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ABSTRACT

Sketching techniques can provide approximate answers to
aggregate queries either for data-streaming or distributed
computation. Small space summaries that have linearity
properties are required for both types of applications. The
prevalent method for analyzing sketches uses moment analy-
sis and distribution independent bounds based on moments.
This method produces clean, easy to interpret, theoretical
bounds that are especially useful for deriving asymptotic re-
sults. However, the theoretical bounds obscure fine details of
the behavior of various sketches and they are mostly not in-
dicative of which type of sketches should be used in practice.
Moreover, no significant empirical comparison between var-
ious sketching techniques has been published, which makes
the choice even harder. In this paper, we take a close look
at the sketching techniques proposed in the literature from a
statistical point of view with the goal of determining proper-
ties that indicate the actual behavior and producing tighter
confidence bounds. Interestingly, the statistical analysis re-
veals that two of the techniques, Fast-AGMS and Count-
Min, provide results that are in some cases orders of magni-
tude better than the corresponding theoretical predictions.
We conduct an extensive empirical study that compares the
different sketching techniques in order to corroborate the
statistical analysis with the conclusions we draw from it.
The study indicates the expected performance of various
sketches, which is crucial if the techniques are to be used
by practitioners. The overall conclusion of the study is that
Fast-AGMS sketches are, for the full spectrum of problems,
either the best, or close to the best, sketching technique.
This makes Fast-AGMS sketches the preferred choice irre-
spective of the situation.

Categories and Subject Descriptors: H.2.4 [Database
Management]: Systems – Query processing; G.3 [Probabil-
ity and Statistics]: Distribution functions
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1. INTRODUCTION
Through research in the last decade, sketching techniques

evolved as the premier approximation technique for aggre-
gate queries over data streams. All sketching techniques
share one common feature: they are based on randomized
algorithms that combine random seeds with data to produce
random variables that have distributions connected to the
true value of the aggregate being estimated. By measuring
certain characteristics of the distribution, correct estimates
of the aggregate are obtained. The interesting thing about
all sketching techniques that have been proposed is that the
combination of randomization and data is a linear opera-
tion with the result that, as observed in [5, 13], sketching
techniques can be used to perform distributed computation
of aggregates without the need to send the actual data val-
ues. The tight connection with both data-streaming and
distributed computation makes sketching techniques impor-
tant from both the theoretical and practical point of view.

Sketches can be used either as the actual approximation
technique, in which case they require a single pass over the
data or, in order to improve the performance, as the basic
technique in multi-pass techniques such as skimmed sketches
[10] and red-sketches [11]. For either application, it is im-
portant to understand as well as possible its approximation
behavior depending on the characteristics of the problem
and to be able to predict as accurately as possible the esti-
mation error. As opposed to most approximation techniques
– one of the few exceptions are sampling techniques [12] –
theoretical approximation guarantees in the form of confi-
dence bounds were provided for all types of sketches from
the beginning [2]. All the theoretical guarantees that we
know of are expressed as memory and update time require-
ments in terms of big-O notation, and are parameterized
by ǫ, the target relative error, δ, the target confidence (the
relative error is at most ǫ with probability at least 1 − δ),
and the characteristics of the data – usually the first and
the second frequency moments. While these types of theo-
retical results are useful in theoretical computer science, the
fear is that they might hide details that are relevant in prac-
tice. In particular, it might be hard to compare methods, or
some methods can look equally good according to the theo-
retical characterization, but differ substantially in practice.
An even more significant concern, which we show to be per-



fectly justified, is that some of the theoretical bounds are
too conservative.

In this paper, we set out to perform a detailed study of the
statistical and empirical behavior of the four basic sketching
techniques that have been proposed in the research litera-
ture for computing size of join and related problems: AGMS
[2, 1], Fast-AGMS [5], Count-Min [6], and Fast-Count [20]
sketches. The initial goal of the study was to complement
the theoretical results and to make sketching techniques
accessible and useful for the practitioners. While accom-
plishing these tasks, the study also shows that, in general,
the theoretical bounds are conservative by at least a con-
stant factor of 3. For Fast-AGMS and Count-Min sketches,
the study shows that the theoretical prediction is off by
many orders of magnitude if the data is skewed. As part
of our study we provide practical confidence intervals for all
sketches except Count-Min. We use statistical techniques to
provide confidence bounds at the same time the estimate is
produced without any prior knowledge about the distribu-
tion1. Notice that prior knowledge is required in order to
use the theoretical confidence bounds provided in the litera-
ture and might not actually be available in practice. As far
as we know, there not exists any detailed statistical study of
sketching techniques and only limited empirical studies to
asses their accuracy. The insight we get from the statistical
analysis and the extensive empirical study we perform al-
lows us to clearly show that, from a practical point of view,
Fast-AGMS sketches are the best basic sketching technique.
The behavior of these sketches is truly exceptional and much
better than previously believed – the exceptional behavior
is masked by the result in [5], but revealed by our detailed
statistical analysis. The timing results for the three hash-
based sketching techniques (Fast-AGMS, Fast-Count, and
Count-Min) reveal that sketches are practical, easily able to
keep up with streams of million tuples/second.

The rest of the paper is organized as follows. In Section 2
we provide important results from statistics that are needed
throughout the paper. In Section 3 we give an overview
of the four basic sketching techniques proposed in the lit-
erature. Section 4 contains our statistical analysis of the
four sketching techniques with insights on their behavior.
Section 5 contains the details and results of our extensive
empirical study that corroborates the statistical analysis.
In Section 6 we discuss the impact of our results from a
practical point of view, and then we conclude in Section 7.

2. PRELIMINARIES
In this section we give a short overview of the results from

statistics that are used throughout the paper. Some of them,
like the central limit theorem for the mean estimator, are
well known but require further comments, and others, like
the central limit theorem and the confidence bounds for the
median estimator, are unknown in the database community.

The abstract statistical problem we tackle throughout the
paper is the following. Given X1, . . . , Xn independent in-
stances of a generic random variable X, estimate as precisely
as possible the expected value E [X] and provide confidence
bounds of the estimate by considering only the observed val-
ues X1, . . . , Xn.

Usually – this is the prevalent situation in database litera-

1This is the common practice for sampling estimators [12].

ture, but also in statistics2 – the mean of X1, . . . , Xn is con-
sidered as the proper estimator for E [X]. It is known from
statistics [19] that when the distribution of X is normal, the
mean X̄ is the uniformly minimum variance unbiased es-
timator (UMVUE), the minimum risk invariant estimator
(MRIE), and the maximum likelihood estimator (MLE) for
E [X]. This is strong evidence that X̄ should be used as the
estimator of E [X] when the distribution is normal or al-
most normal. While this is the case in most circumstances,
it is also known that there are distributions, like the Cauchy
distribution, for which the mean is a poor choice as an esti-
mator of E [X]. In the case of Cauchy distribution, the mean
can be shown to have the same distribution as a single ran-
dom sample Xi, thus averaging does not improve the error of
the estimate over the error of a single sample. In such cases,
the median of the samples has much better performance as
an estimate of the expected value. The Cauchy distribution
example is an extreme case in which the mean estimator is
not efficient but, as we will see in Section 4, some of the dis-
tributions resulting from sketching can benefit from the use
of medians instead of means. Consequently, in this section
we explain not only how confidence bounds can be obtained
for the mean estimator, but also for the median estimator.
Moreover, we provide guidelines for choosing the appropri-
ate estimator for particular situations.

