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ABSTRACT

Exact computation for aggregate queries usually requires
large amounts of memory — constrained in data-streaming —
or communication — constrained in distributed computation
— and large processing times. In this situation, approxima-
tion techniques with provable guarantees, like sketches, are
the only viable solution. The performance of sketches cru-
cially depends on the ability to efficiently generate partic-
ular pseudo-random numbers. In this paper we investigate
both theoretically and empirically the problem of generating
k-wise independent pseudo-random numbers and, in partic-
ular, that of generating 3 and 4-wise independent pseudo-
random numbers that are fast range-summable (i.e., they
can be summed up in sub-linear time). Our specific con-
tributions are: (a) we provide an empirical comparison of
the various pseudo-random number generating schemes, (b)
we study both theoretically and empirically the fast range-
summation practicality for the 3 and 4-wise independent
generating schemes and we provide efficient implementations
for the 3-wise independent schemes, (c) we show convincing
theoretical and empirical evidence that the extended Ham-
ming scheme performs as well as any 4-wise independent
scheme for estimating the size of join using AMS-sketches,
even though it is only 3-wise independent. We use this gen-
erating scheme to produce estimators that significantly out-
perform the state-of-the-art solutions for two problems — size
of spatial joins and selectivity estimation.

1. INTRODUCTION

Exact computation for aggregate queries usually requires
large amounts of memory — constrained in data-streaming —
or communication — constrained in distributed computation
— and large processing times. In this situation, approxima-
tion techniques with provable guarantees that can be main-
tained over data-streams or that can be used for estima-
tions in distributed environments are the only viable solu-
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tion. Due to their linearity, AMS-sketches [4] have all these
properties and they have been successfully used for the esti-
mation of aggregates like the size of join over data-streams
[3, 8] and for computations in distributed environments like
sensor networks [17]. AMS-sketches depend on the ability to
efficiently generate large families of random variables with
particular properties: limited degree of independence and,
for applications in which the input is specified as a set of
intervals, fast range-summation (i.e., the ability to sketch
an interval in time sub-linear in the size of the interval). As
we show in this paper, the last property is especially use-
ful when AMS-sketches are applied for solving problems like
size of spatial joins [7], L*-difference of two vectors [10],
and selectivity estimation for the dynamic construction of
histograms [22] over data-streams or in a distributed envi-
ronment.

In this paper we investigate both theoretically and empir-
ically the known methods for generating random variables
used by the AMS-sketches with the goal of identifying the
generating schemes that are practical, both for the tradi-
tional application of AMS-sketches, i.e., aggregate compu-
tation over streaming data, and for applications that involve
interval inputs. More specifically, our contributions are:

e We provide an empirical comparison of the various
generating schemes with the goal of identifying the ef-
ficient ones. To this, we explain how the schemes can
be implemented on modern processors and we use such
implementations to empirically evaluate the generat-
ing schemes. The main conclusion of this study is that
the schemes based on BCH codes need the smallest
seeds and have the most efficient implementations.

e We provide a detailed study of the practicality of fast
range-summation for the known generating schemes.
We show that no 4-wise independent generating scheme
is practical, even though the scheme based on Reed-
Muller codes can be theoretically range-summed in
sub-linear time [6]. Two of the 3-wise independent
schemes, the 3-wise BCH scheme and the extended
Hamming scheme [10], are practical. For both, we
explain how they can be efficiently implemented and
we conduct an empirical study to determine their per-
formance.

e We show, both theoretically and empirically, that the
extended Hamming scheme (EH3) [10] is as good, and
sometimes much better, than any 4-wise independent
generating scheme for estimations using AMS-sketches.
The fact that EH3 gets within a constant factor of



the error of the 4-wise independent schemes for the
problem of computing the L*-difference of two stream-
ing vectors was theoretically proved by Feigenbaum
et al. [10]. Here we show a significantly stronger
result, namely that EH3 can always replace the 4-
wise independent schemes for estimations using AMS-
sketches without sacrificing accuracy. Moreover, EH3
has two clear advantages: it can be implemented more
efficiently and, more important, it is practically fast
range-summable. We show that the estimation of the
size of spatial joins using EH3 has significantly smaller
errors than the solution proposed in [7].

In the rest of the paper, we first give some introductory
notions in Section 2, then we discuss the known generat-
ing schemes for random variables with limited independence
in Section 3. In Section 4 we investigate which generating
schemes are fast range-summable from a practical point of
view. In Section 5 we provide theoretical proof that the ex-
tended Hamming generating scheme (EH3) works as well as
the 4-wise independent schemes with the added benefit that
it is fast range-summable. We provide empirical evidence
of this fact in Section 6 together with a thorough compar-
ison of the estimations using EH3 and the 4-wise schemes
on two applications with previously proposed solutions. We
conclude in Section 7.

2. PRELIMINARIES

In this section we give some preliminaries that are useful
for understanding the rest of the paper.

2.1 Random Sketches

Sketches [3] are randomized schemes for approximating
aggregates such as the size of join. They are particularly
suited when the computation is memory restricted — in the
case of data-streams — or communication restricted — in the
case of distributed systems such as sensor networks.

To introduce a sketch-based solution, consider the prob-
lem of computing the size of the natural join of two relations,
R and S, each with a single attribute A, |R X4 S|. If we
let I to be the domain of the attribute A and r; and s; to
be the frequency of the value ¢ € I in R and S, respec-
tively, the size of join problem is to estimate the quantity
|[RMy S| =3, risi- The straightforward solution to this
problem is to maintain the frequency vectors 7 and 3§ and
then to compute the size of join. Such a solution would not
work if the amount of memory or the communication band-
width is smaller than |I|. The solution based on sketches is
defined as follows:

1. Start with a family of 4-wise independent +1 random
variables &;,¢ € I (i.e., any four random variables in
the family are independent,).

2. Define the sketches Xr =37, 7:& = 3_,cp &t and,
similarly, Xs = Zié[ si&i = Zzes £t.a.

3. Define the random variable X = XrXs. X has the
properties that it is an unbiased estimator for the size
of join |R M4 S| and that it has small variance. An
estimator with relative error at most € with probability
at least 1 — § can be obtained by taking medians of
averages of multiple independent copies of the random
variable X; the number of medians is proportional to

log %, while the number of averaged random variables
Var(X)
e2E[X]?"

is proportional to

Sketches are perfectly suited for both data-streaming and
distributed communication since they can be updated on
pieces. For example, if the tuples in the relation R are
streamed one by one, Xr can be computed by simply adding
the value &;, where 7 is the value of the current item. For dis-
tributed computation, each party can compute the sketch of
the data it owns; by exchanging only the value of the sketch
with the other parties and simply adding up the sketches,
the sketch of the entire data can be obtained.

The type of sketch described here uses +1 random vari-
ables. £1 values can be obtained by simply generating ran-
dom bits with required properties and then interpreting the
{0,1} values as +1. The minimum requirement for this fam-
ily of random variables is to be 2-wise independent, which
ensures that X is an unbiased estimator for the size of join.
The stronger 4-wise independence property is usually re-
quired in order to make the variance as small as possible,
which reduces the number of copies of X that need to be
averaged in order to achieve a given precision.

