C
sol(f∗), f∗) = Einc−ML(f

∗) > Einc−ML(f̌) = Ecmp−ML(C
sol(f̌), f̌), (90)

but this is a contradiction because (Csol(f∗), f∗) ∈ Γ is a global minimum of Ecmp−ML. Thus, minimizing the

complete data objective (7) (in our case, by the COSEM-ML algorithm) yields a solution (C∗, f∗), where f∗ = f̂ ,

our sought-after solution in (3).

8 Conclusions

We have derived new convergent complete data ordered subsets algorithms for ML reconstruction (COSEM-ML)

and MAP reconstruction (COSEM-MAP) in emission tomography. We have achieved our original goal, namely

that COSEM-ML and COSEM-MAP converge to the fixed points of Einc−ML and Einc−MAP respectively. However,

there is no proof that the COSEM-ML and COSEM-MAP algorithms optimize Einc−ML(f) and Einc−MAP(f)

monotonically. In many simulations, we have always observed monotonic convergence, however.

It is straightforward to include randoms or scatter via an affine term s̄ (corresponding to ḡ = Hf + s̄) in the
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COSEM-ML and COSEM-MAP algorithms. We can show that we only need to modify the complete data update

equations so that s̄ is added to the forward projection in the denominator.

We also note that the COSEM-ML and COSEM-MAP algorithms are in a form suitable for reconstruction

from list-mode data. List-mode versions of the COSEM-ML and COSEM-MAP algorithms may be derived either

by applying transformations as in [25] or by adopting the approach in [26].

For ML and MAP, preliminary results indicate that COSEM-ML and COSEM-MAP are much faster than

ML-EM and the MAP-EM algorithm of [20]. However, COSEM-ML is somewhat slower than RAMLA [6], while

COSEM-MAP is somewhat slower than BSREM [7]. Unlike RAMLA and BSREM, our COSEM algorithms do

not need a user-specified relaxation schedule. We are exploring [19] whether COSEM speed enhancements are

possible without compromising its convergence properties.
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