2.1 Mean Estimator
Part of the appeal for using mean as an estimator of the

expectation E [X] is the Central Limit Theorem (CLT):

Theorem 1 (Mean CLT [19]). Let X1, . . . , Xn be in-
dependent random variables with the same distribution as X

and X̄ be the average of the n random variables. Then, as
long as Var [X] < ∞:

X̄ →d N

„

E [X] ,
Var [X]

n

«

Essentially, CLT states that the distribution of the mean
is asymptotically a normal distribution centered on the ex-

pected value and having variance Var[X]
n

, as long as the vari-
ance Var [X] is finite. If Var [X] is known (or can be esti-
mated from the samples), confidence bounds for X̄ can be
immediately derived:

Proposition 1 (Mean Bounds). For the same setup
as in Theorem 1, the asymptotic confidence bounds for X̄

are:

P

"

|X̄ − E [X] | ≤ zα/2

r

Var [X]

n

#

≥ 1 − α

where zβ is the β quantile of the normal N(0, 1) distribu-
tion (i.e., the point for which the probability of the N(0, 1)
random variable to be smaller than the point is β).

Since fast series algorithms for the computation of zβ are
widely available3, the computation of confidence bounds for
X̄ is straightforward. Usually, the CLT approximation of

2Few statistics books, [19] for example, compare sample me-
dian and sample mean as estimators for E [X].
3The GNU Scientific Library (GSL) implements pdf, cdf,
inverse cdf, and other functions for the most popular distri-
butions, including the normal distribution.



the distribution of the mean and the confidence bounds pro-
duced with it are correct starting with tens to hundreds of
samples being averaged. Thus, from a practical point of
view, we expect the confidence bounds in Proposition 1 to
be accurate as long as tens of random variables are averaged.

Notice that in order to characterize the mean estimator,
the variance of X has to be determined. When Var [X] is
not known – this is the case for sketches since estimating
the variance is at least as hard as estimating the expected
value – the variance can be estimated from the samples in
the form of sample variance. This is the common practice in
statistics and also in database literature (approximate query
processing with sampling).

2.2 Median Estimator
As we have already mentioned, there exist distributions

for which the median is close to the expected value, for
example symmetric or almost symmetric distributions. In
such cases, sample median can also be used as an estimator
of the expected value. While for the majority of the distri-
butions encountered in practice the sample median is not
as efficient as the sample mean, there exist distributions for
which sample mean has poor performance, for example the
Cauchy distribution. In such cases, sample median might
be the only viable estimator. Since we want estimators that
are efficient for each particular scenario, it worths investi-
gating sample median as an estimator in order to asses its
properties.

We start the investigation of the sample median estima-
tor by introducing its corresponding central limit theorem.
Then we identify what characteristics of the distribution of
X indicate whether sample mean or sample median should
be chosen as the estimator of E [X]. A more technical treat-
ment can be found in [19] (Section 5.3).

Theorem 2 (Median CLT [19]). Let X1, . . . , Xn be in-
dependent random variables with the same distribution as X

and X̃ be the median of the n random variables. Then, as
long as the density function f of the distribution of X has
the property f(θ) > 0:

X̃ →d N

„

θ,
1

4n · f(θ)2

«

where θ is the true median of the distribution.

2.2.1 Efficiency

For the cases when the distribution is symmetric, thus
the expected value and the median coincide, or when the
difference between the median and the expected value is in-
significant, the decision with respect to which of the sample
mean or sample median to be used as an estimate for the
expected value is reduced to establishing which of the two
has smaller variance. Since for both estimators the variance
decreases by a factor of n, the question is further reduced
to comparing the variance Var [X] and the quantity 1

4f(θ)2
.

This relation is established in statistics through the notion
of asymptotic relative efficiency :

Definition 1 ([19]). The relative efficiency of the me-

dian estimator X̃ with respect to the mean estimator X̄,
shortly the efficiency of the distribution of X with the density
function f , is defined as:

e(f) = 4f(θ)2Var [X]

The efficiency of a distribution for which E [X] = θ indicates
which of the sample mean or the sample median is a better
estimator of E [X]. More precisely, e(f) indicates the re-
duction in mean squared error if the sample median is used
instead of the sample mean. When e(f) > 1, sample me-
dian is a better estimator, while for e(f) < 1 sample mean
provides better estimates.

An important case to consider is when X has normal dis-
tribution. In this situation, the efficiency is independent of
the distribution and it is equal to 2

π
≈ 0.64 (derived from

the above definition and the pdf of the normal distribution).
This immediately suggests that when the random variable X

is itself an average of other random variables, i.e., by Mean
CLT the distribution of X is asymptotically normal, the
mean estimator is more efficient than the median estimator.
We exploit this result for analyzing sketches in Section 4. In
terms of mean squared error, the mean estimator has error
0.64 times smaller, while in terms of root mean squared er-
ror or relative error, the mean estimator has error 0.8 times
smaller (it is 25% better). While this is a noticeable dis-
crepancy between the mean and the median estimators, the
performance of the median estimator can be also acceptable.

2.2.2 Signs of Supra-Unitary Efficiency

As we pointed out in the previous subsection, when the
efficiency is supra-unitary, i.e., e(f) > 1, medians should
be preferred to means for estimating the expected value, if
the distribution is symmetric (or almost symmetric). An
interesting question is what property of the distribution –
hopefully involving only moments since they are significantly
easier to determine than other characteristics of discrete dis-
tributions – indicates supra-unitary efficiency. According to
the statistics literature [3], kurtosis is the best indicator of
supra-unitary efficiency.

Definition 2 ([3]). The kurtosis k of the distribution
of the random variable X is defined as:

k =
E
ˆ

(X − E [X])4
˜

Var [X]2

For normal distributions, the kurtosis is equal to 3 irrespec-
tive of the parameters. Even though there not exists a dis-
tribution independent relationship between the kurtosis and
the efficiency, empirical studies [16] showed that whenever
k ≤ 6 the mean is a better estimator of E [X], while for
k > 6 the median is the better estimator.

