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Abstract

Block coordinate descent methods and stochastic subgradient methods have been extensively
studied in optimization and machine learning. By combining randomized block sampling with
stochastic subgradient methods based on dual averaging ([22, 36]), we present stochastic block
dual averaging (SBDA)—a novel class of block subgradient methods for convex nonsmooth and
stochastic optimization. SBDA requires only a block of subgradients and updates blocks of vari-
ables and hence has significantly lower iteration cost than traditional subgradient methods. We
show that the SBDA-based methods exhibit the optimal convergence rate for convex nonsmooth
stochastic optimization. More importantly, we introduce randomized stepsize rules and block
sampling schemes that are adaptive to the block structures, which significantly improves the
convergence rate w.r.t. the problem parameters. This is in sharp contrast to recent block sub-
gradient methods applied to nonsmooth deterministic or stochastic optimization ([3, 24]). For
strongly convex objectives, we propose a new averaging scheme to make the regularized dual
averaging method optimal, without having to resort to any accelerated schemes.

1 Introduction

In this paper, we mainly focus on the following convex optimization problem:

min
x∈X

φ (x) , (1)

where the feasible set X is embedded in Euclidean space R
N for some integer N > 0. Letting

N1, N2, . . . , Nn be n positive integers such that
∑n

i=1 Ni = N , we assume X can be partitioned as
X = X1 ×X2 × . . . Xn, where each Xi ⊆ R

Ni . We denote x ∈ X, by x = x(1) × x(2) . . .× x(n) where
x(i) ∈ Xi. The objective φ (x) consists of two parts: φ (x) = f (x)+ω (x). We stress that both f (x)
and ω (x) can be nonsmooth. ω (x) is a convex function with block separable structure: ω (x) =
∑n

i=1 ωi (xi), where each ωi : Xi → R is convex and relatively simple. In composite optimization or
regularized learning, the term ω (x) imposes solutions with certain preferred structures. Common
examples of ω (·) include the ℓ1 norm or squared ℓ2 norm regularizers. f (x) is a general convex
function. In many important statistical learning problems, f (x) has the form of f (x) = Eξ [F (x, ξ)],
where F (x, ξ) is a convex loss function of x ∈ X with ξ representing sampled data. When it is
difficult to evaluate f(x) exactly, as in batch learning or sample average approximation (SAA), f (x)
is approximated with finite data. Firstly, a large number of samples ξ1, ξ2, . . . , ξm are drawn, and
then f (x) is approximated by f̃ (x) = 1

m

∑m
i=1 F (x, ξi), with the alternative problem:
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min
x∈X

φ̃(x) := f̃ (x) + ω (x) . (2)

However, although classic first order methods can provide accurate solutions to (2), the major
drawback of these approaches is the poor scalability to large data. First order deterministic methods
require full information of the (sub)gradient and scan through the entire dataset many times, which
is prohibitive for applications where scalability is paramount. In addition, due to the statistical
nature of the problem, solutions with high precision may not even be necessary.

To solve the aforementioned problems, stochastic methods—stochastic (sub)gradient descent
(SGD) or block coordinate descent (BCD) have received considerable attention in the machine
learning community. Both of them confer new advantages in the trade offs between speed and
accuracy. Compared to deterministic and full (sub)gradient methods, they are easier to implement,
have much lower computational complexity in each iteration, and often exhibit sufficiently fast
convergence while obtaining practically good solutions.

SGD was first studied in [29] in the 1950s, with the emphasis mainly on solving strongly convex
problems; specifically it only needs the gradient/subgradient on a few data samples while iteratively
updating all the variables. In the approach of online learning or stochastic approximation (SA),
SGD directly works on the objective (1), and obtains convergence independent of the sample size.
While early work emphasizes asymptotic properties, recent work investigate complexity analysis
of convergence. Many works ([21, 13, 33, 26, 6, 2, 8]) investigate the optimal SGD under various
conditions. Proximal versions of SGD, which explicitly incorporate the regularizer ω (x), have been
studied, for example in [15, 4, 5, 36].

The study of BCD also has a long history. BCD was initiated in [18, 19], but the application of
BCD to linear systems dates back to even earlier (for example see the Gauss-Seidel method in [7]).
It works on the approximated problem (2) and makes progress by reducing the original problem
into subproblems using only a single block coordinate of the variable at a time. Recent works
[23, 28, 30, 17] study BCD with random sampling (RBCD) and obtain non-asymptotic complexity
rates. For the regularized learning problem as in (2), RBCD on the dual formulation has been
proposed [31, 11, 32]. Although most of the work on BCD focuses on smooth (composite) objectives,
some recent work ([3, 37, 35, 39]) seeks to extend the realm of BCD in various ways. The works
in [24, 3] discuss (block) subgradient methods for nonsmooth optimization. Combining the ideas of
SGD and BCD, the works in [3, 37, 35, 39, 27] employ sampling of both features and data instances
in BCD.

In this paper, we propose a new class of block subgradient methods, namely, stochastic block
dual averaging (SBDA), for solving nonsmooth deterministic and stochastic optimization prob-
lems. Specifically, SBDA consists of a new dual averaging step incorporating the average of all
past (stochastic) block subgradients and variable updates involving only block components. We
bring together two strands of research, namely, the dual averaging algorithm (DA) [36, 22] which
was studied for nonsmooth optimization and randomized coordinate descent (RCD) [23], employed
for smooth deterministic problems. Our main contributions consist of the following:

• Two types of SBDA have been proposed for different purposes. For regularized learning,
we propose SBDA-u which performs uniform random sampling of blocks. For more general
nonsmooth learning problems, we propose SBDA-r which applies an optimal sampling scheme
with improved convergence. Compared with existing subgradient methods for nonsmooth and
stochastic optimization, both SBDA-u and SBDA-r have significantly lower iteration cost when
the computation of block subgradients and block updates are convenient.

• We contribute a novel scheme of randomized stepsizes and optimized sampling strategies which
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are truly adaptive to the block structures. Selecting block-wise stepsizes and optimal block
sampling have been critical issues for speeding up BCD for smooth regularized problems,
please see [23, 25, 31, 28] for some recent advances. For nonsmooth or stochastic optimization,
the most closely related work to ours are [3, 24] which do not apply block-wise stepsizes.
To the best of our knowledge, this is the first time block subgradient methods with block
adaptive stepsizes and optimized sampling have been proposed for nonsmooth and stochastic
optimization.

• We provide new theoretical guarantees of convergence of SBDA methods. SBDA obtains the
optimal rate of convergence for general convex problems, matching the state of the art results
in the literature of stochastic approximation and online learning. More importantly, SBDA
exhibits a significantly improved convergence rate w.r.t. the problem parameters. When the
regularizer ω (x) is strongly convex, our analysis provides a simple way to make the regularized
dual averaging methods in [36] optimal. We show an aggressive weighting is sufficient to obtain
O
(
1
T

)
convergence where T is the iteration count, without the need for any accelerated schemes.

This appears to be a new result for simple dual averaging methods.

Related work Extending BCD to the realm of nonsmooth and stochastic optimization has been of
interest lately. Efficient subgradient methods for a class of nonsmooth problems has been proposed
in [24]. However, to compute the stepsize, the block version of this subgradient method requires
computation of the entire subgradient and knowledge of the optimal value; hence, it may be not
efficient in a more general setting. The methods in [3, 24] employ stepsizes that are not adaptive to
the block selection and have therefore suboptimal bounds to our work. For SA or online learning,
SBDA applies double sampling of both blocks and data. A similar approach has also been employed
for new stochastic methods in some very recent work ([3, 39, 35, 27, 37]). It should be noted here
that if the assumptions are strengthened, namely, in the batch learning formulation, and if φ̃ is
smooth, it is possible to obtain a linear convergence rate O

(
e−T

)
. Nesterov’s randomized block

coordinate methods [23, 28] consider different stepsize rules and block sampling but only for smooth
objectives with possible nonsmooth regularizers. Recently, nonuniform sampling in BCD has been
addressed in [25, 38, 16] and shown to have advantages over uniform sampling. Although our work
discusses block-wise stepsizes and nonuniform sampling as well, we stress the nonsmooth objectives
that appear in deterministic and stochastic optimization . The proposed algorithms employ very
different proof techniques, thereby obtaining different optimized sampling distributions.