The above sketches using +1 random variables with lim-
ited independence can be extended so that results of large
classes of queries can be approximated. For example, Do-
bra et al. [8] show how to extend the sketches to compute
complex aggregates over general equi-joins, Das et al. [7]
show how to approximate the size of spatial joins, Ganguly
et al. [11] show how to compute aggregates over expres-
sions involving set operators. What all these schemes have
in common is the dependency on +1 random variables and
the fact that a certain amount of independence is required
in order to keep the variance small. For applications such
as spatial joins an extra property is required for the random
variables: fast range-summation, i.e., the ability to compute
> icla,p i for arange [a, B] in time sub-linear in the size of
the range.

2.2 Abstract Algebra

As mentioned in the previous section, +1 random vari-
ables with limited independence can be obtained by generat-
ing {0, 1} random variables and mapping them to +1. Since
{0,1} are the only elements of the Galois Field with order 2,
denoted by GF(2), abstract algebra is the ideal framework
in which to talk about the generation of families of random
variables with limited independence. The field GF(2) has
two operations: addition (boolean XOR) and multiplication
(boolean AND). Abstract algebra provides two ways to ex-
tend the field GF(2): wvector spaces and extension fields.
Both these extensions are useful for generating limited in-
dependence +1 random variables.

GF(Z)’“ Vector Spaces are spaces obtained by bundling
together k dimensions, each with a GF(2) domain. The
only operation we are interested in here is the dot product

between two vectors v and u, defined as: v-u = EB?;SUJ' Ou;j.

For GF(Z)’C vector spaces this corresponds to AND-ing the
arguments and then XOR-ing all the resulting bits.

GF(p) Prime Fields are fields over the domain {0, 1,...,p—
1} with both the multiplication and the addition defined as
the arithmetic multiplication and addition modulo the prime
p.

GF(2%) Egtension Fields are fields defined over the do-
main {0,1,...,2" — 1} that have two operations: addition,



+, with zero element 0, and multiplication, -, with unity
element 1. Both addition and multiplication have to be as-
sociative and commutative. Also, multiplication is distribu-
tive over addition. All the elements, except 0, must have an
inverse with respect to the multiplication operation. The
usual representation of the extension fields GF(2*) is as
polynomials of degree kK — 1 with the most significant bit
as the coefficient for 71 and the least significant as the
constant term. The addition of two elements is simply the
addition, term by term, of the corresponding polynomials.
The multiplication is the polynomial multiplication modulo
an irreducible polynomial of degree k that defines the exten-
sion field. With this representation, the addition is simple
(just XOR the bit representations), but the multiplication
is more intricate since it requires both polynomial multipli-
cation and division.

2.3 Dyadic Intervals

As mentioned in Section 2.1, there exist applications re-
quiring the 1 limited independence random variables to be
range-summable. One strategy to design such random vari-
ables is first to achieve range-summation for special intervals
and then to extend it to general intervals. Dyadic intervals
[13] are particularly useful for this purpose. Given a domain
I of size |I| = 2", its dyadic intervals are all the intervals of
the form [q27, (¢ + 1)27) with 0 < j < nand 0 < ¢ < 2",
A graphical representation of the dyadic intervals defined
over the domain I = {0, ...,15} is depicted in Figure 1.
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Figure 1: The set of dyadic intervals over the domain
I={0,1,...,15}

Any interval [a, 8] on I has a unique minimal decomposi-
tion — minimal dyadic cover — into at most 2n — 1 dyadic in-
tervals. If a fast range-summable algorithm exists for dyadic
intervals, then it can be extended to arbitrary intervals by
simply summing up the contribution of each dyadic interval;
the running time increases by at most a logarithmic fac-
tor. The minimal dyadic cover of [, 5] can be determined
straightforwardly from the binary representation on n bits
of the end-points of the interval. This allows an efficient
implementation of the algorithms that use dyadic interval
decomposition on modern processors.

3. GENERATING SCHEMES

Based on the published literature [4], AMS-sketches de-
scribed in Section 2 need 1 4-wise independent random
variables that can be generated in small space in order to
produce correct estimations. We address the problem of
whether the 4-wise independence is actually required later
in the paper, but the 2-wise independence is a minimum

requirement since otherwise the estimator is not even un-
biased. In this section we review a number of generating
schemes that are either 2-wise! or 4-wise independent and
we discuss how they can be implemented on modern pro-
cessors. In the subsequent sections we refer back to these
generating schemes.

In order to be space efficient, all the schemes have the
following form:

&(8) = (-0, ier (1)

where S is a random seed from some space, to be speci-
fied later, and function f can be efficiently computed from
¢ and S (polynomial in the representation). Since a &; is
required for every different value in a large domain, e.g.,
I ={0,...,2%% — 1}, generating methods that depend on
small seeds are crucial for the success of sketching meth-
ods. Fortunately, there are several methods to generate £
families from small seeds. An important characteristic of
a generating scheme is the degree of independence. Since
all the schemes are required to produce the values £1 with
the same probability, the k-wise independence requirement
of a generating scheme can be expressed by the following
definition [6]:

DEFINITION 1 (UNIFORM k-WISE INDEPENDENT FAMILY).
A family € of £1 random variables defined over the sample
space I is k-wise uniform independent if for any k differ-
ent instances of the family, & ,&,,...,&,, and any k £1
values, v1,v2,...,Vk, we have:

Prig, =vi A€y, =va A A&, =u] =275 (2)
In order to show that a scheme defined by a particular func-
tion f(S,4) is uniform k-wise independent, it is enough to
show this property holds for the bits generated by f(S,1),
which simplifies the exposition. This is the case since (—1)°
maps 0 into 1 and 1 into —1.

Throughout this section we make extensive use of the no-
tation in Section 2.2, in particular the dot product over
vector spaces. Before we introduce the known generating
schemes, we identify two common points of the majority of
the schemes. First, a large number of schemes use dot prod-
ucts in vector spaces. Dot products can be implemented by
simply AND-ing the two vectors and XOR-ing the result-
ing bits. While AND-ing entire words (integers) on mod-
ern architectures is extremely fast, XOR-ing the bits of a
word (which has to be performed eventually) is problematic
since no high-level programming language supports such an
operation (this operation is actually the parity bit compu-
tation). To speed up this operation, which is critical, we
implemented it in Assembly for Pentium processors to take
advantage of the supported 8-bit parity computation. The
second point we make is that all the schemes need uniform
random seeds from spaces of the form {0,...,2" —1}. These
seeds can be generated by simply choosing n uniformly in-
dependent bits and combining them to form the binary rep-
resentation of the seed.

For all the schemes, we assume the domain to be I =
{0,...,2"—1} for a generic n (the description of the schemes
depends on n). We also make the convention that [a,b] is

! Any 2k-wise independent scheme can be transformed into
a (2k + 1)-wise scheme by simply XOR-ing the result with
an extra random seed bit [14].



equivalent with the vector obtained by concatenating the
vectors a and b. The size of a, b, and [a, b] will be clear from
the context.

3.1 BCH Scheme

The BCH scheme was first introduced in [2] and it is based
on BCH codes. This scheme can generate k-wise indepen-
dent random variables by using uniformly random seeds S
that are kn + 1 bits in size and has the function f(S,7) de-
fined as:

f(S,i)=5-[1,4,...,i* " (3)

where 1 is a bit and i?* 7! is computed in the extension field

GF(2™). This scheme comes close to the theoretical bound
based on Rao’s inequalities [14] on how small the seed space
can be — it is the scheme with the smallest seed requirement
amongst all the known schemes. The proof that this scheme
produces (2k + 1)-wise independent families can be found in
[2].