2.2.3 Confidence Bounds

For standard distributions, the quantity f(θ) is estimated
directly from the pdf, which readily gives error bounds sim-
ilar to the ones in Proposition 1. Unfortunately, for the
distributions of the sketch estimators that appear in this pa-
per, it is hard to compute f(θ), thus Median CLT cannot be
used to derive confidence bounds. The rate of convergence
and the normality of the distribution can be used though if
efficiency is determined experimentally and the variance is
known. As explained above, the variance usually needs to
be estimated from the samples, thus methods that estimate
confidence bounds for the median estimator directly from
samples seem preferable. Fortunately, such methods were
developed in the statistics literature [17, 15].



Proposition 2 (Median Bounds [15]). For the same
setup as in Theorem 2, the sample-based confidence bounds
for X̃ are:

P
h

|X̃ − θ| ≤ tp,1−α/2SE(X̃)
i

≥ 1 − α

where tp,β is the β quantile of the Student t-distribution with

p degrees of freedom and SE(X̃) is the estimate for the stan-

dard deviation of X̃ given by:

SE(X̃) =
X(Un) − X(Ln+1)

2

Ln =
h

n

2

i

−
‰r

n

4

ı

Un = n − Ln

2.3 Median of Means Estimator
Instead of using only the mean or the median as an esti-

mator for the expected value, we can also consider combined
estimators. One possible combination that is used in con-
junction to sketching techniques (see Section 3) is to group
the samples into chunks of equal size, compute the mean of
each chunk, and then the median of the means, thus obtain-
ing the overall estimator for the expected value. To charac-
terize this estimator using distribution independent bounds,
a combination of the Chebyshev and Chernoff bounds can
be used:

Proposition 3 ([2]). The median Y of 2 ln( 1
α
) means,

each averaging 8
ǫ2

iid samples of the random variable X, has
the property:

P
h

|Y − E [X] | ≤ ǫ
p

Var [X]
i

≥ 1 − α

Suppose that we want to obtain 95% confidence intervals us-
ing the above bound. Then, the number of means for which
we compute the median should be 2 ln 1

.05
= 2 ln 20 ≈ 9. If

we have a memory budget n, then each mean is the average

of n
9

samples, thus ǫ =
q

72
n

≈ 8.49 ·
q

1
n
. The width of the

confidence interval in terms of
q

Var[X]
n

is thus 2 ·8.49. If we

apply the CLT theorems for means and medians, the means

will have a normal distribution with variance Var[X]
n/9

and the

median of the 9 means will have the variance 1
9e(N)

· Var[X]
n/9

,

with e(N) = 2
π

the efficiency of the normal distribution.

The variance of Y is thus 1
e(N)

· Var[X]
n

≈ 1.57 · Var[X]
n

. With

this, the width of the CLT-based confidence bound for Y

with respect to
q

Var[X]
n

is 2 · 1.25 · 2.24 = 2 · 2.8, which

is 8.49
2.8

≈ 3.03 times smaller than the confidence interval
obtained using Proposition 3.

An important point in the above derivation of the CLT
confidence bounds for Y is the fact that the confidence inter-
val is wider by

q

1
e(N)

≈ 1.25 if medians are used, compared

to the situation when the estimator is only the mean (with
no medians). This implies that the median of means estima-
tor is always inferior to the mean estimator irrespective of
the distribution. Thus, from a practical point of view based
on the efficiency of the distribution, the estimator should be
either the mean (e < 1), or the median (e > 1), but never
the median of means.

3. SKETCHES
Sketches are small-space summaries of data suited for

massive, rapid-rate data streams processed either in a cen-
tralized or distributed environment. Queries are not an-
swered precisely anymore, but rather approximately, by con-
sidering only the synopsis (sketch) of the data. Typically,
a sketch consists of multiple counters corresponding to ran-
dom variables with required properties in order to provide
answers with provable probabilistic guarantees. The existing
sketching techniques differ in how the random variables are
organized, thus the update procedure, and how the answer
to a given query is computed. In this section we provide an
overview of the existing sketching techniques.

Let S = (e1, w1), (e2, w2), . . . , (es, ws) be a data stream,
where the keys ei are members of the set I = {0, 1, . . . , N −
1} and wi represent frequencies. The frequency vector f̄ =
[f0, f1, . . . , fN−1] over the stream S consists of the elements
fi defined as fi =

P

j:ej=i wj . The key idea behind the

existing sketching techniques is to represent the domain-
size frequency vector as a much smaller sketch vector x̄f [5]
that can be easily maintained as the updates are streaming
by and that can provide good approximations for a wide
spectrum of queries.

Our focus is on sketching techniques that approximate
the size of join of two data streams. The size of join is
defined as the inner-product of the frequency vectors f̄ and
ḡ, f̄ ⊙ ḡ =

PN−1
i=0 figi. As shown in [18], this operator is

generic since other classes of queries can be reduced to the
size of join computation. For example, a range query over
the interval [α, β], i.e.,

Pβ
i=α fi, can be expressed as the

size of join between the data stream S and a virtual stream
consisting of a tuple (i, 1) for each α ≤ i ≤ β. Notice that
point queries are range queries over size zero intervals, i.e.,
α = β. Also, the second frequency moment or the self-join
size of S is nothing else than the inner-product f̄ ⊙ f̄ . The
following sections introduce the existing sketching structures
used for approximating the size of join of two data streams.

3.1 AGMS Sketches
The ith entry of the size n AGMS (or, tug-of-war) [2,

1] sketch vector is defined as the random variable xf [i] =
PN−1

j=0 fj · ξi(j), where {ξi(j) : j ∈ I} is a family of uni-
formly distributed ±1 4-wise independent random variables,
with different families being independent. The advantage of
using ±1 random variables comes from the fact that they
can be efficiently generated in small space [18]. When a new
data stream item (e, w) arrives, all the counters in the sketch
vector are updated as xf [i] = xf [i] + w · ξi(e), 1 ≤ i ≤ n.
The time to process an update is thus proportional with the
size of the sketch vector.

It can be shown that X[i] = xf [i] · xg[i] is an unbiased
estimator of the inner-product of the frequency vectors f̄

and ḡ, i.e., E [X[i]] = f̄ ⊙ ḡ. The variance of the estimator
is:

Var [X[i]] =

 

X

j∈I

f
2
j

! 

X

k∈I

g
2
k

!

+

 

X

j∈I

fjgj

!2

− 2 ·
X

j∈I

f
2
j g

2
j

(1)

By averaging n independent estimators, Y = 1
n

Pn
i=1 X[i],

the variance can be reduced by a factor of n, i.e., Var [Y ] =



Var[X[i]]
n

, thus improving the estimation error. In order to
make the estimation more stable, the original solution [2]
returned as the result the median of m Y estimators, i.e.,
Z = Median1≤k≤mY [k].