Outline of the results.

We introduce two versions of SBDA that are appropriate in different contexts. The first algo-
rithm, SBDA with uniform block sampling (SBDA-u) works for a class of convex composite func-
tions, namely, ω (x) is explicate in the proximal step. When ω(x) is a general convex function,
for example, the sparsity regularizer ‖x‖1, we show that SBDA-u obtains the convergence rate of

O

(√
n
∑n

i

√
M2

i Di√
T

)

, which improves the rate of O
(√

n
√
∑n

i M2
i ·
√
∑n

i Di√
T

)

by SBMD. Here {Mi} and

{Di} are some parameters associated with the blocks of coordinates to be specified later. When
ω(x) is a strongly convex function, by using a more aggressive scheme to be later specified, SBDA-u

obtains the optimal rate of O
(
n
∑

i M
2
i

λT

)

, matching the result from SBMD. In addition, for gen-

eral convex problems in which ω(x) = 0, we propose a variant of SBDA with nonuniform random

sampling (SBDA-r) which achieves an improved convergence rate O

(
(

∑n
j=1

M
2/3
j D

1/3
j

)

3/2

√
T

)

. These

3



Algorithm Objective Complexity

SBDA-u Convex composite O

(√
n
∑n

i

√
M2

i Di√
T

)

SBDA-u Strongly convex composite O
(
n
∑

i M
2
i

λT

)

SBDA-r Convex nonsmooth O

(
(

∑n
j=1 M

2/3
j D

1/3
j

)3/2

√
T

)

Table 1: Iteration complexity of our SBDA algorithms.

computational results are summarized in Table (1).

Structure of the Paper The paper proceeds as follows. Section 2 introduces the notation used
in this paper. Section 3 presents and analyzes SBDA-u. Section 4 presents SBDA-r, and discusses
optimal sampling and its convergence. Experimental results to demonstrate the performance of
SBDA are provided in section 6. Section 7 draws conclusion and comments on possible future
directions.

2 Preliminaries

Let RN be a Euclidean vector space, N1, N2, . . . Nn be n positive integers such that N1+ . . . Nn = N .
Let I be the identity matrix in R

N×N , Ui be a N ×Ni-dim matrix such that

I = [U1U2 . . . Un] .

For each x ∈ R
N , we have the decomposition: x = U1x

(1) +U2x
(2) + . . .+Unx

(n), where x(i) ∈ R
Ni .

Let ‖ · ‖(i) denote the norm on the R
Ni , and ‖ · ‖(i),∗ be the induced dual norm. We define the

norm ‖ · ‖ in R
N by: ‖x‖2 =∑n

i=1 ‖x(i)‖2(i) and its dual norm: ‖ · ‖∗ by ‖x‖2∗ =
∑n

i=1 ‖x(i)‖2(i),∗
Let di : Xi → R be a distance transform function with modulus ‖ · ‖(i) with respect to ρ.. di (·)

is continuously differentiable and strongly convex:

di (αx+ (1− α) y) ≤ αdi (x) + (1− α) di (y)−
1

2
ρα (1− α) ‖x− y‖2(i), x, y ∈ Xi,

i = 1, 2, ..., n.
Let us assume there exists a solution x∗ ∈ X to the problem (1) , and

di(x
∗(i)) ≤ Di < ∞, i = 1, 2, . . . n, (3)

Without loss of generality, we assume di (·) is nonnegative, and write

d (x) =
n∑

i

di

(

x(i)
)

(4)

for simplicity. Further more, we define the Bregman divergence associated with di (·) by

Vi (z, x) = di (x)− di (z)− 〈∇id (z) , x− z〉 , z, x ∈ Xi.

and V (z, x) =
∑n

i Vi

(
z(i), x(i)

)
.

4



We denote f(x) = Eξ [F (x, ξ)], and let G(x, ξ) be a subgradient of F (x, ξ), and g(x) =
Eξ [G (x, ξ)] ∈ ∂f (x) be a subgradient of f(x). Let g(i) (·), G(i) (x, ξ) denote their i-th block com-
ponents , for i = 1, 2, . . . , n. Throughout the paper, we assume the (stochastic) block coordinate
subgradient of f satisfying:

‖g(i) (x) ‖2(i),∗ = E
2
[

‖G(i) (x, ξ) ‖(i),∗
]

≤ E

[

‖G(i) (x, ξ) ‖2(i),∗,
]

≤ M2
i , ∀x ∈ X (5)

for i = 1, 2, . . . , n. Note that although we make assumptions of stochastic objective , the following
analysis and conclusions naturally extend to deterministic optimization. To see that, we can simply
assume g (x) ≡ G (x, ξ), and f (x) ≡ F (x, ξ), for any ξ.

Before introducing the main convergence properties, we first summarize several useful results in
the following lemmas. Lemma 1, 2, and 3 slightly generalize the results in [34, 14], [22], and [13]
respectively; their proofs are left in Appendix.

Lemma 1. Let f (·) be a lower semicontinuous convex function and d (·) be defined by (4). If

z = argmin
x

Ψ(x) := f (x) + d (x) ,

then
Ψ(x) ≥ Ψ(z) + V (z, x) , ∀x ∈ X.

Moreover, if f (x) is λ-strongly convex with norm ‖ ·‖(i), and x = z+Uiy ∈ X where y ∈ Xi, z ∈ X,
then

Ψ(x) ≥ Ψ(z) + V (z, x) +
λ

2
‖y‖2(i), ∀x ∈ X.

Lemma 2. Let Ψ : X → R be convex, block separable, and ρi-strongly convex with modulus ρi w.r.t.
‖ · ‖(i) , ρi > 0, 1 ≤ i ≤ n, and g ∈ R

N . If

x0 ∈ argmin
x∈X

{Ψ(x)} , and z ∈ argmin
x∈X

{〈

Uig
(i), x

〉

+Ψ(x)
}

,

then

〈

Uig
(i), x0

〉

+Ψ(x0) ≤
〈

Uig
(i), z

〉

+Ψ(z) +
1

2ρi
‖g‖2(i),∗.

Lemma 3. If f satisfies the assumption (5), let x = z + Uiy ∈ X where y ∈ Xi, x ∈ X, then

f(z) ≤ f(x) + 〈g(i)(x), y〉+ 2Mi‖y‖(i). (6)

3 Uniformly randomized SBDA (SBDA-u)

In this section, we describe uniformly randomized SBDA (SBDA-u) for the composite problem (1).
We consider the formulation proposed in [36], since it incorporates the regularizers for composite
problems. The main update of the DA algorithm has the form

xt+1 = argmin
x∈X

{
t∑

s=1

〈Gs, x〉+ tω (x) + βtd (x)

}

, (7)

where {βt} is a parameter sequence and Gs is shorthand for G (xs, ξs), and d (x) is a strongly convex
proximal function. When ω (x) = 0, this reduces to a version of Nesterov’s primal-dual subgradient
method [22].

5



Let Ḡ =
∑t

s=0 αsUisG
(is) (xs, ξs), where {αt} is a sequence of positive values, {it} is a sequence

of sampled indices. The main iteration step of SBDA has the form

x
(it)
t+1 = arg min

x∈Xit

{

〈Ḡ(it), x〉+ l
(it)
t ωit (x) + γ

(it)
t dit (x)

}

, (8)

and x
(i)
t+1 = x

(i)
t , i 6= it.

We highlight two important aspects of the proposed iteration (8). Firstly, the update in (8)
incorporates the past randomly sampled block (stochastic) subgradients

{
G(it) (xt, ξt)

}
, rather than

the full (stochastic) subgradients. Meanwhile, the update of the primal variable is restricted to
the same block (it), leaving the other blocks untouched. Such block decomposition significantly
reduces the iteration cost of the dual averaging method when the block-wise operation is convenient.
Secondly, (8) employs a novel randomized stepsize sequence {γt} where γt ∈ R

n. More specifically,
γt depends not only on the iteration count t, but also on the block index it. {γt} satisfies the
assumptions,

γ
(j)
t = γ

(j)
t−1, j 6= it, and γ

(j)
t ≥ γ

(j)
t−1, j = it. (9)

The most important aspect of (9) is that stepsizes can be specified for each block of coordinates,
thereby allowing for aggressive descent. As will be shown later, the rate of convergence, in terms
of the problem parameters, can be significantly reduced by properly choosing these control param-
eters. In addition, we allow the sequence {αt} and the related {lt} to be variable, hence offer the
opportunity of different averaging schemes in composite settings. To summarize, the full SBDA-u is
described in Algorithm 1.