Implementing i**~! over finite fields is problematic on
modern processors if speed is paramount, but in the special
case when only 3-wise independence is required this problem
is avoided (see the speed comparison at the end of the sec-
tion). Since the 3-wise independent version of this scheme,
called BCH3 throughout the paper, is important in latter
developments, we provide here its particular form:

f(S,4) =5 - [1,4] (4)

The 4-wise independence required by the AMS-sketches can
be obtained with f(S,4) = S -[1,i, %] and requires (2n + 1)-
bit seeds, compared with n + 1 for BCH3.

3.1.1 Extended Hamming 3-Wise Scheme (EH3)

The extended Hamming 3-wise scheme is a modification
of BCH3 and it was introduced in [10]. It requires seeds S
of size n + 1 and its generating function is defined as:

f(S,i) =5 [1,4] & h(i) (5)

where h(7) is a nonlinear function of the bits of ¢. A possible
form of h is:

1

h(i)=io Vit @ @in—aVin_1 (6)

Function h does not change the amount of independence,
thus, from the traditional AMS-sketches theory, it is not as
good as a 4-wise independent scheme, but, as proved theo-
retically by Feigenbaum et al. [10], it produces comparable
errors. We discuss the importance of the function h in Sec-
tion 4.

From the point of view of a fast implementation, only a
small modification has to be added to the implementation
of BCH3 — the computation of function h(i). As the ex-
perimental results show, there is virtually no running time
difference between these schemes if a careful implementation
is deployed on modern processors.

3.2 Reed-Muller Scheme

The BCH schemes require computations over extension
fields for degrees of independence greater than 3. Since the
AMS-sketches need 4-wise independence, alternative schemes
that require only simple computations might be desirable.
The Reed-Muller scheme [14] generalizes the BCH codes in
a different way in order to obtain higher degrees of inde-

pendence. Seeds of size 1 + (T) + 4 (’Z) are required to

obtain a degree of independence of k =21 — 1, ¢ > 0. We
introduce here only the 7-wise independent version of the
scheme that requires 1 +n + % seed bits:

f(S7 Z) =5 [17i7i(2)] (7)

where

1(2) _ [

10 @ 11,90 @12, ...,In—2 @ in_1] (8)

3.3 Polynomials over Primes Scheme

The generating schemes in the previous sections are de-
rived from error-correcting codes. In this section, we present
a different method of generating k-wise independent random
variables that uses polynomials over a prime number field
[15].

THEOREM 1  ([15]). Let p > N be a prime. Choose
ao,ai,...,ax—1 uniformly and independently at random from
Zyp, and let X; = ao + a1j + a2j2 + -+ akfljkfl mod p,
for 0 < 3 <p. Then Xo,X1,...,Xp-1 are uniform k-wise
independent.

This scheme generates k-wise independent random vari-
ables that have p values. In order to restrict the domain to
two values, we consider the binary representation of the vari-
ables and take into consideration only one bit. The resulting
two-valued random variables are not uniformly distributed
— they are slightly biased. However, for large primes, e.g.,
p =231 — 1, the bias between the variables with value 0 and
those with value 1 is negligible, i.e., 2%

The seed of this scheme consists of the k coefficients a;,
0 < j < k, each represented on [logp] bits. Note that the
size of the seed almost doubled compared to the seed needed
for the corresponding BCH generating scheme.

3.4 Performance Evaluation

Scheme Time (ns) Seed size
BCH3 10.8 n+1
EH3 7.3 n+1
Massdal2 27.2 2n
BCH5” 12.7 2n+1
Massdald 101.2 4an
RM7 3,301 | 14n 4 220

Table 1: Generation time and seed size

We implemented the 3-wise independent BCH (BCH3),
the 5-wise independent BCH (BCHS5), the extended Ham-
ming (EH3), and the 7-wise independent Reed-Muller (RMT7)
schemes, and we used Massdal [20] for the implementation
of the polynomials over primes scheme. We ran our exper-
iments on a two-processor Xeon 2.80 GHz machine, each
with a 512 KB cache. The system had I GB available
memory and used a Fedora Core 3 operating system. As
a comparison for our results, the time to read a word from
a memory location that is not cached in either L1 or L2
cache takes about 250 ns on this machine. We used the spe-
cial assembly implementation of the dot product for all the

2BCH5 was implemented by performing the ® operation
arithmetically not in an extension field. This does not
change the performance of BCH5 for domains not too large.



methods. Experiments consisted in generating 10,000 vari-
ables ¢ and 10,000 seeds and then computing all possible
combinations of random variables, i.e., 100,000,000. Each
experiment was run 100 times and the average of the results
is reported. The relative error was in general under 1%,
with a maximum of 1.2%. Since the results are so stable, we
do not report the actual error for individual experiments.
The generation time, in nanoseconds per random variable,
is reported in Table 1. When compared to memory random
access time, all the schemes, except RM7, are much faster.
Indeed, EH3 is at least as fast as BCH3 (we believe it is actu-
ally faster since the extra operations maintain a better flow
through the processor pipelines) and both are significantly
faster than Massdal. Out of the 4-wise or higher indepen-
dence schemes, clearly BCH5 is the fastest, while RM7 is
almost 300 times slower.

Table 1 also contains the size of the seed for the given
schemes. n represents the number of bits the domain I can
be represented on. For the polynomials over primes scheme,
n is the smallest power of 2 for which 2" > p. As noted, the
BCH schemes have the seeds with the smallest size, while
the Reed-Muller scheme needs the largest seed. For the same
degree of independence, the polynomials over primes scheme
requires a seed double in size compared to BCH.

4. FAST RANGE-SUMMABLE SCHEMES

When at least one of the input relations to the size of
join problem in Section 2.1 is given as a union of intervals,
the +1 family of random variables is required to be fast
range-summable. The fast range-summation property is the
ability to compute the sum of random variables in an interval
in time sub-linear in the size of the interval — the alternative
is to generate and sum up the values &; for each i in the
interval. Formally, this property is defined as:

DEFINITION 2
erating scheme for two-valued k-wise independent random
variables is called bitwise range-summable if there exists a
polynomial-time function g such that

g(le.Bl,8) = D f(S.9) 9)

a<i<fp

where a, 3, and i are vectors over the domain {0,1}".

Computing the function g over general [a, 8] intervals is
usually not straightforward. The task is easier for dyadic in-
tervals (see Section 2.3) due to their regularity. Fortunately,
any scheme that is bitwise range-summable for dyadic inter-
vals can be extended to general intervals [a, 8] by simply
determining its minimal dyadic cover, computing the func-
tion g over each dyadic interval in the cover, and then sum-
ming up these results. Since the decomposition of any [«, ]
interval contains at most a logarithmic number of dyadic in-
tervals, fast range-summable algorithms for dyadic intervals
remain fast range-summable for general intervals.

