Scalable Approximate Query Processing with the ABC Engine

Abstract support the claim that by changing the DBMS query processing

This paper describes query processing in the ABC database SyS_e_ngine, it is actu?lly pos;i_ble to have running estimates _for the
tem. Like other database systems designed for ad-hoc, analyticf'”al query result _for free” in the sense that there may be_IlttIe or
processing, ABC is able to compute the exact answer to queries© performance hit compared to traditional query processing.

over a large relational database in a scalable fashion. Unlike any An Unsolved Problem: Scalable Online Approximation

other system designed for analytic processing, ABC can constantly The design and implementation of such a system presents a chal-
maintain a guess as to the final answer to an aggregate querylenging set of research problems. Hellerstein, Haas, and Wang first
throughout execution, along with statistically meaningful bounds proposed an idea along these lines in their 1997 paper describing
for the guess’ accuracy. As ABC gathers more and more informa- online aggregatiorj11], and later showed how to evaluate joins so
tion, the guess gets more and more accurate, until it is 100% accu-as to give accuracy guarantees during query execution (with the
rate as the query is completed. This allows the user to stop theintroduction of theipple join [6]). This work was later extended to
execution at any time that they are happy with the query accuracy, a parallel environment [15]. However, a problem with this work is

and encourages exploratory data analysis. thatthe proposed algorithms are not scalabkes soon as enough
) data has been processed that it cannot all be stored in main mem-
1 Introduction ory (which will happen after only a few seconds or less), it is no

longer possible to provide statistical guarantees.

In response to this, Jermaine et al. [13] showed how to make
online estimation scalable, and described a generalization of the
ripple join called theéSMS jointhat gives an estimate with statisti-
cal accuracy guarantees from startup through completion. How-
ever, a problem with the SMS join is thétis generally only
appropriate for joins over two large input tableghis is problem-
atic because the greater the number of input tables, the more diffi-
cultitis to produce an accurate, approximate answer quickly. Each
additional input table typically increases the variance (and inaccu-
racy) of the obvious randomized estimators in a multiplicative
fashion. Thus, the more input tables to a query, the more likely that
a scalable algorithm will be required to process enough data to
give an accurate answer.

Modern database systems are ill-suited to the task of ad-hoc, ana
lytic query processing over massive data sets. For proof of this, one
needs only to look at the TPC-H benchmark results, which show
that modern hardware and software can still provide dismal, day-
long query evaluation times given an ad-hoc analytic processing
workload. Such slow speeds render interactive, exploratory data
processing an impossibility.

One way to address this performance limitation is to re-design
database architecture from the ground up to support intense, ana
lytic workloads. A promising idea is to makendomizationthe
basic database design principle [11]. Under such a paradigm, a
database relies on randomized algorithms that immediately give an
approximate and statistically meaningful guess as to the eventual
query result. If the user is satisfied with the accuracy, or the guess
shows that the question will likely have an uninteresting answer Our Contributions
then the computation can be terminated. However, if the query is Given this, it is now impossible to realize the goal of combining
allowed to run, the guess becomes more and more accurate as thecalable, efficient query processing with tight statistical guarantees
database system processes more data. If necessary, the user magom startup through completion. ABC specifically addresses these
simply decide to wait until an exact answer is obtained. limitations and demonstrates a new paradigm for analytic process-

This paper describes the design and implementation of the querying. ABC is able to complete the answer &bitrary select-
processing engine of a prototype database system based on such groject-join query plans in a scalable fashion, and can provide for
design, calledhABC. ABC takes as input SELECTFROMWHERE statistical guarantees from startup through completion. There are
GROUP B¥ggregate SQL query over an arbitrary number of disk- many technical innovations in ABC’s query processing engine,
based, input tables. Like a traditional database system, ABC com-including: (1) a re-design of the traditional query processing
putes the exact answer to the query in a scalable fashion. Howeverengine to facilitate information sharing across relational opera-
ABC is designed to make use of novel, randomized algorithms that tions; (2) a novel scheme for producing join tuples in a randomized
not only allow it to compute the exact answer to the query, but also fashion that facilitates statistical guarantees; (3) a deep mathemati-
allow it to maintain a guess (with accuracy guarantees) as to thecal analysis of the engine’s statistical properties that generalizes
final answer to the query at all times during query execution. existing analysis [6][13] to different types of randomization and

ABC demonstrates that by modifying certain basic principles of queries; (4) derivation of unbiased estimators for estimate quality

database system design, it is possible to have the best of bothhat allow analysis of queries over arbitrary numbers of tables.
worlds: a database system that can process large data sets effi-

ciently, but also supports interactive data exploration through fast Paper Outline

and accurate approximation. This paper gives some evidence toln Section 2, we discuss the difficulties associated with scalable,
online approximate query processing. Section 3 gives an outline of