Input: convex composite function φ (x) = f (x) + ω (x), a sequence of samples {ξt};
initialize α−1 ∈ R, γ−1 ∈ R

n, l−1 = 0
n, Ḡ = 0

N , x0 = argminx∈X
∑n

i=1 γ
(i)
−1di

(
x(i)
)
;

for t = 0, 1, . . . , T − 1 do

sample a block it ∈ {1, 2, . . . , n} with uniform probability 1
n ;

set γ
(i)
t , i = 1, 2, . . . , n;

set l
(it)
t = l

(it)
t−1 + αt and l

(j)
t = l

(j)
t−1 for j 6= it;

update Ḡ: Ḡ = Ḡ+ αtUitG
(it) (xt, ξt);

update x
(it)
t+1 = argminx∈Xit

{

〈Ḡ(it), x〉+ l
(it)
t ωit (x) + γ

(it)
t dit (x)

}

;

x
(j)
t+1 = x

(j)
t , for j 6= it;

end

Output: x̄ =
[
∑T

t=1

(
αt−1 − n−1

n αt

)
xt

]

/
∑T

t=1

(
αt−1 − n−1

n αt

)
;

Algorithm 1: Uniformly randomized stochastic block dual averaging (SBDA-u) method.

The following theorem illustrates an important relation to analyze the convergence of SBDA-u.
Throughout the analysis we assume the simple function ω(x) is λ-strongly convex with modulus λ,
where λ ≥ 0.

Theorem 4. In algorithm 1, if the sequence {γt} satisfies the assumption (9) , then for any x ∈ X,
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we have

T∑

t=1

(

αt−1 −
n− 1

n
αt

)

E [φ (xt)− φ (x)] ≤ α0
n− 1

n
[φ (x0)− φ (x)] +

n∑

i=1

E

[

γ
(i)
T−1

]

di (x)

+
n∑

i=1

5M2
i

n

T−1∑

t=0

E




α2
t

(

γ
(i)
t−1ρ+ l

(i)
t−1λ

)



 . (10)

Proof. Firstly, to simplify the notation, when there is no ambiguity, we use the terms ωi (x) and
ωi

(
x(i)
)
, di (x) and di

(
x(i)
)
, Vi (x, y) and Vi

(
x(i), y(i)

)
interchangeably. In addition, we denote

ωic (x) = ω (x)− ωi (x), and an auxiliary function by

Ψt (x) =

{∑t
s=0 αs

[

F (xs, ξs) + 〈Gs, x− xs〉(is) + ωis (x)
]

+
∑n

i=1 γ
(i)
t di

(
x(i)
)
, t ≥ 0

∑n
i=1 γ

(i)
t di

(
x(i)
)

t = −1
. (11)

It can be easily seen from the definition that xt+1 is the minimizer of the problem minx∈X Ψt (x).
Moreover, by the assumption on {γt}, we obtain

Ψt (x)−Ψt−1 (x) ≥ αt

[

F (xt, ξt) + 〈Gt, x− xt〉(it) + ωit (x)
]

. t = 0, 1, 2, . . . (12)

Applying Lemma 3 and the property equation (12) at x = xt+1, we have

φ (xt+1) ≤ f (xt) + 〈gt, xt+1 − xt〉+ 2Mit‖xt+1 − xt‖(it) + ω (xt+1)

= F (xt, ξt) + 〈Gt, xt+1 − xt〉(it) + 2Mit‖xt+1 − xt‖(it)
+f (xt)− F (xt, ξt) + 〈gt −Gt, xt+1 − xt〉(it) + ω (xt+1)

≤ 1

αt

[

Ψt (xt+1)−Ψt−1 (xt+1) +
γ
(it)
t−1ρ+ l

(it)
t−1λ

2
‖xt+1 − xt‖2(it)

]

︸ ︷︷ ︸

∆1

+f (xt)− F (xt, ξt) + ωict
(xt+1)

+〈gt −Gt, xt+1 − xt〉(it) −
γ
(it)
t−1ρ+ l

(it)
t−1λ

2αt
‖xt+1 − xt‖2(it) + 2Mit‖xt+1 − xt‖(it)

︸ ︷︷ ︸

∆2

.

We proceed with the analysis by separately taking care of ∆1 and ∆2. We first provide a concrete
bound on ∆1. Applying Lemma 1 for Ψ = Ψt−1 with xt being the optimal point x = xt+1, we obtain

Ψt−1 (xt+1) ≥ Ψt−1 (xt) +
n∑

i=1

γ
(i)
t−1Vi (xt, xt+1) +

l
(it)
t−1λ

2
‖xt − xt+1‖2(it). (13)

In view of (13) and the assumption Vi (xt, xt+1) ≥ ρ
2‖xt+1 − xt‖2(i), we obtain an upper bound on

∆1: ∆1 ≤ Ψt (xt+1) − Ψt−1 (xt) . On the other hand, from the Cauchy-Schwarz inequality, we have
〈gt −Gt, xt+1 − xt〉(it) ≤ ‖gt −Gt‖(it),∗ · ‖xt+1 − xt‖(it). Then

∆2 ≤ ‖xt+1 − xt‖(it) ·
(
‖gt −Gt‖(it) + 2Mit

)
− γ

(it)
t−1ρ+ l

(it)
t−1λ

2αt
‖xt+1 − xt‖2(it).
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The right side of the above inequality is a quadratic function of ‖xt+1 − xt‖(it). By maximizing it,
we obtain

∆2 ≤
αt

(
‖gt −Gt‖(it) + 2Mit

)2

2
(

γ
(it)
t−1ρ+ l

(it)
t−1λ

) .

In view of these bounds on ∆1 and ∆2, and the fact that ωict (xt) = ωict (xt+1), we have

αtφ (xt+1) ≤ Ψt (xt+1)−Ψt−1 (xt) + αt

[
f (xt)− F (xt, ξt) + ωict

(xt)
]

+
α2
t

(
‖gt −Gt‖(it) + 2Mi

)2

γ
(it)
t−1ρ+ l

(it)
t−1λ

. (14)

Summing up the above for t = 0, 1, . . . , T − 1, and observing that Ψ−1 ≥ 0, di (x0) ≥ 0 (1 ≤ i ≤ n),
we obtain

T−1∑

t=0

αtφ (xt+1) ≤ ΨT−1 (xT ) +
T−1∑

t=0

α2
t

(
‖gt −Gt‖(it) + 2Mi

)2

γ
(it)
t−1ρ+ l

(it)
t−1λ

+
T−1∑

t=0

αt

[
f (xt)− F (xt, ξt) + ωict

(xt)
]
. (15)

Due to the optimality of xT , for x ∈ X, we have

ΨT−1 (xT ) ≤ ΨT−1 (x)

=

T−1∑

t=0

αt

[

f (xt) +
1

n
〈gt, x− xt〉+ ωit (x

∗)

]

+

n∑

i=1

γ
(i)
T−1di (x)

+
T−1∑

t=0

αt

[

〈Gt, x− xt〉(it) −
1

n
〈gt, x− xt〉

]

≤
T−1∑

t=0

αt

[
n− 1

n
f (xt) +

1

n
f (x) + ωit (x)

]

+

n∑

i=1

γ
(i)
T−1di (x)

+

T−1∑

t=0

αt

[

〈Gt, x− xt〉(it) −
1

n
〈gt, x− xt〉

]

, (16)

where the last inequality follows from the convexity of f :〈gt, x− xt〉 ≤ f (x) − f (xt). Putting (15)
and (16) together yields

T−1∑

t=0

αtφ (xt+1) ≤
T−1∑

t=0

αt

[
n− 1

n
φ (xt) +

1

n
φ (x)