Notice the tradeoffs involved by the AGMS sketch struc-
ture. In order to decrease the error of the estimator (propor-
tional with the variance), the size n of the sketch vector has
to be increased. Since the space and the update-time are
linear functions of n, an increase of the sketch size implies
a corresponding increase of these two quantities.

The following theorem relates the accuracy of the esti-
mator with the size of the sketch, i.e., n = O( 1

ǫ2
) and

m = O(log 1
δ
).

Theorem 3 ([1]). Let x̄f and x̄g denote two parallel
sketches comprising O

`

1
ǫ2

log 1
δ

´

counters each, where ǫ and
1− δ represent the desired bounds on error and probabilistic
confidence, respectively. Then, with probability at least 1−δ,
Z ∈ (f̄ ⊙ ḡ ± ǫ||f̄ ||2||ḡ||2). The processing time required to
maintain each sketch is O

`

1
ǫ2

log 1
δ

´

per update.

||f̄ ||2 =
p

f̄ ⊙ f̄ =
q

P

i∈I f2
i is the L2 norm of f̄ and

||ḡ||2 =
√

ḡ ⊙ ḡ =
q

P

i∈I g2
i is the L2 norm of ḡ, respec-

tively.

3.2 Fast-AGMS Sketches
As we have already mentioned, the main drawback of

AGMS sketches is that any update on the stream affects
all the entries in the sketch vector. Fast-AGMS sketches [5],
as a refinement of Count sketches proposed in [4] for de-
tecting the most frequent items in a data stream, combine
the power of ±1 random variables and hashing to create a
scheme with a significantly reduced update time while pre-
serving the error bounds of AGMS sketches. The sketch
vector x̄f consists of n counters, xf [i]. Two independent
random processes are associated with the sketch vector: a
family of ±1 4-wise independent random variables ξ and a
2-universal hash function h : I → {1, . . . , n}. The role of the
hash function is to scatter the keys in the data stream to
different counters in the sketch vector, thus reducing the in-
teraction between the keys. Meanwhile, the unique family ξ

preserves the dependencies across the counters. When a new
data stream item (e, w) arrives, only the counter xf [h(e)] is
updated with the value of the function ξ corresponding to
the key e, i.e., xf [h(e)] = xf [h(e)] + w · ξ(e).

Given two parallel sketch vectors x̄f and x̄g using the same
hash function h and ξ family, the inner-product f̄ ⊙ ḡ is es-
timated by Y =

Pn
i=1 xf [i] · xg[i]. The final estimator Z is

computed as the median of m independent basic estimators
Y , i.e., Z = Median1≤k≤mY [k]. The following theorem re-
lates the number of sketch vectors m and their size n with
the error bound ǫ and the probabilistic confidence δ, respec-
tively.

Theorem 4 ([5]). Let n = O( 1
ǫ2

) and m = O(log 1
δ
).

Then, with probability at least 1−δ, Z ∈ (f̄⊙ḡ±ǫ||f̄ ||2||ḡ||2).
Sketch updates are performed in O(log 1

δ
) time.

The above theorem states that Fast-AGMS sketches provide
the same guarantees as basic AGMS sketches, while requir-
ing only O(log 1

δ
) time to process the updates and using only

one ξ family per sketch vector (and one additional hash func-
tion h). Moreover, notice that only the sketch vector size is
dependent on the error bound ǫ.

3.3 Fast-Count Sketches
Fast-Count sketches, introduced in [20], provide the er-

ror guarantees and the update time of Fast-AGMS sketches,
while requiring only one underlying random process – hash-
ing. The tradeoffs involved are the size of the sketch vec-
tor (or, equivalently, the error) and the degree of indepen-
dence of the hash function. The sketch vector consists of
the same n counters as for AGMS sketches. The differ-
ence is that there exists only a 4-universal hash function
associated with the sketch vector. When a new data item
(e, w) arrives, w is directly added to a single counter, i.e.,
xf [h(e)] = xf [h(e)] + w, where h : I → {1, . . . , n} is the
4-universal hash function.

The size of join estimator is defined as (this is a general-
ization of the second frequency moment estimator in [20]):

Y =
1

n − 1

"

n ·
n
X

i=1

xf [i] · xg[i] −
 

n
X

i=1

xf [i]

! 

n
X

i=1

xg[i]

!#

The complicated form of Y is due to the biasness of the
natural estimator Y ′ =

Pn
i=1 xf [i] · xg[i]. Y is obtained

by a simple correction of the bias of Y ′. It can be proved
that Y is an unbiased estimator of the inner-product f̄ ⊙
ḡ. Its variance is almost identical to the variance of the Y

estimator for AGMS (Fast-AGMS) sketches in (1). The only
difference is the multiplicative factor, 1

n−1
for Fast-Count

sketches, compared to 1
n

for AGMS sketches. Hence, given
desirable error guarantees, Fast-Count sketches require one
additional entry in the sketch vector. For large values of
n, e.g., n > 100, the difference in variance between AGMS
(Fast-AGMS) and Fast-Count sketches can be ignored and
the results in Theorem 4 apply.

3.4 Count-Min Sketches
Count-Min sketches [6] have almost the same structure as

Fast-Count sketches. The only difference is that the hash
function is drawn randomly from a family of 2-universal
hash functions instead of 4-universal. The update proce-
dure is identical to Fast-Count sketches, only the counter
xf [h(e)] being updated as xf [h(e)] = xf [h(e)] + w when the
item (e, w) arrives. The size of join estimator is defined in
a natural way as Y =

Pn
i=1 xf [i] · xg[i] (notice that Y is

actually equivalent with the above Y ′ estimator). It can be
shown that Y is an overestimate of the inner-product f̄ ⊙ ḡ.
In order to minimize the over-estimated quantity, the min-
imum over m independent Y estimators is computed, i.e.,
Z = Min1≤k≤mY [k]. Notice the different methods applied
to correct the bias of the size of join estimator Y ′. While
Fast-Count sketches define an unbiased estimator Y based
on Y ′, Count-Min sketches select the minimum over multiple
such overestimates.

The relationship between the size of the sketch and the
accuracy of the estimator Z is expressed by the following
theorem:

Theorem 5 ([6]). Z ≤ f̄ ⊙ ḡ + ǫ||f̄ ||1||ḡ||1 with proba-
bility 1 − δ, where the size of the sketch vector is n = O( 1

ǫ
)

and the minimum is taken over m = O(log 1
δ
) sketch vectors.

Updates are performed in time O(log 1
δ
).

||f̄ ||1 =
P

i∈I fi and ||ḡ||1 =
P

i∈I gi represent the L1 norms

of the vectors f̄ and ḡ, respectively. Notice the dependence
on the L1 norm, compared to the dependence on the L2

norm for AGMS sketches. The L2 norm is always smaller



than the L1 norm. In the extreme case of uniform frequency
distributions, L2 is quadratically smaller than L1. This im-
plies increased errors for Count-Min sketches as compared
to AGMS sketches, or, equivalently, more space in order to
guarantee the same error bounds (even though the sketch
vector size is only O( 1

ǫ
)).