In this section, we study the bitwise range-summation
property of the generating schemes presented in Section 3.
For the 2-wise independent random variables, both the BCH3
scheme and its EH3 variant are fast range-summable. Pre-
vious work show that there exist other schemes that are
fast range-summable for the 2-wise case. For example, the
scheme based on the Toeplitz family of hash functions is
shown to be fast range-summable in [5]. A related algorithm

(BITWISE RANGE-SUMMATION [6]). A gen-

for p-valued 2-wise independent random variables generated
using the polynomials over primes scheme is introduced in
[1]. For the 4-wise case, the Reed-Muller generating scheme
is the only scheme known to be fast range-summable [6,
12]. Reducing the range-summing problem to determining
the number of boolean variables assignments that satisfy an
XOR-AND logical expression and using the results in [9], we
obtain a simple method to determine if a generating scheme
is fast range-summable. We apply this method to show that
the 4-wise BCH and the polynomial schemes are not fast
range-summable.

4.1 EH3 Scheme

Although Feigenbaum et al. [10] show that the random
variables generated using the extended Hamming scheme
(EH3) are fast range-summable, the algorithm contained in
the proof is abstract and not appropriate for implementation
purposes. We propose a practical algorithm for the fast
range-summation of the EH3 random variables. It is an
extension of our constant-time algorithm for range-summing
BCH3 random variables [21] that is not included here due
to lack of space.

The following theorem provides an analytical formula for
computing the range-sum function g. Note that only one
computation of the generating function f is required in order
to determine the value of g over any dyadic interval. The
proof can be found in the extended version of the paper [21].

THEOREM 2. Let [¢47, (¢+1)4’) be a dyadic interval with
size at least 4, j > 1. The range-sum function g([q4’, (¢ +

1)4%),8) = Z<q+1)4j f(S,4) defined for the extended Ham-

'L:q4j
ming 3-wise scheme (EH3) is equal to:

9([q4, (q+1)47),8) = (=1)#?#F0 . 27 f(S,q47)  (10)

where f is the £1 generating function and #ZERO repre-
sents the number of two adjacent pair bits that OR to 0.

Based on the results in Theorem 2, Algorithm HS3Interval
computes function g([e, 8], S) = >_, <,<5 f(S,4) for any in-
terval [a, 8]. First, the minimal dyadic cover of [a, ] is
determined, then the sum over each dyadic interval is com-
puted using (10). Note that these two steps can be com-
bined, the computation of g being performed while deter-
mining the minimal dyadic cover of [a,8]. The minimal
dyadic cover can be efficiently determined from the binary
representation of o and 3. Since any interval can be de-
composed into a logarithmic number of dyadic intervals, al-
gorithm H3Interval computes function g in O(log(8 — «))
steps.

Algorithm 1 H3Interval([a, 5], S = [So, so])

1. Let D = {d1,...,0m} be the minimal dyadic cover of
[, 8], where each & has the form [g47, (¢ + 1)47)
sum « 0
for 0, € D, 1 <k <mdo
sum « sum + (—1)##ERO 97 £(§ ¢47)
end for
return sum

S ot

ExXAMPLE 1. We show how Algorithm H3Interval works
for the interval [124,197] and the seed S = [so, So] = (0,184 =



(10111000)2]. The minimal dyadic cover of [124,197] is

D([124,197)) = {[124,128), [128,192), [192, 196),
[196,197), [197,198)}

#ZERO is equal with 1 for the given So, the only pair OR-
ing to 0 being the pair at the end. It affects the dyadic in-
tervals with the power greater than 0.

g([124,197], 5) = g([124,128), S) + g([128,192), S)
+ 9([192,196), 5) + g([196,197), S)
+ ¢g([197,198), )
= —2'. f(5,124) — 2° - £(S,128)
— 2" £(S,192) 4+ 2° - f(S, 196)
+2°. £(S,197)
=2+8+2+1—-1=12

4.2 Four-Wise Independent Schemes

In this section we investigate the bitwise range-summation
property of the 4-wise independent generating schemes pre-
sented throughout this paper, namely BCH and polynomi-
als over primes. The discussion regarding the Reed-Muller
scheme is deferred to the next section.

The main idea in showing that some of the schemes are not
fast range-summable is to use the result due to Ehrenfeucht
and Karpinski [9] on the problem of counting the number of
times a polynomial over GF(2), written as XOR of ANDs
(sums of products with operations in GF(2)), takes each of
the two values in GF'(2). The result states that the prob-
lem is #P-complete if any of the terms of the polynomial
written as an XOR of ANDs contains at least three vari-
ables. For our application, to show that a scheme is not
fast range-summable, it is enough to prove that for some
seed S the generating function f(S,4), written as an XOR
of ANDs polynomial in the bits of ¢, contains at least one
term that involves three or more variables. The following
results, whose proof is omitted due to scarcity of space, use
this fact to show that the BCH5 and the polynomials over
primes schemes are not fast range-summable.

THEOREM 3. The k-wise independent BCH schemes are
not fast range-summable for k > 5 and n > 4.

The BCH3 scheme is not covered by this theorem and, in-
deed, it is fast range-summable. In fact, by exploiting spe-
cial properties of the BCH3 scheme, a fast range-summable
algorithm can be implemented in O(1) average time (with
respect to random seeds) if arithmetic operations and dot-
products are considered O(1) operations. The reason for this
is the fact that, when computing the sum over any interval
[, ], only the last bits of & and 8 that correspond to zero
bits in the seed have to be processed before the result of the
summation can be computed with a simple arithmetic for-
mula. Since the number of contiguous zero bits at the end of
a uniformly random seed can be shown to be approximately
1 on average, the entire computation can be finished in O(1)
time. A detailed presentation and proofs of these facts are
deferred to the full version of the paper [21].

THEOREM 4. Let n = [logp] be the number of bits the
prime p > T can be represented on and [q2, (¢ + 1)2') be
a dyadic interval with | > 3. Then, the function f(S,i) =
[(ao + a17) mod p] mod 2 is not fast range-summable over
the interval [¢2, (¢ + 1)2%).

Theorem 4 shows that for the polynomials over primes scheme
with k = 2 there exist values for the coefficients ag and a:

that make the scheme not fast range-summable for dyadic

intervals with size greater or equal than 2% = 8. Since the

schemes for k > 2 can be reduced to [(ap + a17) mod p]

mod 2 by making az = --- = ax—1 = 0, it results that the

polynomials over primes scheme is not fast range-summable

when k£ > 2.

4.3 RM?7 Scheme

Together with the negative result about the hardness of
counting the number of times an XOR of ANDs polynomial
with terms containing more that three variables ANDed,
Ehrenfeucht and Karpinski [9] provided an algorithm for
such counting for formulae that contain only at most two
variables ANDed in each term. This algorithm, that we
refer to as 2XOR-AND, can be readily used to produce a
fast range-summable algorithm for the 7-wise independent
Reed-Muller (RM7) scheme. An algorithm for this scheme
based on the same ideas was proposed in [6, 18]. We focus
our discussion on the 2XOR-AND algorithm, but the same
conclusions are applicable to the algorithm in [6, 18].

The observation at the core of the 2XOR-AND algorithm
is the fact that polynomials with a special shape are fast
range-summable. These are polynomials with at most two
variables ANDed in any term and with each variable par-
ticipating in at most one such term. The other cases can
be reduced to this case by introducing new variables that
are linear combinations of the old ones. To determine these
linear combinations in the general case, systems of linear
equations have to be constructed and solved, one for each
variable. The overall algorithm is O(n®), with n the num-
ber of variables, if the summation is performed over a dyadic
interval.

