
Homework #3 Solutions

7.2 E is an image with all zeros and with a single one at the center. We convolve this with the kernel

Hij =
1

2πσ2
exp

(

−
[(i− k − 1)2 + (j − k − 1)2]

2σ2

)

.

Convolution with the kernel is a dot product

Rij =
∑

u,v

Hi−u,j−vEuv

=
∑

u,v

Hi−u,j−vδuv

= Hij

which is a circularly symmetric fuzzy blob.
14.1
a) The scalar quantity (xj − ci)

TS(xj − ci) redefines the distance between the feature vector xj to ci

from the Euclidean distance ‖xj − ci‖
2 = (xj − ci)

T (xj − ci) to (xj − ci)
TS(xj − ci). Consequently, the

nearest neighbor measure in k-means needs to use the new distance measure rather than the older Euclidean
distance. Everything else remains the same.
b) One since only the distance measure has changed.
c) Each step in k-means reduces the value of the objective function. To see this, define the objective

function as
E(M, c) =

∑

ij

Mij(xj − ci)
TS(xj − ci).

In k-means, we set Mij to
Mij = 1, for i = min

i′
(xj − ci′)

TS(xj − ci′).

This is a local optimum for M . The update for c is

ci =

∑

j Mijxj
∑

j Mij

which is the optimum solution for c while keeping M fixed. Each step lowers the value of E(M, c) and
therefore this should converge to a local optimum. [However, this is not a proof. In general, merely showing
that each step reduces the objective does not guarantee convergence to a local optimum. The objective could
reach a stable value while M and c oscillate.]
14.2 Shi and Malik (2000): In class, we worked out that

yT (D −W )y ∝ cut(A,B).
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Similarly, yTDy can be expressed as

yTDy =
∑

i

Diiy
2
i =

∑

i∈A

Dii + b2
∑

i∈B

Dii

=
∑

i∈A

(
∑

j∈A

Wij +
∑

j∈B

Wij) +
∑

j∈B

(
∑

i∈A

Wij +
∑

j∈B

Wij)

= assoc(A, V ) + assoc(B, V )

Consequently

2yT (D −A)y

yTDy
=

2cut(A,B)

assoc(A, V ) + assoc(B, V )
≤
cut(A,B)(assoc(A, V ) + assoc(B, V ))

assoc(A, V )assoc(B, V )

since x+y
2
≥ xy

x+y
. From this perspective, we end up minimizing a lower bound of the original desired cost

function. A more detailed proof is available in the Shi and Malik paper.
14.3 a) The strategies are obviously not equivalent. In one case, we recursively partition the clusters. In the
other, we do not change the problem. Instead, we look at other eigenvectors. If we removed the cluster and
then derived a new affinity measure—that would be much more similar to the recursive approach.
b) The eigenvector corresponding to the largest eigenvalue represents the dominant cluster. Thresholding

the eigenvector gives a single cluster.
c) The second eigenvector represents the second dominant cluster.
d) The two strategies are similar if we first choose elements belonging to the dominant cluster from the

first eigenvector and then continue with the sevond eigenvector and so on. The procedures give different
results if we decide on cluster membership using all eigenvectors in parallel. The parallel approach gives
different results from the recursive approach.
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