Sketch Size of Join
Large Small

Low Skew High Skew
AGMS 0 0 −
Fast-AGMS 0 0 −
Fast-Count 0 0 −
Count-Min − 0 −

Table 1: Expected theoretical performance. The
scale has three types of values: 0, +, and −. 0 is the
reference value corresponding to the AGMS self-join
size. − indicates worse results, while + indicates
better results.

3.5 Comparison
Given the above sketching techniques, we qualitatively

compare their expected performance based on the existing
theoretical results. The techniques are compared relatively
to the result obtained by the use of AGMS sketches for the
self-join size problem, known to be asymptotically optimal
[2]. The size of join results are considered relatively to the
product of the L2 (L1 for Count-Min) norms of the data
streams. Notice that large results correspond to the par-
ticular self-join size problem. Low skew corresponds to fre-
quency vectors for which the ratio L1

L2

is close to
√

N (uni-

form distribution), while for high skew the ratio L1

L2

is close
to 1.

Table 1 summarizes the results predicted by the theory.
Since the bounds for AGMS, Fast-AGMS, and Fast-Count
sketches are identical, they have the same theoretical be-
havior. For small size of join results, the performance of
these three methods worsens. Count-Min sketches have a
distinct behavior due to their dependency on the L1 norm.
Their performance is highly influenced not only by the size
of the result, but also by the skewness of the data. For low
skew data, the performance is significantly worse than the
performance of AGMS sketches. Since L1 ≥ L2, the theo-
retical performance for Count-Min sketches is always worse
than the performance of AGMS (Fast-AGMS, Fast-Count)
sketches.

4. STATISTICAL ANALYSIS OF SKETCH

ESTIMATORS
From a purely practical point of view, we are interested

in approximation techniques that are reasonably easy to im-
plement, are fast (i.e., small update time for the synopsis
data-structure), have good accuracy and can estimate as
precisely as possible their error through confidence intervals.
Although the same goals are followed from the theoretical
point of view, we insist on deriving simple formulae for the
error expressed in terms of asymptotic big-O notation. This
is perfectly reflected by the theoretical results we presented
in the previous section. The problem with theoretical results

is the fact that, since we always insist on simple/expressible
formulae, we might ignore details that matter at least in
some cases – the theoretical results are always conservative,
but they might be too conservative sometimes. In this sec-
tion, we explore this problem by asking the following three
questions that reflect the difference between the pragmatic
and the theoretical point of view:

• How can the theoretical bounds be used in practice to
compute confidence bounds for the actual estimates?

• How tight are the theoretical confidence bounds? We
are not only interested in tight bounds for some situ-
ations (i.e., tight in a theoretical sense), but in confi-
dence bounds that are realistic for all situations. The
golden standard we are aiming for is confidence bounds
similar to the ones for sampling techniques.

• All sketching techniques consist in combining multi-
ple independent instances of elementary sketches using
means, medians, or minimum estimators in order to
improve the accuracy. Which of the three estimators
is more efficient for each of the four sketching tech-
niques?

We use a large-scale statistical analysis based on experi-
ments in order to answer the above questions. Due to space
constraints, only the most relevant results are presented.
The plots in this section have statistical significance and are
not highly sensitive at the experimental setup (Section 5).

4.1 AGMS Sketches
As explained in Section 2.3, the mean is always preferable

to the median of means as an estimator for the expected
value of a random variable given as samples. The difference
is a 25% reduction in error if the mean is used. To produce
confidence bounds, we can use Proposition 1. The value of
the variance is either the exact one (if it can be determined)
or, more realistically, an estimate computed from the sam-
ples. The theoretical confidence bounds in Proposition 3 are
3 times wider than the CLT bounds, as explained in Sec-
tion 2.3. This discrepancy between the theoretical bounds
and the effective error was observed experimentally in [18,
8], but it was not explained.

We explore which estimator – minimum, median, or mean
– to use for AGMS sketches. In order to accomplish this
task, we plotted the distribution of the basic estimator for
a large spectrum of problems. Figure 1 is a generic example
for the form of the distribution. It is clear from this figure
that both the minimum and the median are poor choices.
The median is a poor choice because the distribution of the
elementary AGMS sketches is not symmetric and there ex-
ists a variable gap between the mean and the median of the
distribution, gap that is not easily to compute and, thus,
to compensate for. In order to verify that the mean is the
optimal estimator (as the theory predicts), we plot its dis-
tribution for the same input data (Figure 2). As expected,
the distribution is normal and its expected value is exactly
the true result.

4.2 Fast-AGMS Sketches
Comparing Theorem 3 and 4 that characterize the AGMS

and the Fast-AGMS (F-AGMS) sketches, respectively, we
observe that the predicted accuracy is identical, but Fast-
AGMS have significantly lower update time. The lower up-
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Figure 3: F-AGMS distribution

date time and the same theoretical accuracy immediately
indicate that F-AGMS should be preferred to AGMS. In
the previous section, we saw a discrepancy of a factor of 3
between the theoretical bounds and the CLT-based bounds
for AGMS sketches and the possibility of a 25% improve-
ment if medians are replaced by means. In this section, we
investigate the statistical properties of F-AGMS sketches in
order to determine possibly tighter confidence bounds and,
thus, improve the error.

We start the investigation on the statistical properties of
Fast-AGMS sketches with the following result that is used
in the proof of Theorem 4:

Proposition 4 ([5]). Let X be the Fast-AGMS esti-
mator obtained with a family of 4-universal hash functions
h : I → B and a 4-wise independent family ξ of ±1 random
variables. Then,

Eh,ξ[X] = E[XAGMS]

Eh[V arξ[X]] =
1

B
V ar[XAGMS]

The first two moments of the elementary Fast-AGMS sketch
coincide with the first two moments of the average of B el-
ementary AGMS sketches (in order to have the same space
usage). This is a somewhat unexpected result since it sug-
gests that the hashing plays the same role as averaging
when it comes to reducing the variance. This might suggest
that the transformation on the distribution of elementary F-
AGMS sketches is the same, i.e., the distribution becomes
normal and the variance is reduced by the number of buck-
ets. The following result gives the first discrepancy between
Fast-AGMS and AGMS sketches:

Proposition 5. With the same setup as in Proposition 4,
we have:

V arh[V arξ[X]] =
B − 1

B2
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The moment V arh[V arξ[X]] is a lower bound on the fourth
moment of X, for which we cannot derive a nice closed-form
formula since the ξ family is only required to be 4-wise inde-
pendent and 8-wise independence in needed to remove the
dependency of the formula on the actual generating scheme.