]

+
n∑

i=1

γ
(i)
T−1di (x)

+

T−1∑

0

α2
t

(
‖gt −Gt‖(it) + 2Mi

)2

2
(

γ
(it)
t−1ρ+ l

(it)
t−1λ

) + δT , (17)

where δT is defined by

δT =

T−1∑

t=0

αt

[

〈Gt, x− xt〉(it) −
1

n
〈gt, x− xt〉+ f (xt)− F (xt, ξt)

]

+

T−1∑

t=0

αt

[

ωict (xt)−
n− 1

n
ω (xt) + ωit (x)−

1

n
ω (x)

]

. (18)
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In (17), subtracting
∑T−1

t=0 φ (x), and then n−1
n

∑T
t=1 αt [φ (xt)− φ (x)] on both sides , one has

T∑

t=1

(

αt−1 −
n− 1

n
αt

)

[φ (xt)− φ (x)] ≤ n− 1

n
α0 [φ (x0)− φ (x)] +

n∑

i=1

γ
(i)
T−1di (x)

+δT +
T−1∑

0

α2
t

(
‖gt −Gt‖(it) + 2Mit

)2

2
(

γ
(it)
t−1ρ+ l

(it)
t−1λ

) . (19)

Now let us take the expectation on both sides of (19). Firstly, taking the expectation with re-

spect to it, for t = 0, 1, ..., T−1, we have Eit

[

〈Gt, x
∗ − xt〉(it)

]

= 1
n 〈Gt, x

∗ − xt〉, and Eit

[
ωict

(xt)
]
=

ω (xt)−Eit [ωit (xt)] =
n−1
n ω (xt). Moreover, by the assumptions Eξt [F (xt, ξt)] = f (xt), Eξt [G (xt, ξt)] =

g (xt). Together with the definition (18), we see E [δt] = 0. In addition, from the Cauchy-

Schwarz inequality, we have
(
‖gt −Gt‖(it) + 2Mit

)2 ≤ 2
(

‖gt −Gt‖2(it) + 4M2
it

)

, and the expectation

Eξt

[

‖gt −Gt‖2(it)
]

≤ Eξt‖Gt‖2(it) ≤ M2
it . Furthermore, since ξt is independent of γt−1 and lt−1, we

have

E

[(
‖gt −Gt‖(it) + 2Mi

)2

γ
(it)
t−1ρ+ l

(it)
t−1λ

]

≤ E



Eξt




2
(

‖gt −Gt‖2(it) + 4M2
it

)

γ
(it)
t−1ρ+ l

(it)
t−1λ









≤ E

[(

10M2
it

γ
(it)
t−1ρ+ l

(it)
t−1λ

)]

=

n∑

i=1

E




10M2

i

n
(

γ
(i)
t−1ρ+ l

(i)
t−1λ

)



 .

Using these results, we obtain

T∑

t=1

(

αt−1 −
n− 1

n
αt

)

E [φ (xt)− φ (x)] ≤ α0
n− 1

n
[φ (x0)− φ (x)] +

n∑

i=1

E

[

γ
(i)
T−1

]

di (x)

+
n∑

i=1

5M2
i

n

T−1∑

t=0

E




α2
t

(

γ
(i)
t−1ρ+ l

(i)
t−1λ

)



 .

In Theorem 4 we presented some general convergence properties of SBDA-u for both stochastic
convex and strongly convex functions. It should be noted that the right side of (10) employs
expectations since both {γt} and {lt} can be random. In the sequel, we describe more specialized
convergence rates for both cases. Let us take x = x∗ and use the assumption (3) throughout the
analysis.

Convergence rate when ω(x) is a simple convex function

Firstly, we consider a constant stepsize policy and assume that γ
(i)
t depends on i and T where T

is the iteration number. More specifically, let αt ≡ 1, and γ
(i)
t ≡ βi for some βi > 0,1 ≤ i ≤ n,

9



−1 ≤ t ≤ T . Then E

[

α2
t

γ
(i)
t−1ρ

]

= 1
ρβi

, for 1 ≤ i ≤ n, and hence

T∑

t=1

E [φ (xt)− φ (x∗)] ≤ (n− 1) [φ (x0)− φ (x∗)] + n
n∑

i=1

βiDi + T
n∑

i=1

5M2
i

ρβi
.

Let us choose βi =
√

5TM2
i

nρDi
for i = 1, 2, . . . , p, to optimize the above function. We obtain an upper

bound on the error term:

T∑

t=1

E [φ (xt)− φ (x∗)] ≤ (n− 1) [φ (x0)− φ (x∗)] + 2

√

5Tn

ρ

n∑

i=1

√

M2
i Di.

If we use the average point x̄ =
∑T

t=1 xt/T as the output, we obtain the expected optimization error:

E [φ (x̄)− φ (x∗)] ≤ n− 1

T
[φ (x0)− φ (x∗)] +

2
√
5n
[
∑n

i=1

√

M2
i Di

]

√
ρ
√
T

.

In addition, we can also choose varying stepsizes without knowing ahead the iteration number

T . Differing from traditional stepsize policies where γt is usually associated with t, here
{

γ
(i)
t

}

is a

random sequence dependent on both t and it. In order to establish the convergence rate with such
a randomized γt, we first state a useful technical result.

Lemma 5. Let p be a real number with 0 < p < 1, {as} and {bt} be sequences of nonnegative
numbers satisfying the relation:

at = pbt + (1− p) at−1, t = 1, 2, . . .

Then
t∑

s=0

as ≤
t∑

s=1

bs +
a0
p
.

We first let αt ≡ 1, and define {γt} recursively as

γ
(i)
t =

{

ui
√
t+ 1 i = it

γ
(i)
t−1 i 6= it

,

for some ui > 0, i = 1, 2, ..., n, t = 0, 1, 2, . . . , T . From this definition, we obtain

E

[

1

γ
(i)
t−1

]

=
1

n

1

ui
√
t
+

n− 1

n
E

[

1

γ
(i)
t−2

]

.

Observing the fact that
∑t

τ=1
1√
τ
≤
´ t+1
1

1√
x
dx = 2

√
t+ 1 and applying Lemma 5 with at = E

[

1

γ
(i)
t−1

]

and bt =
1

ui

√
t
, we have

t∑

τ=0

E

[

1

γ
(i)
τ−1

]

≤ 1

ui

t∑

τ=1

1√
τ
+

n

γ
(i)
−1

≤ 2
√
t+ 1

ui
+

n

γ
(i)
−1

.
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Hence
T−1∑

t=0

E

[

1

γ
(i)
t−1ρ

]

≤ 1

ρ

[

2
√
T

ui
+

n

γ
(i)
−1

]

, i = 1, 2, . . . n. (20)

With respect to (20) and Theorem 1 , we obtain

n∑

i=1

E

[

γ
(i)
T−1

]

di (x
∗) +

T−1∑

t=0

n∑

i=1

E

[

5α2
tM

2
i

nγ
(i)
t−1ρ

]

≤
n∑

i=1

ui
√
TDi +

n∑

i=1

{

5M2
i

nρ

[

2
√
T

ui
+

n

γ
(i)
−1

]}

.

Choosing ui =
√

10M2
i

nρDi
, we have

E [φ (x̄)− φ (x∗)] ≤ n− 1

T
[φ (x0)− φ (x∗)] +

n∑

i=1

5nM2
i

ργ
(i)
−1T

+
2
∑n

i=1

√

10nM2
i Di

√
ρ
√
T

.

We summarize the results in the following corollary:

Corollary 6. In algorithm 1, let T > 0, x̄ be the average point x̄ =
∑T

t=1 xt/T , and αt ≡ 1.

1. If γ(i)t =
√

5TM2
i

nρDi
, for t = 0, 1, 2, ..., T − 1, i = 1, 2, ..., n, then

E [φ (x̄)− φ (x∗)] ≤ (n− 1) [φ (x0)− φ (x∗)]
T

+
2
∑n

i=1

√

5nM2
i Di

√
ρ
√
T

;

2. If γ(i)t =







√
10M2

i (t+1)
nρDi

if i = it

γ
(i)
t−1 o.w.