The 2XOR-AND algorithm can be used to fast range-
sum random variables produced by the 7-wise Reed-Muller
scheme since in the XOR of ANDs representation of this
scheme as a polynomial of the bits of ¢ (which is the represen-
tation used in Section 3) only terms with ANDs of at most
two variables appear. Using the 2XOR-AND algorithm for
each dyadic interval in the minimal dyadic cover of a given
interval, the overall running time can be shown to be O(n?)
where the size of I, the domain, is 2. While this algorithm
is clearly fast range-summable using the definition, in prac-
tice it might still be too slow to be useful. Indeed this is
the case, as it is shown in the next section where we pro-
vide running time comparisons of the fast range-summable
algorithms.

Since this fast range-summable algorithm is not practical
and fast range-summable algorithms for BCH5 and poly-
nomials over primes schemes do not exist, it does worth
to investigate approximation algorithms for the 4-wise case.
While such approximations are possible [16, 19], they are not
more practical than the exact algorithm for RM7. A detailed
theoretical and empirical evaluation of such approximation
schemes can be found in the extended version of the paper
[21].

4.4 Empirical Evaluation

We implemented the fast range-summable algorithms for
the BCH3, EH3 and RM7 schemes and we empirically eval-
uated them with the same experimental setup as in Sec-
tion 3.4. The performance evaluation is based on 100 exper-



iments that use a number of randomly generated intervals
and an equal number of sketches chosen for each method
such that the overall running time is in the order of minutes
in order to obtain stable estimates of the running time per
sketch. The results, depicted in Table 2, are the average of
the 100 runs and have errors of at most 5%. Notice that
the execution time of BCH3 for ranges is merely 7 times
larger than the execution time for a single sketch (refer to
Table 1 for the running times of individual sketches) — this
happens since, as we mentioned earlier, our algorithm for
BCHS is essentially O(1). The extended Hamming scheme
EH3 has an encouraging running time of approximately 1.8
us, thus about 550, 000 such computations can be performed
per second on a modern processor. The Reed-Muller fast
range-summable algorithm is completely impractical since
only about 40 computations can be performed per second.
This is due to the fact that the algorithm is quite involved
(a significant number of systems of linear equations have to
be formed and solved). Even if special techniques are used
to reduce the running time, at most a 32 factor reduction is
possible and the scheme would be still impractical.

The net effect of these experimental results and of the
theoretical discussions in the previous section is that there
is no practical fast range-summable algorithms for any of the
known 4-wise generating schemes. Fortunately, as we show
in the next section, the EH3 scheme can successfully replace
the 4-wise independent generating schemes in applications
using AMS-sketches.

Scheme | Time (ns)
BCH3 68.9
EH3 1,798
RM7 | 26.4 x 10°

Table 2: Sketching time per interval

S. STREAMS AND RANDOM SKETCHES

The AMS-sketches introduced in Section 2.1 are a versa-
tile approximation method that can be applied to numerous
estimation problems and that can accommodate multiple
types of input. In this section we investigate applications
that require fast range-summable random variables and ex-
plain how the generating schemes introduced earlier in the
paper can be used for successful estimation. As mentioned
in Section 2.1, the basic problem the AMS-sketches are solv-
ing is estimating the size of join of two relations when they
are specified tuple-by-tuple over a data-stream. Here we
consider a variation of this problem in which one of the re-
lations is specified as a stream of intervals (this is equivalent
to specifying every point inside the interval). First we intro-
duce three practical applications for the size of join problem
with interval-input data and then we explain how the fast
range-summable generating schemes can be used to solve
this problem. We also point out other solutions.

5.1 Applications of Interval-Input Sketches

We introduce three problems — spatial joins [7], L' esti-
mation [10], and the construction of multidimensional his-
tograms [22] — for which solutions using AMS-sketches have
been proposed. Since all these problems can be reduced to
the computation of the size of join where one of the rela-

tions is specified as a sequence of intervals, solutions based
on fast range-summable random variables can be provided.
For each of these applications we show the reduction to the
size of join problem and how the fast range-summable AMS-
sketches provide improved solutions.

APPLICATION 1 (SPATIAL SIZE OF JOIN [7]).

Given two sets of line segments in an unidimensional space,
the spatial size of join problem is to compute the number of
segments in the two sets that intersect. The approach in [7],
even though not explicitly stated, expresses the solution as
the average of two size of join estimators: the size of join
of the line segments from the first relation and the segment
end-points from the second relation and, symmetrically, the
size of join of the segment end-points from the first rela-
tion and the segments from the second relation. In order
to avoid the range-summation of the intervals, the proposed
solution maps the initial domain into the domain of all pos-
sible dyadic intervals that can be defined over it. By doing
this, the size of each initial interval reduces to at most a
logarithmic number of points in the new domain, i.e., the
number of sketch updates reduces from linear to logarithmic
in the size of the interval. At the same time, each segment
end-point maps to a logarithmic (in the size of the initial do-
main) number of points in the new domain, increasing the
number of sketch updates from one to a logarithmic factor.
The problem can be generalized to multiple dimensions, see
[7], by defining estimators over all possible combinations of
full segments and end-points in each dimension. A more
detailed discussion of this algorithm and our solution that
uses fast range-summable random variables are presented in
Section 5.2.

APPLICATION 2  (L'-DIFFERENCE [10]).

Given two vectors @ and b with elements a; and b;, re-
spectively, © € I, where I is a large domain, compute in
small space the L'-difference of the two vectors defined as
>, lai — bi|, when the vector elements are streamed in ran-
dom order as tuples of the form (i,a;) and (i,b;). The re-
duction to the size of join problem is obtained by first fizing
a mazimum value, M, for the elements in the vectors @ and
b. Two wvirtual relations can be introduced, R, for @ and
Ry for g, each containing tuples of the form (i,7) for every
it €1 and every j € {0,...,a:}, j €{0,...,b;}, respectively.
It can be shown that Y, |a; — bs| is the self-join size of the
symmetric difference of Ro, and Ry. To see why this is the
case, notice that for every tuple in the symmetric difference
the contribution to the self-join size is 1. There are exactly
la; — bi| such contributions for each i € I since this is the
size of the symmetric difference between the parts of R, and
Ry that have the first attribute value i. The relations R, and
Ry are specified by a number of ranges, one for each a; and
b, respectively. The solution to the self-join size problem
has to accommodate the easy computation of the symmetric
difference and has to have the input specified as intervals.

APpPLICATION 3 (DyNAMIC HISTOGRAMS [22]).
Any histogram construction algorithm, such as the one in
[22], is based on evaluating the average frequency for any
rectangular region (a potential bucket). The computation of
the average frequency can be performed by computing the
sum of the frequencies in the region and dividing by the size
of the region. If two virtual relations are introduced, one that
specifies the data for which the histogram is constructed and



one that specifies the region by enumerating all the points in
the region, it is easy to see that the sum of the frequencies
in the region is exactly the size of the join of these two rela-
tions. The second relation is specified by a hyper-rectangle,
thus solutions to the size of join problem that accommodate
interval inpuls are required.