Also, if the hash function h is only 2-universal, instead of
4-universal, even more terms are added to the expression,
thus the fourth moment is even higher, resulting in higher
efficiency – a desirable outcome. To see why the distribu-
tion of Fast-AGMS can be highly different when compared
to the distribution of B averages of AGMS sketches, we
estimate the kurtosis of the distribution of the elementary
Fast-AGMS sketch and compare it with 3, the value of the
kurtosis for the average of B elementary AGMS sketches
(by CLT the mean distribution is normal, thus its kurtosis
is 3). From Figure 4, that depicts the experimental kurto-
sis and its lower bound in Proposition 5, we observe that
when the Zipf coefficient is larger than 1, the kurtosis grows
significantly, to the point that it is around 1000 for a Zipf
coefficient equal to 5. Using the discussion in Section 2.2.2,
starting with Zipf coefficients greater than 1, the median
estimator should be preferred, as long as the distribution is
(almost) symmetric.

From the above discussion, it seems that the distribu-
tions of Fast-AGMS and averages of AGMS are highly dif-
ferent, even though their first two moments coincide. The
large kurtosis of Fast-AGMS suggests that the distribution
has heavy tails. Indeed, Figure 2 and 3 confirm experimen-
tally these observations. Since the bulk of the distribution
for Fast-AGMS occupies much smaller space around the ex-
pected value than the bulk of the distribution for averages of
AGMS, we expect the efficiency of Fast-AGMS to be large
and, thus, the performance to be significantly better for
large Zipf coefficients when compared to AGMS. It seems
that for Fast-AGMS, as opposed to AGMS, it is preferable
to use median as the estimator instead of the mean, since
for small Zipf coefficients the distribution of Fast-AGMS is
almost normal, thus the error is increased by only 25%, but
for large Zipf coefficients the error of the median estimator
could be substantially smaller compared to the error of the
mean estimator.

The error bounds given by Theorem 4 are likely to be far
too conservative since, as we explained above, Fast-AGMS
sketches could significantly outperform AGMS sketches due
to the large efficiency expected for Zipf coefficients greater
than 1. Figure 5 confirms the huge gap (as much as 10 orders
of magnitude) that exists between the predicted theoretical
error and the experimental error. To obtain practical error
bounds for Fast-AGMS sketches, we can use the estimator
in Section 2.2.3. In Figure 6, we compare the error (95%
quantile error) computed by Theorem 4 with that gener-
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Figure 5: F-AGMS error comparison
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Figure 6: F-AGMS bounds

ated by Proposition 2, and the error measured experimen-
tally. We observe two important facts from these results:
(1) the prediction given by Theorem 4 is poor for large Zipf
coefficients and (2) the prediction given by Proposition 2 is
always accurate. An important difference though is the fact
that Proposition 2 does not provide an apriori prediction
based on properties of the distribution, but rather estimates
the error from the same ingredients (instances of elementary
sketches) as the estimator does. Theorem 4, at least in prin-
ciple, can be used to make apriori predictions if the second
frequency moments of the two streams are known.

4.3 Count-Min Sketches
Based on Theorem 5, we expect Count-Min (CM) sketches

to have error proportional with the product of the sizes of the
two streams and inversely proportional with the number of
buckets of the sketch structure. This is the only sketch that
has error dependencies on the size of the streams (the first
frequency moment or L1 norm), not the second frequency
moment, and the amount of memory (number of hashing
buckets), not the squared root of the amount of memory.
The dependency on the first frequency moment is worse than
the dependency on the squared root of the second frequency
moment since the first is always larger or equal than the
second. On the other hand, the dependency on the amount
of memory is favorable to Count-Min sketches. Based on the
theory, we would expect Count-Min sketches to have weak
performance for relations with small skew, but comparable
performance (not much better though) for skewed relations.

Since the statistical analysis for AGMS and Fast-AGMS
was fruitful, we perform a similar investigation for Count-
Min. We start with the moments of the estimator:

Proposition 6 ([6]). If XCM is the elementary Count-
Min estimator then:

E[XCM ] =
X

i∈I

figi +
1

B

 

X

i∈I

fi

X

j∈I

gj −
X

i∈I

figi

!

V ar[XCM ] =
1

B
V ar[XAGMS ]

The estimator XCM always overestimates the true result –
that is why the minimum is chosen. The proof of Theo-
rem 5 in [6] essentially uses the fact that on average the
extra-amount in XCM is 1

B

P

i∈I fi

P

j∈I gj (if the quan-

tity
P

i∈I figi is neglected). Interestingly, the variance of
the estimator coincides with the variance of averages of B

AGMS sketches and the variance of Fast-AGMS sketches.
The fundamental difference is that XCM is biased.

When the extra-term 1
B

P

i∈I fi

P

j∈I gj is significantly

larger than
q

1
B

V ar[XAGMS ] (i.e., the extra-term in the ex-

pectation is larger than the standard deviation), we expect
the distribution of XCM to look like a normal distribution.
In such a case, the minimum is just slightly better than the
mean and the error is around 1

B

P

i∈I fi

P

j∈I gj , as pre-
dicted by the theory. This regime coincides with the situa-
tion in which Count-Min sketches have worse performance
compared to the other three methods (the conservative er-

ror for all the other methods is
q

1
B

V ar[XAGMS ]). When

the extra-term in the expectation of XCM is smaller than
the standard deviation, the distribution of XCM starts to
be severely skewed to the left. The right side of the distri-
bution becomes extremely short, to the point it completely
disappears. This starts to happen for the self-join size prob-
lem for Zipf coefficients larger than 1. Figure 8 depicts the
distribution of XCM for Zipf equal to 1 – the phenomenon
we described just started to happen. For distributions that
have this shape, the peak and the left side are far from the
expected value due to the heavy right tail. For this reason,
the minimum statistic used by the XCM estimator behaves
much better than predicted by the theory (that suggests that
it is close to the expected value). For large Zipf coefficients,
when there is a significant probability for the prediction to
be perfect, the minimum gives a perfect prediction. To in-
vestigate the extent to which Count-Min sketches behave
better than the theory predicts, we depicted in Figure 7 the
ratio of the theoretical and the actual error for datasets with
different Zipf and correlation coefficients (see Section 5). As
it can be observed from these results, the theoretical pre-
diction is much larger than the actual error for large Zipf
coefficients.

Unfortunately, as opposed to the median estimator, deter-
mining error bounds for the minimum estimator is extremely
hard and essentially requires perfect knowledge of the distri-
bution. For the situation when the Zipf coefficient is large,
since the difference between the error of the minimum and
the expected value can be significant, extremely precise in-
formation about the distribution is required to produce rea-
sonable error bounds. We could not find any solution to
obtain such precise information that would allow us to pro-
vide tight confidence bounds for the minimum estimator.