, for t = 0, 1, 2, ..., T − 1, and γ
(i)
−1 =

√
10M2

i
nρDi

, i = 1, 2, ..., n,

then

E [φ (x̄)− φ (x∗)] ≤ n− 1

T
[φ (x0)− φ (x∗)] +

n∑

i=1

5nM2
i

ργ
(i)
−1T

+
2
∑n

i=1

√

10nM2
i Di

√
ρ
√
T

.

Corollary 6 provides both constant and adaptive stepsizes and SBDA-u obtains a rate of conver-
gence of O

(

1/
√

T
)

for both, which matches the optimal rate for nonsmooth stochastic approximation
[please see (2.48) in [21]]. In the context of nonsmooth deterministic problem, it also matches the
convergence rate of the subgradient method. However, it is more interesting to compare this with
the convergence rate of BCD methods [please see, for example, Corollary 2.2 part b) in [3]]. Ignoring

the higher order terms, their convergence rate reads: O

(
√

∑n
i=1

M2

i√
T

√

n
∑n

i=1 Di

)

. Although the rate of

O
(

1/
√
T
)

is unimprovable, it can be seen (using the Cauchy-Schwarz inequality) that

n∑

i=1

√

M2
i Di ≤

√
√
√
√

n∑

i=1

M2
i

√
√
√
√

n∑

i=1

Di,

with the equality holding if and only if the ratio M2
i /Di is equal to some positive constant, 1 ≤ i ≤ n.

However, if this ratio is very different in each coordinate block, SBDA-u is able to obtain a much
tighter bound. To see this point, consider the sequences {Mi} and {Di} such that k items in {Mi}
are O(M̃) for some integer k, 0 < k ≪ n, while the rest are o (1/n) and Di is uniformly bounded

by D̃, 1 ≤ i ≤ n. Then the constant in SBDA-u is O(
√
nkM̃

√

D̃) while the one in SBMD is

O(n
√
kM̃

√

D̃), which is
√

n/k times larger.
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Convergence rate when ω (x) is strongly convex

In this section, we investigate the convergence of SBDA-u when ω (x) is strongly convex with modulus
λ, λ > 0. More specifically, we consider two averaging schemes and stepsize selections. In the
first approach, we apply a simple averaging scheme similar to [36]. By setting αt ≡ 1, all the
past stochastic block subgradients are weighted equally. In the second approach we apply a more
aggressive weighting scheme, which puts more weights on the later iterates.

To prove the convergence of SBDA-u when ω (x) is strongly convex, we introduce in the following
lemma, a useful “coupling” property for Bernoulli random variables:

Lemma 7. Let r1, r2, r3 be i.i.d. samples from Bernoulli (p), 0 < p < 1, a, b > 0, and any x, such
that 0 ≤ x ≤ a, then

E

[
1

r1x+ r2 (a− x) + b

]

≤ E

[
1

r3a+ b

]

. (21)

In the next corollary, we derive these specific convergence rates for strongly convex problems.

Corollary 8. In algorithm 1: if ω (x) is λ-strongly convex with modulus λ > 0, then

1. if αt ≡ 1, γ(i)t = λ/ρ, for t = 0, 1, 2, ..., T − 1, and x̄ =
∑T

t=1 xt/T , then

E [φ (x̄)− φ (x∗)] ≤ (n− 1) [φ (x0)− φ (x∗)] + nλ/ρ
∑n

i=1 di (x
∗)

T

+
5n
(∑n

i=1M
2
i

)
log (T + 1)

λT
.

2. if αt = n + t, for t = 0, 1, 2, . . ., and α−1 = 0, γ(i)t = λ (2n+ T ) /ρ, for t = 0, 1, 2, ..., T − 1,
then

E [φ (x̄)− φ (x∗)] ≤ 2n (n− 1) [φ (x0)− φ (x∗)] + 2n (2n+ T )λ/ρ
∑n

i di (x
∗)

T (T + 1)

+
10n

(∑n
i=1M

2
i

)

λ (T + 1)

[

1 +
n+ (n+ 1) log T

T

]

.

Proof. In part 1), let αt ≡ 1, γ(i)t ≡ λ/ρ, it can be observed that l
(i)
t−1 ∼ Binomial

(
t, 1

n ,
n−1
n

)
t ≥ 0,

we have

E

[

1

l
(i)
t−1λ+ γ

(i)
t−1ρ

]

=
t∑

i=0

(
t

i

)(
1

n

)i(n− 1

n

)t−i 1

λ (i+ 1)

=
n

λ (t+ 1)

t∑

i=0

(
t+ 1

i+ 1

)(
1

n

)i+1(n− 1

n

)t−i

=
n

λ (t+ 1)

[

1−
(
n− 1

n

)t+1
]

≤ n

λ (t+ 1)
.

Observing the fact that
∑t

τ=0
1

τ+1 ≤
´ t+2
1

1
xdx ≤ log (t+ 2) , we obtain

E [φ (x̄)− φ (x∗)] ≤ (n− 1) [φ (x0)− φ (x∗)] + λn/ρ
∑n

i=1 di (x
∗)

T
+

5n
(∑n

i=1 M
2
i

)
log (T + 1)

λT
.
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In part 2), let αt = n + t, for t = 0, 1, 2, . . ., and α−1 = 0, γ(i)t = λ (2n+ T ) /ρ, then for t ≥ 0,
for any fixed i, let rs = 1is=i, hence rs ∼ Bernoulli (p). In addition, we assume a sequence of ghost
i.i.d. samples {r′s}0≤s≤T . For t > 0,

E

[

1

l
(i)
t λ+ γ

(i)
t ρ

]

= E

[

1

λ
∑t

s=0 rs (n+ s) + γ
(i)
t ρ

]

≤ E

[

1

λ
∑⌈t/2⌉−1

s=0 {rs (n+ s) + rt−s (n+ t− s)}+ λ (2n + T )

]

≤ E




1

λ (2n+ t)
(
∑⌈t/2⌉−1

s=0 r′s + 1
)





≤ n

λ (2n+ t) (max {⌈t/2⌉, 1}) (22)

where the second inequality follows from the independence of {rs} and {r′s} and the coupling property
in Lemma 7. It can be seen that the conclusion in (22) holds when t = −1, 0 as well. Hence

T−1∑

t=0

E

[

α2
t

γ
(i)
t−1ρ+ l

(i)
t−1λ

]

≤
T−1∑

t=0

(n+ t)2

λ (2n+ t− 1) (max {⌈(t− 1) /2⌉, 1})

≤
T−1∑

t=0

(n+ t)

λ (max {⌈(t− 1) /2⌉, 1})

=
2n+ 1

λ
+

T−1∑

t=2

(n+ t)

λ⌈(t− 1) /2⌉

≤ 2n+ 1

λ
+

T−1∑

t=2

2 (n+ t)

λ (t− 1)

=
2n+ 2T − 1

λ
+

T−1∑

t=2

2 (n+ 1)

λ (t− 1)

≤ 2n+ 2T

λ
+

2 (n+ 1)

λ

ˆ T−1

1

1

x
dx

≤ 2

λ
(n+ T + (n+ 1) log T ) .

Let x̄ =
∑T

t=1 txt
∑T

t=1 t
be the weighted average point, then

E [φ (x̄)− φ (x∗)] ≤ 2n (n− 1) [φ (x0)− φ (x∗)] + 2n (2n+ T )λ/ρ
∑n

i Di

T (T + 1)

+
10n

(∑n
i=1M

2
i

)

λ (T + 1)

[

1 +
n+ (n+ 1) log T

T

]

.

For nonsmooth and strongly convex objectives, we presented two options to select {αt} and {γt}.
These results seem to provide new insights on the dual averaging approach as well. To see this,
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we consider SBDA-u when n = 1. In the first scheme, when αt ≡ 1, the convergence rate of
O (log T/T ) is similar to the one in [36]. In the second scheme of Corollary 8, it shows that regularized
dual averaging methods can be easily improved to be optimal while being equipped with a more
aggressive averaging scheme. Our observation suggests an alternative with rate O (1/T ) to the more
complicated accelerated scheme ([6, 2]). Such results seems new to the world of simple averaging
methods, and is on par with the recent discoveries for stochastic mirror descent methods ([20, 3, 8,
26, 12]).