The common point of the above three applications is the
fact that they can be reduced to efficiently computing the
size of join of two relations that accommodate interval-input
data for at least one of the arguments. Solutions using
AMS-sketches based on random variables generated with

fast range-summable schemes fit perfectly these requirements.

For two of the applications, spatial joins and dynamic con-
struction of histograms, an alternative solution based also
on the use of AMS-sketches is possible [7]. We provide the
description of this solution, that we call DMAP, in the next
section.

5.2 Dyadic Mapping (DMAP)

In their work on spatial joins [7], Das et al. presented a
solution based on AMS-sketches and dyadic intervals. The
solution can be decomposed? in two parts: the reduction of
the problem to the size of join problem when one of the input
relations is specified as a stream of intervals and an approx-
imation scheme for the size of join problem. The solution
to the reduction problem was outlined in Application 1. In
this section we focus on the solution to the size of join prob-
lem for interval-input relations. We call this solution Dyadic
Mapping (DMAP) for reasons that will be clear shortly. We
present here only the main idea of the method; details and
proofs can be found in [7].

Let R and S be the two relations with a common attribute
A for which the size of join is to be computed. Assume,
without loss of generality, that the relation R is specified as
a set of intervals, while the relation S as a set of points. In
order to efficiently compute the size of join, DM AP generates
two virtual relations, one for R and one for S, by mapping
both the intervals in R and the points in S to the space of
all dyadic intervals defined over the domain of the attribute
A (for an introduction to dyadic intervals see Section 2.3).
The tuples of the new relations consist of a single dyadic
interval attribute over I, the original domain of the attribute
A. Each interval [, 8] in R is decomposed into its minimal
dyadic cover and a tuple for each member of the cover is
introduced in the virtual relation R4. For each point 7 in
S, all the dyadic intervals containing the point (there are
log |I| such intervals) are included in Sq, the virtual relation
corresponding to S. The size of join of the two relations R
and S is estimated through the size of join of R4 and S4. It
is easy to see that this gives the correct result since for each
point ¢ € [a, 8] there exists exactly one dyadic interval that
contains ¢ and that is included in the minimal dyadic cover of
[, B]. The size of join of Rq and Sgq can be estimated using
the AMS-sketches and, thus, the size of join of the original
relations R and S is obtained. The sketches of the relations
R4 and Sg can be efficiently computed since both for an
interval in R and a point in .S at most log |I| dyadic intervals
have to be sketched. Notice that, by mapping to the space
of dyadic intervals, DMAP avoids the linear update time for
the sketching of intervals.

2This decomposition was not explicitly made in [7].

To get an idea of how efficient DMAP is, we timed an im-
plementation of this scheme using the same setup as in Sec-
tion 4.4. The average execution time we obtained is 1,276
ns, which is slightly faster than the time for EH3 (1,799
ns). The time to sketch a point is only 7.9 ns for EH3,
but it is 416 ns (32 x 13 for |I| = 2%?) for DMAP. As we
show in Section 6, the overall running times of EH3 and
DMAP algorithms are comparable, with a slight advantage
for DMAP.

5.3 Size of Join using Sketches

As we pointed out earlier, an alternative solution to the
size of join problem when at least one of the input relations
is given as a set of intervals is to use fast range-summable
families of random variables to speed up the sketching of
the intervals. Using the current understanding of the AMS-
sketches applied to the size of join problem, the 4-wise in-
dependence of the random variables is required in order to
keep the variance small (we show latter in the section why).
Since, as it is shown in Section 4, there is no practical fast
range-summable 4-wise independent generating scheme, it
looks like DMAP is the only feasible alternative, given the
state-of-the-art. What we show in this section is that the ex-
tended Hamming 3-wise scheme [10] not only can be used as
a reasonable replacement of the 4-wise independent schemes
(this is the theoretical result proved in [10] for Applica-
tion 2), but it is usually as good, in absolute big-O notation
terms, and in certain situations significantly surpasses the
4-wise independent schemes for AMS-sketches solutions to
the size of join problem. We provide here the theoretical
support for this statement, but defer the empirical evidence
to Section 6.

We proceed by taking a close look at the estimation of the
size of join of two relations using AMS-sketches. Let R and
S be two relations with a common attribute A whose domain
is I. For a given value ¢ € I, we denote by r; and s; the
frequency of the value 7 in R and S, respectively. With this,
the size of join |R M4 S| is defined as [R M4 S| =3, 745i.
To estimate this quantity, we use a +1 family of random
variables {&|¢ € I} that are at least 2-wise independent
(but not necessarily more). We define the sketches, one for
each relation, as Xr = Ziel r:& and Xg = Ziel s:&i. The
random variable X = XrXg estimates, on expectation, the
size of join |R M4 S|. It is easy to show that, due to the 2-
wise independence, E[X] = ), ris;, which is exactly the
size of join. Since all the generating schemes published in the
literature (see Section 3 for a review of the most important
ones) are 2-wise independent, they all produce estimates
that are correct on average. The main difference between
the schemes is the variance of X, Var (X). The smaller the
variance, the better the estimation; in particular, the error
of the estimate is proportional with 7VZ?;(]X)

Let us now analyze the variance of X. Following the
technique in [4], we first compute E [X?] since Var (X) =

E[X?] — E[X]*. We have:

]

i€l i€l

= Z Z Z Z ririSksi K [fzfjfkfl]

i€l jel kel lel

E[X’]=E

The expression F [£;€;€1&] is equal to 1 if groups of two



variables are the same (ie., it = jAk=lori=kAj=1
ori=1Aj = k) since £ = 1 irrespective of the actual
value of & (12 = 1 and (—1)% = 1). E[&&;&x&] is equal
to 0 if two variables are identical, say i = j, and two are
different, since then F [£:£;€x&] = E[1 - £x&] = 0, using the
2-wise independence property. The same is true when three
of the variables are equal, say i = j = k, but the fourth
one is not, since F [;£;&x&] = E [{f’fl] = 0 (we use the fact
that £ = &). The above observations are not dependent
on what generating scheme is used, as long as it is at least
2-wise independent. The contribution of the 1 values to
E [XQ] adds up to:

BV =Y

iel jel

2
7“1-25?—1—2- <Znsz> —Q-Zr?s?

iel i€l

In the expression of the variance Var (X), the middle term
has the coefficient 1, instead of 2, since E [X]? is subtracted.
The difference between the various generating schemes con-
sists in what other terms have to be added to the above for-
mula. The additional terms correspond only to the values
of 4,7, k,l that are all different (otherwise the contribution
is 1 or O irrespective to the scheme, as explained before).
We explore what are the additional terms for three of the
schemes, namely BCH5, BCH3, and EH3.