4.4 Fast-Count Sketches
The Fast-Count (FC) elementary estimator is essentially

the bias-corrected version of the Count-Min elementary es-
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Figure 7: CM error comparison
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Figure 8: CM distribution

p
d
f

1e+10 2e+10 3e+10 4e+10 5e+10

0
e
+

0
0

2
e
−

1
0

4
e
−

1
0

6
e
−

1
0

Figure 9: FC distribution

timator. The bias correction is a translation by bias and a
scaling by the factor B

B−1
. This can be observed by compar-

ing Figure 8 and 9 that show the distribution of Count-Min
and Fast-Count sketches, respectively, for the self-join size
problem with Zipf coefficient equal to 1. The major differ-
ence is that Fast-Count elementary sketches are unbiased,
while Count-Min sketches are not. Since the distribution can
be skewed, there could be a significant difference between
the median and the expected value, thus medians cannot be
used as an estimate for the expected value. Minimum is not
useful either since it will be severely biased, which leaves
only the mean as a viable estimator for the expected value
in the case of Fast-Count sketches.

If the mean is used to combine the elementary Fast-Count
sketches, the resulting estimator has almost (the difference is
only B

B−1
) the same variance as averages of AGMS sketches.

Since the distribution of Fast-Count is skewed and the num-
ber of elementary sketches that are averaged is usually only
in the tens (for efficiency reasons), we do not expect the
distribution to be close enough to normal. For this reason,
it is safer to use the Chebyshev inequality to give confi-
dence bounds instead of CLT, which gives bounds only 40%
wider for 95% confidence intervals. From a practical point
of view, we expect the estimation using Fast-Count sketches
to have slightly larger fluctuations but essentially the same
error behavior as the AGMS sketches. This is confirmed
by the experimental results we present in Section 5. This
immediately suggests that Fast-Count sketches should be
preferred to AGMS sketches since they have essentially the
same error but much better update time.

5. EMPIRICAL EVALUATION
The main purpose of the experimental evaluation is to

validate and complement the statistical results we obtained
in Section 4 for the four sketching techniques. The specific
goals are: (1) establish the relative accuracy performance
of the four sketching techniques for various problems, and
(2) determine the actual update performance. Our main
tool in establishing the accuracy of sketches is to measure
their error on synthetic datasets for which we control both
the skew, via the Zipf coefficient, and the correlation. This
allows us to efficiently cover a large spectrum of problems
and to draw insightful observations about the performance
of sketches. We validate the findings on real-life data sets
and other synthetic data generators.

The main findings of the study are:

• AGMS and Fast-Count (FC) sketches have virtually
identical accuracy throughout the spectrum of prob-
lems if only averages are used for AGMS. FC sketches
are preferable since they have significantly smaller up-
date time.

• The performance of Count-Min sketches is strongly de-
pendent on the skew of the data. For small skew, the
error is orders of magnitude larger than the error of the
other types of sketches. For large skew, CM sketches
have the best performance – much better than AGMS
and FC.

• Fast-AGMS (F-AGMS) sketches have error at most
25% larger than AGMS sketches for small skew, but
the error is orders of magnitude (as much as 6 orders
of magnitude for large skew) smaller for moderate and
large skew. Their error for large skew is slightly larger
than the error of CM sketches.

• All sketches, except CM for small skew, are practical in
evaluating self-join size queries. This is to be expected
since AGMS sketches are asymptotically optimal [2]
for this problem. For size of join problems, F-AGMS
sketches remain practical well beyond AGMS and FC
sketches. CM sketches have good accuracy as long as
the data is skewed.

• F-AGMS, FC, and CM sketches (all of them are based
on random hashing) have fast and comparable update
performance, ranging between 50 − 400 ns.

5.1 Testbed and Methodology

Sketch Implementation. We implemented a generic frame-
work that incorporates the sketching techniques mentioned
throughout the paper. Algorithms for generating random
variables with limited degree of independence [14, 18] are at
the core of the framework. Since the sketching techniques
have a similar structure, they are designed as a hierarchy
parameterized on the type of random variables they employ.
Applications have only to instantiate the sketching struc-
tures with the corresponding size and random variables, and
to call the update and the estimation procedures.

Data Sets. We used two synthetic data generators and one
real-life data set in our experiments. The data sets cover an
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Figure 10: Self-join size
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Figure 11: Self-join size (log scale)
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Figure 12: Timing results
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Figure 13: Size of join (Zipf=0.8)
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Figure 14: Size of join (Zipf=1.5)
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Figure 15: Size of join (Zipf=3.0)

extensive range of possible inputs, thus allowing us to infer
general results on the behavior of the compared sketching
techniques.

Census data set [7]. This real-life data set was ex-
tracted from the Current Population Survey (CPS) data
repository, which is a monthly survey of about 50, 000 house-
holds. Each month’s data contains around 135, 000 tuples
with 361 attributes. We ran experiments for estimating the
size of join on the weekly wage (PTERNWA) numerical at-
tribute with domain size 288, 416 for the surveys correspond-
ing to the months of September 2002 (15, 563 records) and
September 2006 (14, 931 records)4.

Estan’s et al. [9] synthetic data generator. Two
tables with approximately 1 million tuples each with a Zipf
distribution for the frequencies of the values are randomly
generated. The values are from a domain with 5 million val-
ues, and for each of the values its corresponding frequency is
chosen independently at random from the distribution of the
frequencies. We used in our experiments the memory-peaked
(Zipf=0.8) and the memory-unpeaked (Zipf=0.35) data sets.

Synthetic data generator. We implemented our syn-
thetic data generator for frequency vectors. It takes into
account parameters such as the domain size, the number
of tuples, the frequency distribution, and the correlation
(decor = 1 − correlation) coefficient. Out of the large vari-
ety of data sets that we conducted experiments on, we focus
in this paper on frequency vectors over a 214 = 16, 384 size
domain that contain 1 million tuples and having Zipf distri-
butions (the Zipf coefficient ranges between 0 and 5). The
degree of correlation between two frequency vectors varies
from full correlation to complete independence.

4After eliminating the records with missing values.

Answer-Quality Metrics. Each experiment is performed

100 times and the average relative error, i.e., |actual−estimate|
actual

,
over the number of experiments is reported. In the case of
direct comparison between two methods, the ratio between
their average relative errors is reported. Although we per-
formed the experiments for different sketch sizes, the results
are reported only for a sketch structure consisting of 21 vec-
tors with 1024 counters each (n = 1024, m = 21), since the
same trend was observed for the other sketch sizes.