4 Nonuniformly randomized SBDA (SBDA-r)

In this section we consider the general nonsmooth convex problem when ω (x) = 0 or ω (x) is lumped
into f (·):

min
x∈X

φ (x) = f (x) ,

and show a variant of SBDA in which block coordinates are sampled non-uniformly. More specifically,
we assume the block coordinates are i.i.d. sampled from a discrete distribution {pi}1≤i≤n, 0 < pi < 1,
1 ≤ i ≤ n. We describe in Algorithm 2 the nonuniformly randomized stochastic block dual averaging
method (SBDA-r).

Input: convex function f , sequence of samples {ξt}, distribution {pi}1≤i≤n;

initialize α0 ∈ R, γ−1 ∈ R
n,Ḡ = 0

N and x0 = argminx∈X
∑n

i=1
γ
(i)
−1

pi
di
(
x(i)
)
;

for t = 0, 1, . . . , T − 1 do

sample a block it ∈ {1, 2, . . . , n} with probability Prob (it = i) = pi;

set γ
(i)
t , i = 1, 2, ..., n;

receive sample ξt and update Ḡ: Ḡ = Ḡ+ αt
pit

UiG
(it) (xt, ξt);

update x
(it)
t+1 = argminx∈Xit

{
〈
Ḡ(it), x

〉
+

γ
(it)
t
pit

dit (x)

}

;

set x
(j)
t+1 = x

(j)
t , j 6= it;

end

Output: x̄ =
(
∑T

t=0 αtxt

)

/
(
∑T

t=0 αt

)

;

Algorithm 2: Nonuniformly randomized stochastic block dual averaging (SBDA-r) method

In the next theorem, we present the main convergence property of SBDA-r, which expresses the
bound of the expected optimization error as a joint function of the sampling distribution {pi}, and
the sequences {αt}, {γt}.
Theorem 9. In algorithm 2, let {xt} be the generated solutions and x∗ be the optimal solution, {αt}
be a sequence of positive numbers, {γt} be a sequence of vectors satisfying the assumption (9) . Let

x̄ =
∑T

t=0 αtxt
∑T

t=0 αt
be the average point, then

E [f (x̄)− f (x)] ≤ 1
∑T

t=0 αt







T∑

t=0

n∑

i=1

E

[
α2
t ‖Gt‖2(i),∗
2ργ

(i)
t−1

]

+

n∑

i=1

E

[

γ
(i)
T

]

pi
di (x)






. (23)

Proof. For the sake of simplicity, let us denote At =
∑t

τ=0 ατ , for t = 0, 1, 2 . . .. Based on the

convexity of f , we have f
(∑T

t=0 αtxt

AT

)

≤
∑T

t=0 αtf(xt)
AT

and f (xt) ≤ f (x) + 〈gt, xt − x〉 for x ∈ X.

Then
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AT [f (x̄)− f (x)] ≤
T∑

t=0

αt 〈gt, xt − x〉

≤
T∑

t=0

αt

pit

〈

UitG
(it)
t , xt − x

〉

︸ ︷︷ ︸

∆1

+

T∑

t=0

αt

〈

gt −
1

pit
UitG

(it)
t , xt − x

〉

︸ ︷︷ ︸

∆2

. (24)

It suffices to provide precise bounds on the expectation of ∆1, ∆2 separately.
We define the auxiliary function

Ψt (x) =







∑t
s=0

αs
pis

〈

UisG
(is)
s , x

〉

+
∑n

i=1
γ
(i)
t
pi

di
(
x(i)
)

t ≥ 0
∑n

i=1
γ
(i)
t
pi

di
(
x(i)
)

t = −1
.

Thus

Ψt (xt+1) = min
x

Ψt (x)

≥ min
x

{
t∑

s=0

αs

pis

〈

UitG
(it)
s , x

〉

+
n∑

i=1

γ
(i)
t−1

pi
di

(

x(i)
)
}

= min
x

{
αt

pit

〈

UitG
(it)
t , x

〉

+Ψt−1 (x)

}

(25)

The first inequality follows from the property (9). Next, using (25) and Lemma 2, we obtain

αt

pit

〈

UitG
(it)
t , xt

〉

≤ Ψt (xt+1)−Ψt−1 (xt) +
α2
t

2ρpitγ
(it)
t−1

‖Gt‖2(it),∗.

Summing up the above inequality for t = 0, . . . , T , we have

T∑

t=0

αt

pit

〈

UitG
(it)
t , xt

〉

≤ ΨT (xT+1)−Ψ−1 (x0) +

T∑

t=0

α2
t

2ρpitγ
(it)
t−1

‖Gt‖2(it),∗. (26)

Moreover, by the optimality of xT+1 in solving minxΨT (x), for all x ∈ X, we have

ΨT (xT+1) ≤
T∑

t=0

αt

pit

〈

UitG
(it)
t , x

〉

+

n∑

i=1

γ
(i)
T

pi
di (x) . (27)

Putting (26) and (27) together, and using the fact that Ψ−1 (x0) ≥ 0, we obtain:

∆1 ≤
n∑

i=1

γ
(i)
T

pi
di (x) +

T∑

t=0

α2
t

2ρpitγ
(it)
t−1

‖Gt‖2(it),∗.

For each t, taking expectation w.r.t. it, we have
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E

[

α2
t

2ρpitγ
(it)
t−1

‖Gt‖2(it),∗

]

= E

[

Eit

[

α2
t

2ρpitγ
(it)
t−1

‖Gt‖2(it),∗

]]

=

n∑

i=1

E

[

α2
t

2ργ
(i)
t−1

‖Gt‖2(i),∗

]

.

As a consequence, one has

E [∆1] ≤
n∑

i=1

E

[

γ
(i)
T

]

pi
di (x) +

T∑

t=0

n∑

i=1

E

[
α2
t ‖Gt‖2(i),∗
2ργ

(i)
t−1

]

. (28)

In addition, taking the expectation with respect to it, ξt and noting that Eξt,it

[
1
pit

UitGt

]

− gt =

Eξt [Gt]− gt = 0, we obtain
E [∆2] = 0. (29)

In view of (28) and (29), we obtain the bound on the expected optimization error:

E [f (x̄)− f (x)] ≤ 1
∑T

t=0 αt







T∑

t=0

n∑

i=1

E

[
α2
t ‖Gt‖2(i),∗
2ργ

(i)
t−1

]

+

n∑

i=1

E

[

γ
(i)
T

]

pi
di (x)






.

Block Coordinates Sampling and Analysis

In view of Theorem 4, the obtained upper bound can be conceived as a joint function of probability
mass {pi}, and the control sequences {αt}, {γt}. Firstly, throughout this section, let x = x∗ and
assume

αt = 1, t = 0, 1, 2, . . . . (30)

Naturally, we can choose the distribution and stepsizes by optimizing the bound

min
{γt},p

L({γt}, p) =
T∑

t=0

n∑

i=1

E

[

M2
i

2ργ
(i)
t−1

]

+

n∑

i

E[γ
(i)
T ]

pi
Di. (31)

This is a joint problem on two groups of variables. Let us first discuss how to choose {γt} for any

fixed pi. Let us assume pi has the form: pi =
Ma

i D
b
i

Ca,b
, i = 1, 2, . . . , n, where a, b ≥ 0, and define

Ca,b =
∑n

i=1 M
a
i D

b
i . We derive two stepsizes rules, depending on whether the iteration number T

is known or not. We assume γ
(i)
t = βi, for some constant βi, i = 1, 2, . . . n, t = 1, 2, ..., T . The

equivalent problem with p, β, has the form

min
p,β

L(p, β) =
n∑

i=1

(T + 1)M2
i

2ρβi
+

n∑

i

βi
pi
Di. (32)

By optimizing w.r.t. β, we obtain the optimal solutions

γ
(i)
t = βi =

√

(1 + T )piM2
i

2ρDi
. (33)
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In addition, we can also select stepsizes without assuming the iteration number T . Let us denote

γ
(i)
t =

{ √
t+ 1ui if i = it,

γ
(i)
t−1 otherwise,

(34)

for some unspecified ui, 1 ≤ i ≤ n. Applying Lemma 5 with at = E

[

1

γ
(i)
t−1

]

, bt = 1
ui

√
t
, we have

T∑

t=0

E

[

1

γ
(i)
t−1

]

≤
T∑

t=1

1

ui
√
t
+

1

γ
(i)
−1pi

≤ 2

√
T + 1

ui
+

1

γ
(i)
−1pi

.