5.3.1 Variance for BCH5

The BCH5 scheme is 4-wise independent, which means
that for ¢ # j # k # [, we have:

El&&6&] = El&]- EG]- El6] - Ela] =0

since all the £s are independent and E [¢;] = 0 for all gen-
erators. This means that no other terms are added to the
above variance. The following formula results:

Var (X)geys = ZZT?S?—&-(ZTZSZ) —Q-ers? (11)

icl jel el i€l

5.3.2  Variance for BCH3

BCHS3 is only 3-wise independent, thus clearly it is not the
case that, for all ¢ # j # k # 1, E[££;€:&] = 0. To char-
acterize the value of the expectation for different variables,
we need the following result:

PROPOSITION 1. Let the function F' on n binary variables
r1,T2,...,%Tn be defined as:

F(z1,22,...,20) =C @ 51021 ®S20z2® - DSn Op

where C € {0,1} 4s a constant and Sy € {0,1}, for 1 <
k < n, are parameters. If there erists at least one Sy, that is
equal to 1, function F' takes the values 0 and 1 equally often,
each value appearing 2"~ times. Otherwise, function F
evaluates to the constant C' for all the possible combinations
of x1,T2,...,Tn.

The proof of this proposition is omitted due to scarcity of
space, but it can be found in the extended version of the
paper [21]. The result is intuitive though, since if any of the
parameter bits Sy is nonzero, its corresponding variable xy
causes the function F' to take the values 0 and 1 in exactly
half of the cases, irrespective to the constant C.

Now we can prove the result for BCH3:

PROPOSITION 2. Assume the £s are gemerated using the
BCHS3 scheme. Then, fori # j # k # 1, E[&&&&] =0 if
TPjRkDLIA#0, and E[&&6&]) =1 if i jd kBl =0,
where @ is the bit-wise XOR.

PROOF. Let S = [so,51] be the (n 4 1)-bits random seed
with sg its first bit and S; the last n bits. Using the nota-
tions and the definition of BCH3 in Section 3, we have:

€ = (—1)70951
With this, we obtain:
B [€i&5€r81
- B [(_l)so®51-i ) (_1)506951-]' ) (_1)50€9Sl-k ) (_1)50@51-1}

—E [(_1)51-1'6951 -jeasmeasl-z]

— B [(_1)51@@3@1@1)]

Using the result in Proposition 1 with C' =0 and Si,...,Sh
set as the last m bits of the seed S, we know that the
expression S1 - (1 ® j @ k @ ) takes the values 0 and 1
equally often for random seeds Si when i & j® kBl # 0
— this immediately implies that F [£;;x&] = 0. When
OO kRl=0,5 D7D E®I) = 0 irrespective of
S, giving E [§:€;&:&] = 1. O

This means that the variance for BCH3 contains an addi-
tional term besides the ones that appear in the variance
formula for BCH5. The extra term has the following form:

AVar (BCH3) = Z Z Z TiTjSkSi@jk
el jel,j2i kel ki)
where i @ j @k d ! = 0 implies | = ¢® j & k. The addi-
tional term in the BCH3 variance can be significantly large,
implying a big increase over the variance for BCH5.

5.3.3 Variance for EH3

As BCH3, the extended Hamming scheme (EH3) is also
3-wise independent, which might suggest that the variance
of EH3 is similar to the variance of BCH3 (extra terms
not in the variance of BCH5 have to appear, otherwise the
scheme would be 4-wise independent). As we show next,
even though only positive terms appeared in the variance
for BCH3, in the EH3 variance negative terms appear as
well. These negative terms, in certain circumstances, can
compensate completely for the positive terms and give a
variance that approaches to zero.

PROPOSITION 3. Assume the £s are gemerated using the
EH3 scheme. Then, fori#j #k #1,

0, fi@jBkPl#0
1, fi®jdkdl=0A
h(i)®h(j)®h(k)®h(l) =0
-1, ifiejPkBl=0A
h@@)@®h(g)@hk)dh(l) =1
where @ is the bit-wise XOR.
Proor. We know that

E&&&r8] =

¢ = (71)so®51<i®h(i)

for random variables generated using the EH3 scheme. Re-
placing this form into the expression for F [£;£;&x&] and



applying the same manipulations as in the proof of Propo-
sition 2, we get:

El&&&8) =FE

If we use again Proposition 1 with C' = h(z) @ h(j) ® h(k) ®
h(l) and Si,...,Snh set as the last n bits of the seed S, we
first observe that the expectation is O when i ®j G kBl #
0. When i ® j ® k &1 = 0, the expected value is always
(—1)€. For BCH3 the constant C always took the value 0,
thus the expectation in that case was always 1. For EH3,
the value of C' depends on the function h — it is 1 when
h(i) ® h(j) ® h(k) @ h(l) = 1. This implies the value —1 for
E&&&e&]. O

[(_l)syu@j@k@w@omn@hod@huﬂ@hu»}

Using the above result, we observe that E [£;£;£,] = —1
when i @ j® kPl =0 and h(i) ® h(j) ® h(k) @ h(l) =
This means that, even though EH3 can have all the 1 terms
BCHS has, it can also have —1 terms, thus, it can poten-
tially compensate for the 1 terms. Indeed, the following re-
sults show that this is exactly what happens under certain
independence assumptions.

In the worst case, an example can be built in which the
—1 terms do not appear with nonzero coefficients, but the
1 terms do. In this case the performance of EH3 is equiv-
alent to the performance of BCH3. These are pathological
cases, though. An average analysis would me more useful to
predict the performance of EH3. To obtain such an average
analysis, consider first the proposition:

PROPOSITION 4. For i,j,k taking all the possible values
over the domain I = {0,...,4"™ — 1}, n > 0, the function
g(i,5,k) = h(i) @ h(§) ® h(k) ® h(i D j @ k) takes the value
0 z, times and the value 1 y, times, where z, and y. are
given by the following recursive equations:

zZ1 = 407 Yy = 24
Zn = 40 - Zn—1t+ 24 - Yn—1
Yn = 24 - Zn—-1+ 40 - Yn—1

PRrOOF. The base case, n = 1, can be easily verified by
hand. The recursion is based on the observation that the
groups of two bits from different h functions interact inde-
pendently and give 40 zero values and 24 one values. When
the results of two groups are XOR-ed, a zero is obtained if
both groups are zero or both are one; a one is obtained if a
group equals zero and the other group equals one. []

We have to characterize the behavior of function g¢(%, j, k)
for ¢ # j # k (when at least two of these variables are equal,
we obtain the special case of the variance for BCH5 that we
have already considered). The number of times at least two
out of the three variables are equal is eq, = 3-(4™)? —2-4™,
which allows us to determine the desired quantities, i.e.,
the number of zeros is z, — eq,, while the number of ones
is yn. To determine the average behavior of EH3, we as-
sume that neither the frequencies in R are correlated with
the frequencies in S nor the frequencies in S are correlated
amongst themselves. This allows us to model the quantity
I =1®j®k as a uniformly distributed random variable L
over the domain I. Moreover, due to the same independence
assumptions, function ¢(%, j, k) can be modeled as a random
variable G, independent of L, that has the same macro be-
havior as ¢(i, j, k), i.e., it takes the values 0 and 1 the same

number of times. With these random variables, we get:
1
FE [SL} = 47 Z S
el

and

1-P[G=0]+

Zn —CCIn _yn
Zn — €qn + Yn

E[(-1)°] (~1)- PG =1]

The expected value of the additional terms that appear in
the variance of EH3 is given by:

E [AVar (EH3)] = |:Z Z Z rirgse(—=1)%sy

1€l jel kel

=S s [(—1)G] Bsi]

i€l jel kel

F(5) (5) ==

i€l iel

Overall, the variance of the EH3 generating scheme is:

— Yn
Var (X EH3 (Z m) (Z S’)
i€l i€l ~ €ln + Yn

+ Var (X)pons 2

Notice that the additional term over the variance for BCH5
is inversely proportional with the size of the domain I. Also,
the last factor in the additional term takes small sub-unitary
values. The combined effect of these two is to drastically
decrease the influence of the extra term on the EH3 variance,
making it close to the BCH5 variance. Actually, there exist
situations for which the EH3 variance is significantly smaller
than the BCHS5 variance. It can even become equal to zero.
The following proposition states this surprising result:

PROPOSITION 5. Ifr; =7 and s; = s, © € I, with r and
s constants, and |I| = 4™, then:

Var (X) gy =0

The reason the variance of EH3 is zero when the distribution
of both R and S is uniform is the fact that the —1 terms can-
cel out entirely the 1 terms. For less extreme cases, when the
distribution of the two relations is close to a uniform distri-
bution, EH3 significantly outperforms BCH5. This intuition
is confirmed by the experimental results in Section 6.
Given the theoretical results in this section, the experi-
mental results in the following section, and the fact that EH3
is fast range-summable and can be implemented more effi-
ciently than BCH5, we recommend the exclusive use of the
EH3 random variables for estimations using AMS-sketches.

6. EMPIRICAL EVALUATION

The purpose of the empirical evaluation is threefold. First,
we want to validate the theoretical models in Section 5, es-
pecially the average behavior of EH3. Second, we want to
compare the EH3 and BCH5 generating schemes for esti-
mations using AMS-sketches. Third, we want to compare
EH3 with DMAP [7] (see Section 5.2) on two of the appli-
cations introduced in Section 5, namely, spatial joins and



selectivity estimation for histograms construction. The rea-
son we do not provide a comparison for the computation
of the L!-difference is the fact that DMAP cannot perform
estimations when both relations are specified as sets of in-
tervals. Furthermore, the comparison with BCH3 is omitted
since its error is significantly higher when compared to EH3
or DMAP. We do not perform comparisons with the fast
range-summable version of the Reed-Muller scheme (RM7)
since its throughput is not higher than 40 sketch computa-
tions per second (EH3 is capable of performing more than
550,000 sketch computations per second as shown in Sec-
tion 4).

The main findings of our experimental study can be sum-
marized as follows:

e Validation of the theoretical model for the EH3
generating scheme. Our study shows that the be-
havior of the EH3 generating scheme is well predicted
by the theoretical model in Section 5.

e EH3 vs BCH5. EH3 has approximately the same
error, or, in the case of low skew distributions, a sig-
nificantly better error than the BCH5 scheme. This
justifies our recommendation to always use EH3 in-
stead of BCHS5.

e EH3 vs DMAP. Our study shows that both for real
and synthetic data applications, EH3 significantly out-
performs DMAP, sometimes by as much as a factor of
8, with the same memory usage and smaller running
time.

We performed the experiments using the setup in Section 3.
We give detailed descriptions of both the datasets and the
comparison methodology used for each group of experiments.

6.1 Validation of the EH3 Model

To validate the average error formula in Equation 12,
we generated Zipf distributed data with the Zipf coefficient
ranging from 0 to 5 over domains of various sizes in order to
estimate the self-join size. The prediction is performed us-
ing AMS-sketches with only one median, i.e., only averaging
is used to decrease the error of the estimate. In Figure 2 we
depict the comparison between the average error of the EH3
scheme and the theoretical prediction given by Equation 12
for a domain with the size 16,384 and a relation containing
100, 000 tuples. Notice that, when the value of the Zipf co-
efficient is larger than 1, the prediction is accurate. When
the Zipf coefficient is between 0 and 1, the error of EH3 is
much smaller (it is zero for a uniform distribution). This is
explained in Proposition 5, which states that the variance
of EH3 is zero when the distribution of the data is uniform
and the size of the domain is a power of 4.

6.2 EH3 vs BCHS

We performed the same experiments as in the previous
section both for EH3 and BCHS5, except that the number
of medians was fixed to 10. The results of the experiments
are depicted in Figure 3. Note that the error for EH3 and
BCHS5 is virtually the same for Zipf coefficients greater than
1, but for EH3 it is significantly smaller for Zipf coefficients
lower than 1. When compared to the results in Figure 2,
the errors are smaller by a factor of 3. This is due to the
fact that 10 medians were used instead of only 1 and the
medians have almost the same effect in reducing the error
as the averages — the same observation was made in [7].

6.3 EH3 vs DMAP for Spatial Joins

We used the same experimental setup as in [7] to compare
EH3 and DMAP for approximating the size of spatial joins.
Three datasets are used, LANDO, describing land cover
ownership for the state of Wyoming and containing 33, 860
objects; LANDC, describing land cover information such as
vegetation types for the state of Wyoming and containing
14,731 objects; and SOIL, representing the Wyoming state
soils at a 1 : 10° scale and containing 29, 662 objects. The
average error for estimating the size of spatial joins for both
EH3 and DMAP is depicted in Figure 5, 6, and 7. The
sketch size varies between 4 and 40 K words of memory.
Notice that in all the experiments EH3 significantly outper-
forms DMAP by as much as a factor of 8. This means that
DMAP needs as much as 64 times more memory in order to
achieve the same error guarantees.

6.4 EH3 vs DMAP for Selectivity Estimation

To compare EH3 and DMAP on the task of selectivity
estimation, we used the synthetic data generator from [8].
It generates multi-dimensional data distributions consisting
in regions, randomly placed in the two-dimensional space,
with the number of points in each region Zipf distributed
and the distribution within each region Zipf distributed as
well. For the experiments we report here, we generated two-
dimensional datasets with the domain for each dimension
having the size 1024. A dataset consists of 10 regions of
points. The distribution of the frequencies within each re-
gion has a variable Zipf coefficient, as shown in Figure 4. No-
tice that for small Zipf coefficients EH3 outperforms DMAP
by a factor of 14. When the Zipf coefficient becomes larger,
the gap between DMAP and EH3 shrinks considerably, but
EHS3 still outperforms DMAP by a large margin.

7. CONCLUSIONS

In this paper we conducted both a theoretical as well as
an empirical study of the various schemes used for the gen-
eration of the random variables that appear in the AMS-
sketches based estimations. Our primary focus was the
identification of the fast range-summable schemes that can
sketch intervals in sub-linear time. We explain how the
fast range-summable versions of two of the 3-wise indepen-
dent schemes, BCH3 and EH3 [10], can be implemented ef-
ficiently and we provide an empirical comparison with the
only known 4-wise independent fast range-summable scheme
(RMT [6]) that reveals that only BCH3 and EH3 are practi-
cal. Moreover, we provide theoretical and empirical evidence
that EH3 can replace the 4-wise independent schemes for the
estimation of the size of join using AMS-sketches. The EH3-
based solutions significantly outperform the state-of-the-art
algorithms for applications such as the size of spatial joins
and the dynamic construction of histograms.

The main recommendation of this paper is to always use
the EH3 random variables for AMS-sketches estimations of
the size of join since they can be generated more efficiently
and use a smaller seeds than any of the 4-wise independent
schemes. At the same time, the error of the estimate is as
good or, in the case when the distribution has low skew, bet-
ter than the error provided by a 4-wise independent scheme.
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