5.2 Results

Self-Join Size Estimation. The behavior of the sketching
techniques for estimating the self-join size as a function of
the Zipf coefficient of the frequency distribution is depicted
in Figure 11 on a logarithmic scale. Figure 10 is a focused
view of the same results. As expected, the errors of AGMS
and FC sketches are similar (the difference for (close to) uni-
form distributions is due to the EH3 [18] random number
generator). While F-AGMS has almost the same behavior
as FC (AGMS) for small Zipf coefficients, the F-AGMS er-
ror is drastically decreasing for Zipf coefficients larger than
0.8. These are due to the effect the median estimator has
on the distribution of the predicted results: for small Zipf
coefficients the distribution is normal, thus the performance
of the median estimator is approximately 25% worse, while
for large Zipf coefficients the distribution is focused around
the true result (Section 4). CM sketches have extremely
poor performance for distributions (close to) uniform. This
can be explained theoretically by the dependency on the L1

norm, much larger than the L2 norm in this regime. In-
tuitively, uniform distributions have multiple non-zero fre-



quencies that are hashed into the same bucket, thus highly
over-estimating the predicted result. The situation changes
dramatically at high skew when it is highly probable that
each non-zero frequency is hashed to a different bucket, mak-
ing the estimation almost perfect. Based on these results, we
can conclude that F-AGMS is the best (or close to the best
– less than 1%) sketch estimator for computing the second
frequency moment, irrespective of the skew.

Join Size Estimation. In order to determine the perfor-
mance of the sketching techniques for estimating the size of
join, we conducted experiments based on the Zipf coefficient
and the correlation between the two frequency vectors. A
correlation coefficient of 0 corresponds to two identical fre-
quency vectors (self-join size). For a correlation coefficient
of 1, the frequencies in the two vectors are completely shuf-
fled. The results for different Zipf coefficients are depicted
in Figure 13, 14, and 15 as a function of the correlation.
It can be clearly seen how the relation between the sketch
estimators is changing as a function of the skew (behavior
identical to the self-join size). Moreover, it seems that the
degree of correlation is affecting similarly all the estimators
(the error increases as the degree of correlation is increas-
ing), but it does not affect the relative order given by the
Zipf coefficient. The same findings are reinforced in Fig-
ure 16, 17, and 18 which depict the relative performance,
i.e., the ratio of the average relative errors, between pairs
of estimators for computing the size of join. Consequently,
we conclude that, as in the case of self-join size, the Zipf
coefficient is the only parameter that influences the relative
behavior of the sketching techniques for estimating the size
of join of two frequency vectors.

Memory Budget. The accuracy of the sketching methods
(AGMS is excluded since its behavior is identical to FC) as a
function of the space available (in number of counters) is rep-
resented in Figure 19 and 20 for Estan’s synthetic data sets,
and in Figure 21 for the census real-life data set. The error
of CM sketches is orders of magnitude worse than the error
of the other two methods for the entire range of available
memory (due to the low skew). The accuracy of F-AGMS
is comparable with that of FC for low skew data, while for
skewed data F-AGMS is clearly superior. Notice that the
relative performance of the techniques is not dependent on
the memory budget.

Update Time. The goal of the timing experiment is to clar-
ify if there exist significant differences in update time be-
tween the hash sketches since the random variables they use
differ. As shown in Figure 12, all the schemes have com-
parable update time performance, CM sketches being the
fastest, while FC sketches are the slowest. Notice that the
relative gap between the schemes shrinks when the number
of counters is increasing since more references are made to
the main memory. As long as the sketch vector fits into the
cache, the update rate is extremely high (around 10 million
updates can be executed per second on the test machine5),
making hash sketches a viable solution for high-speed data
stream processing.

5The results in Figure 12 are for a Xeon 2.8 GHz processor
with 512 KB of cache. The main memory is 4 GB wide.

Sketch Size of Join
Large Small

Low Skew High Skew
AGMS 0 0 −
Fast-AGMS 0 + +
Fast-Count 0 0 −
Count-Min − + +

Table 2: Expected statistical/empirical performance
(same scale as Table 1).

6. DISCUSSION
As we have seen, the statistical and empirical study in

this paper paints a different picture than suggested by the
theory (see Table 1). Table 2 summarizes these results qual-
itatively and indicates that on skewed data, F-AGMS and
CM sketches have much better accuracy than expected.

The statistical analysis in Section 4 revealed that the the-
oretical results for Fast-AGMS (F-AGMS) and Count-Min
(CM) sketches do not capture the significantly better accu-
racy with respect to AGMS and Fast-Count (FC) sketches
for skewed data. The reason there exists such a large gap
between the theory and the actual behavior is the fact that
the median, for F-AGMS, and the minimum, for CM, have a
fundamentally different behavior than the mean on skewed
data. This behavior defies statistical intuition since most
distributions that are encountered in practice have relatively
small kurtosis, usually below 20. The distributions of ap-
proximation techniques that use hashing on skewed data can
have kurtosis in the 1000 range, as we have seen for F-AGMS
sketches. For these distributions, the median, as an estima-
tor for the expected value, can have error 106 smaller than
the mean.

An interesting property of all sketching techniques is that
the relationship between their accuracy does not change sig-
nificantly when the degree of correlation changes, as indi-
cated by Figure 16, 17, and 18. The relationship is strongly
influenced by the skew though, which suggests that the na-
ture of the individual relations, but not the interaction be-
tween them, dictates how well sketching techniques behave.

The relationship between sketches in Figure 16, 17, and
18 also indicates that F-AGMS sketches essentially work as
well as AGMS and FC for small skew and just slightly worse
than CM for large skew. It seems that F-AGMS sketches
combine in an ideal way the benefits of AGMS sketches and
hashes and give good performance throughout the spectrum
of problems without the need to determine the skew of the
data. While CM sketches have better performance for large
skew, their use seems riskier since their performance outside
this regime is poor and their accuracy cannot be predicted
precisely for large skew. It seems that, unless extremely
precise information about the data is available, F-AGMS
sketches are the safe choice.

7. CONCLUSIONS
In this paper we studied the four basic sketching tech-

niques proposed in the literature, AGMS, Fast-AGMS, Fast-
Count, and Count-Min, from both a statistical and empir-
ical point of view. Our study complements and refines the
theoretical results known about these sketches. The anal-
ysis reveals that Fast-AGMS and Count-Min sketches have
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Figure 16: F-AGMS vs FC
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Figure 17: F-AGMS vs CM
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Figure 18: CM vs FC
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Figure 19: Memory unpeaked
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Figure 20: Memory peaked
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Figure 21: Census

much better performance than the theoretical prediction for
skewed data, by a factor as much as 106 − 108 for large
skew. Overall, the analysis indicates strongly that Fast-
AGMS sketches should be the preferred sketching technique
since it has consistently good performance throughout the
spectrum of problems. The success of the statistical analysis
we performed indicates that, especially for estimators that
use minimum or median, such analysis gives insights that
are easily missed by classical theoretical analysis. Given the
good performance, the small update time, and the fact that
they have tight error guarantees, Fast-AGMS sketches are
appealing as a practical basic approximation technique that
is well suited for data-stream processing.
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