In view of the above analysis, we can relax the problem to the following:

min
p,u

n∑

i=1

[

M2
i

√
T + 1

ρui
+

ui
√
T + 1

pi
Di +

M2
i

2ργ
(i)
−1pi

]

.

Note that the third term above is o
(√

T
)

and hence can be ignored for the sake of simplicity. Thus

we have the approximate problem

min
p,u

n∑

i=1

[
M2

i

√
T + 1

ρui
+

ui
√
T + 1

pi
Di

]

, (35)

we apply the similar analysis and obtain ui =
√

piM2
i

ρDi
and hence the second stepsize rule

γ
(i)
t =

{ √
(t+1)piM2

i
ρDi

if i = it

γ
(i)
t−1 otherwise

, t ≥ 0. (36)

We have established the relation between the optimized sampling probability and stepsizes. Now
we are ready to discuss specific choices of the probability distribution. Firstly, the simplest way is
to set

pi =
1

n
, i = 1, 2, . . . ., n, (37)

which implies that SBDA-r reduces to the uniform sampling method SBDA-u with the obtained
stepsizes entirely similar to the ones we derived earlier. However, from the above analysis, it is
possible to choose the sampling distribution properly and obtain a further improved convergence
rate. Next we show how to obtain the optimal sampling and stepsize policies from solving the joint
problem (31). We first describe an important property in the following lemma.

Lemma 10. Let Sn be the n-dimensional simplex. The optimal solution x∗, y∗ of the nonlinear

problem minx∈Rn
++,y∈Sn

∑n
i=1

[
ai
xi

+ xi
biyi

]

where ai, bi > 0, 1 ≤ i ≤ n is

y∗i = (ai/bi)
1
3W, and x∗i = a

2
3
i b

1
3
i

√
W,

where i = 1, 2, . . . n and W =
(
∑n

i (ai/bi)
1
3

)−1
.

Applying Lemma 10 to the problem (32) , we obtain the optimal sampling probability

pi = M
2
3
i D

1
3
i /C, i = 1, 2, . . . n (38)

where C is the normalizing constant. This is also the optimal probability in problem (35). In view
of these results, we obtain the specific convergence rates in the following corollary:
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Corollary 11. In algorithm 2, let αt = 1, t ≥ 0. Denote C =
(
∑n

j=1M
2/3
j D

1/3
j

)

, with block

coordinates sampled from distribution (38). Then:

1. if γ(i)t =
√

(1+T )
2ρC M

4/3
i D

−1/3
i , t ≥ −1, i = 1, 2, . . . , n , then

E [f (x̄)− f (x∗)] ≤
√
2√
ρ

C3/2

√
T + 1

. (39)

2. if γ
(i)
−1 =

√
1
ρCM

4/3
i D

−1/3
i and γ

(i)
t =







√
(t+1)
ρC M

4/3
i D

−1/3
i if i = it,

γ
(i)
t−1 o.w.

, t ≥ 0, i = 1, 2, . . . , n,

then

E [f (x̄)− f (x∗)] ≤ C3/2

√
ρ

[
2√

T + 1
+

1

2 (T + 1)

]

. (40)

Proof. It remains to plug the value of {γt}, p back into L (, ).

It is interesting to compare the convergence properties of SBDA-r with that of SBDA-u and SBMD.
SBDA with uniform sampling of block coordinates only yields suboptimal dependence on the mul-
tiplicative constants. Nevertheless, the rate can be further improved by employing optimal nonuni-
form sampling. To develop further intuition, we relate the two rates of convergence with the help of
HÃ¶lder’s inequality:

[
n∑

i=1

(

M
2/3
i D

1/3
i

)
]3/2

≤







[
n∑

i=1

(

M
2/3
i D

1/3
i

)3/2
]2/3

·
[

n∑

i=1

13

]1/3






3/2

=

n∑

i=1

(

Mi

√

Di

)

· √n.

The inequality is tight if and only if for some constant c > 0 and i, 1 ≤ i ≤ n: Mi

√
Di = c. In addi-

tion, we compare SBDA-r with a nonuniform version of SBMD1, which obtains O

(
√

∑

n
i=1

M2

i ·
∑n

i=1

√
Di√

T

)

,

assuming blocks are sampled based on the distribution pi ∝
√
Di. Again, applying HÃ¶lder’s in-

equality, we have

[
n∑

i=1

(

M
2/3
i D

1/3
i

)
]3/2

≤







[
n∑

i=1

(

M
2/3
i

)3
]1/3

·
[

n∑

i=1

(

D
1/3
i

)3/2
]2/3







3/2

=

√
√
√
√

n∑

i=1

M2
i ·

n∑

i=1

√

Di.

In conclusion, SBDA-r, equipped with an optimized block sampling scheme, obtains the best
iteration complexity among all the block subgradient methods.

5 Experiments

In this section, we examine the theoretical advantages of SBDA through several preliminary exper-
iments. For all the algorithms compared, we estimate the parameters and tune the best stepsizes
using separate validation data. We first investigate the performance of SBDA on nonsmooth deter-
ministic problems by comparing its performance against other nonsmooth algorithms. We compare
with the following algorithms: SM1 and SM2 are subgradient mirror decent methods with step-
sizes γ1 ∝ 1√

t
and γ2 ∝ 1

‖g(x)‖ respectively. Finally, SGD is stochastic mirror descent and SDA a

1See Corollary 2.2, part a) of [3]
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Figure 1: Tests on ℓ1 regression.

stochastic subgradient dual averaging method. We study the problem of robust linear regression
(ℓ1 regression) with the objective φ (x) = 1

m

∑m
i=1

∣
∣bi − aTi x

∣
∣. The optimal solution x∗ and each ai

are generated from N (0, In×n). In addition, we define a scaling vector s ∈ R
n and S a diagonal

matrix s.t. Sii = si. We let b = (AS)x∗ + σ, where A = [a2, a2, . . . , am]T ∈ R
m×n, and the noise

σ ∼ N (0, ρI) . We set ρ = 0.01 and m = n = 5000.
We plot the optimization objective with the number of passes of the dataset in Figure 1, for

four different choices of s. In the first test case (leftmost subfigure), we let s = [1, 1, . . . , 1]T so
that columns of A correspond to uniform scaling. We find that SBDA-u and SBDA-r have slightly
better performance than the other algorithms while exhibiting very similar performance. In the
next three cases, s is generated from the distribution p (x; a) = a (1− x)a−1, 0 ≤ x ≤ 1, a > 0. We
set a = 1, 5, 30 respectively. Employing a large a ensures that the bounds on the norms of block
subgradients follow the power law. We observe that stochastic methods outperform the deterministic
methods, and SBDA-based algorithms have comparable and often better performance than SGD
algorithms. In particular, SBDA-r exhibits the best performance, which clearly shows the advantage
of SBDA with the nonuniform sampling scheme.

Next, we examine the performance of SBDA for online learning and stochastic approximation.
We conduct simulated experiments on the problem: φ (x) = Ea,b

[
(b− 〈La, x〉)2

]
, where the aim is

to fit linear regression under a linear transform L. The transform matrix L ∈ Mn×n is generated
as follows: we first sample a matrix L̃ for which each entry L̃i,j ∼ N (0, 1). L is obtained from L̃
with 90% of the rows being randomly rescaled by a factor ρ. To obtain the optimal solution x∗, we
first generate a random vector from the distribution N (0, In×n) and then truncate each coordinate
in [−1, 1]. Simulated samples are generated according to b = 〈La, x∗〉+ ε where ε ∈ N (0, 0.01In×n).
We let n = 200, and generate 3000 independent samples for training and 10000 independent samples
for testing.

To compare the performances of these algorithms under various conditions, we tune the parameter
ρ in [1, 0.1, 0.05, 0.01]. As can be seen from above, ρ affects the estimation of block-wise parameters
{Mi}. In Figure 2, we show the objective function for the average of 20 runs. The experimental
results show the advantages of SBDA over SBMD. When ρ = 1, SBDA-u, SBDA-r, and SBMD have
the same theoretical convergence rate, and exhibit similar performance. However, as ρ decreases, the
“importance” of 90% of the blocks is diminishing and we find SBDA-u and SBDA-r both outperform
SBMD. Moreover, SBDA-r seems to perform the best, suggesting the advantage of our proposed
stepsize and sampling schemes which are adaptive to the block structures. These observations lends
empirical support to our theoretical analysis.

Our next experiment considers online ℓ1 regularized linear regression (Lasso):

min
w∈Rn

1

2
E(y,x)

[(
y − wTx

)2
]

+ λ‖w‖1 (41)

While linear regression has been well studied in the literature, recent work is interested in efficient
regression algorithms under different adversarial circumstances [1, 9, 10]. Under the assumptions
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Figure 2: Tests on linear regression, Left to right: ρ = 1, 0.1, 0.05, 0.01.
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(a) Test on covtype dataset.
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Figure 3: Tests on online lasso with limited budgets

of limit budgets, the learner only partially observes the features for each incoming instance, but is
allowed to choose the sampling distribution of the features. In addition, we explicitly enforce the ℓ1
penalty, expecting to learn a sparse solution that effectively reduces testing cost. To apply stochastic
methods, we estimate the stochastic coordinate gradient of the least squares loss. For the sake of
simplicity, we assume for each input sample instance (y, x), two features (it, jt) are revealed. When
we sample one coordinate jt from some distribution {pj}, then 1

pjt
w(jt)x(jt) is an unbiased estimator

of wTx. Hence the defined value G(it) = 1
pjt

x(it)x(jt)w(jt) − yx(it) is an unbiased estimator of the
it-th coordinate gradient.

We adapt both SBMD and SBDA-u to these problems and conduct the experiments on datasets
covtype and mnist (digit “3 vs 5”). We also implement MD (composite mirror descent) and DA
(regularized dual averaging method). For all the methods, the training uses the same total number
of features. However, SBMD and SBDA-u obtain features sampled using a uniform distribution; both
MD and DA have “unfair” access to observe full feature vectors and therefore have the advantages
of lower variance. We plot in Figures 3a and 3b, the optimization error and sparsity patterns with
respect to the penalty weights λ on the two datasets. It can be seen that SBDA-u has comparable
and often better optimization accuracy than SBMD. In addition, we also plot the sparsity patterns
for different values of λ. It can be seen that SBDA-u is very effective in enhancing sparsity, more
efficient than SBMD, MD, and comparable to DA which doesn’t have such budget constraints.

6 Discussion

In this paper we introduced SBDA, a new family of block subgradient methods for nonsmooth and
stochastic optimization, based on a novel extension of dual averaging methods. We specialized
SBDA-u for regularized problems with nonsmooth or strongly convex regularizers, and SBDA-r
for general nonsmooth problems. We proposed novel randomized stepsizes and optimal sampling
schemes which are truly block adaptive, and thereby obtain a set of sharper bounds. Experiments
demonstrate the advantage of SBDA methods compared with subgradient methods on nonsmooth
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deterministic and stochastic optimization. In the future, we will extend SBDA to an important
class of regularized learning problems consisting of the finite sum of differentiable losses. On such
problems, recent work [31, 32] shows efficient BCD convergence at linear rate. The works in [39, 35]
propose randomized BCD methods that sample both primal and dual variables. However both
methods apply conservative stepsizes which take the maximum of the block Lipschitz constant. It
would be interesting to see whether our techniques of block-wise stepsizes and nonuniform sampling
can be applied in this setting as well to obtain improved performance.

7 Appendix

Proof of Lemma 1

Proof. The first part comes from [34]. Let g (z) denote any subgradient of f at z. Since f (x) is
strongly convex, we have f (x) ≥ f (z) + 〈Uig

(i) (z) , x− z〉+ λ
2‖x− z‖2(i). By the definition of z and

optimality condition, we have g(i) (z) = −∇id (z). Thus

f (x) + 〈∇id (z) , x− z〉 ≥ f (z) +
λ

2
‖x− z‖2(i).

It remains to apply the definition x = z + Uiy and V (z, x) = d (x)− d (z)− 〈∇d (z) , x− z〉.

Proof of Lemma 2

Proof. Let h (y) = maxx∈X {〈y, x〉 −Ψ(x)}, since Ψ(·) is strongly convex and separable, h (·) is
convex and differentiable and its i-th block gradient ∇ih (·) is 1

ρi
-smooth . Moreover, we have

∇h (0) = x0 by the definition of x0. Thus

h
(

−Uig
(i)
)

≤ h (0) +
〈

x0,−Uig
(i)
〉

+
1

2ρi
‖g‖2(i),∗.

It remains to plug in the definition of h (·), z, x0.

Proof of Lemma 3

Conjecture. By convexity of f (·), we have f(z) ≤ f(x) + 〈g(z), z − x〉. In addition,

〈g(z), z − x〉 = 〈g(x), z − x〉+ 〈g(z) − g(x), z − x〉
= 〈g(i)(x), y〉(i) + 〈g(i)(z) − g(i)(x), y〉(i)
≤ 〈g(i)(x), y〉(i) + ‖g(i)(z) − g(i)(x)‖(i),∗ · ‖y‖(i).

The second equation follows from the relation between x, y, z and the last one from the Cauchy-
Schwarz inequality. Finally the conclusion directly follows from (5).

Proof of Lemma 5

Proof. Let At =
∑t

s=0 at, Bt =
∑t

s=1 bt. It is equivalent to show At ≤ Bt +
A0
p . Then
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At = pBt +A0 + (1− p)At−1

= [p+ (1− p)] [pBt−1 +A0] + (1− p)2 At−2

=
[

p+ (1− p) + (1− p)2
]

[pBt−1 +A0] + (1− p)3 At−3

= ...

≤ [pBt +A0]

[
t∑

s=0

(1− p)s
]

.

The last inequality follows from the assumption that Bt ≥ Bs where 0 ≤ s ≤ t and A0 = a0. It
remains to apply the inequality

∑t
s=0 (1− p)s ≤∑∞

s=0 (1− p)s = 1
p .

Proof of Lemma 7

Proof. If r1, r2, r3 ∼ Bernoulli (p), c > 0, 0 < p < 1,

E

[
1

r1x+ r2 (a− x) + b

]

=
(1− p)2

b
+

p (1− p)

a− x+ b
+

p (1− p)

x+ b
+

p2

a+ b

≤ (1− p)2

b
+

p (1− p)

a+ b
+

p (1− p)

b
+

p2

a+ b

=
1− p

b
+

p

a+ b

= E

[
1

r3a+ b

]

.

To see the first inequality, let f (x) = A
x+c + B

a−x+c , where A,B > 0, it can be seen that f (·) is
convex in [0, a], then maxx∈[0,a] f (x) = max {f (0) , f (a)}.

Proof of Lemma 10

Proof. Let x∗, y∗ be the optimal solution of minx,y L (x, y, a, b). We consider two subproblems.

Firstly, x∗ = argminx L (x, y∗, a, b). Since ai
xi

+ xi
biy∗i

≥ 2
√

ai
biy∗i

, at optimality

ai
x∗i

=
x∗i
biy∗i

. (42)

On the other hand, y∗ is the minimizer of the problem miny L (x∗, y, a, b). Applying the Cauchy-
Schwarz inequality to L (x∗, y, a, b), we obtain

n∑

i=1

x∗i
biyi

· 1 =

n∑

i=1

x∗i
biyi

n∑

1

yi ≥
n∑

i

√

x∗i
biyi

√
yi =

n∑

i

√

x∗i .

At optimality, the equality holds for some scalar C > 0,

x∗i
biy∗i

= Cy∗i , i = 1, 2, . . . , n. (43)

It remains to solve the equations (42) and (43) with the simplex constraint on y.
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