ABC's query processing engine, and Section 4 gives more detail 2.2 The SMS Join

on the engine’s fundamental abstraction, keelwise stepSec- | response to this, Jermaine et al. proposedstiremerge-shrink
tion 5 discusses how estimates are produced by the engine, andojn, 4 scalable join that is able to maintain online, statistical esti-
Section 6 discusses some of the details of query processing inmates throughout query execution [13]. The SMS join is closely
ABC. Section 7 discusses statistical considerations in-depth, andyg|ated to the classic sort-merge join [19], except that during the
Section 8 benchmarks the engine’s performance. Section 9 considsort phase of the SMS join, all of the input relations are processed
ers related work, and Section 10 concludes the paper with future concurrently in order to provide a guess as to the final query result.
work and additional issues that are beyond the scope if this paper,ynfortunately, the SMS join has problems scaling past two rela-
such as query optimization and indexing. tions. Imagine that we want to answer the query:

, - SELECT SUM (Rc)

2 Why Is This ngd.) | FROMRRaR,

The problem of combmmg scalap!llty and online estimation is dif- WHERE Ra = R,.a AND B.b =Ry.b

ficult. In order to achieve scalability, a database system must rely o . . .

on careful movement of data between memory and disk so that thel-ike the SMS join, virtually all modern, scalable join algorithm
correct data are in memory when they are needed. On the otherdSe @ two-phase model_, where data are first hashed or sorted into
hand, in order to perform statistical inference and provide accuracy Puckets or runs and written back to disk. In a second phase, the
guarantees, a system must rely on randomization. Obviously, these/arious buckets or runs are joined. In the above query, it is impos-
requirements are in direct opposition to one another: How is it pos- Sible to use such a two-phase algorithm to compute the answer. If
sible to achieve careful organization and randomization at the samedata fromR; are sorted or hashed on attribiRea, then the result-

time? In this Section, we discuss these difficulties in more detail. Ng buckets or runs cannot be joined directly wig without re-
sorting or re-hashing (because the join wiRhis on the attribute

2.1 The Ripple Join R,.b and the records will be sorted on the wrong attribute). If the
The most well-known algorithm for performing online estimation data fromR; are sorted or hashed on attribigb, thenR, cannot
over multi-table queries is thépple join family of algorithms [6]. be joined directly withR;. Such a query must be implemented

In our discussion of the ripple join (and of all of the algorithms USiNg twoseparatgoins, and it is far from clear how two joins can
considered in this paper), we assume a TPC-H-style query of the 2 combined in the SMS framework.

form: 2.3 Fixing the Problem?
SELECT n.name, SUM (...) Unfortunately, all obvious ideas for addressing this problem

FROM customer c, orders o, lineitem |, encounter difficulties. One idea would is use some sort of scalable
supplier s, nation n, region r “fast first” join algorithm [4][5] to proces&;<IR,, and to pipeline
WHERE c.custkey = o.custkey AND result tuples from the first join into a second SMS join Wik
|l.orderkey = o.orderkey AND ... However, there are problems associated with this approach. For
GROUP BY n.name example, almost any method for estimating the final query result
Or more generally: will require a random input ordering of tuples in order to provide

statistical guarantees. However, the output from the first join will
SELECT SUM (f(ryerpe ..o 1p) not have a randomized ordering, making the statistical properties
FROMRas r;,Rjas rp..R qas 1y of such an algorithm very difficult to reason about. It is known that

In the above expression, s the concatenation operation, whichproducing such a randomized ordering is difficult [2]. Even if

appends one tuple to anothEcan encode any relational selection tupleswere produced in a randomized fashion, it is difficult to

or join predicate over the input tuples, and can also encode apipeline them into another join and use that join to produce an esti-

GROUP BYhy selecting tuples only from a specific group. mate for the answer to the query due to important, unknown con-

The ripple join works by reading an ever-larger sample of each stants. For example, a ripple-join-style estimator would need to

input relation in a sequential fashion, and using those samples toknow the size of the intermediate relation, which would be

estimate the final query answer. As the sample grows, the algo-unknown until the relation is materialized.

rithm outputs estimates of ever-increasing accuracy. The fact that

the portion of the data space used to compute the estimate grows3 ABC Query Evaluation: Overview

from the lower left to upper right corner of the data space leads to

- o Because of such difficulties, designing a database system that pro-
the name “ripple join”.

. . . . vides both scalability and accurate estimation from startup through

. _However, th_e algorlthm_|§ not scalable. Assuming a hash ripple completion is a daunting task. It appears to be impossible to

JOI':d ?ég;? dzoi':t%ha?;t%eeﬁ Igr cairg tr)lgclé):wgeir :gg:srglr oftéheasaem(;u achieve both goals by simply plugging algorithms directly into a

gne or more records to make)rlbom for a new record gnd tg g e inttraditional database engine; more fundamental design changes are
! Page N eded. The remainder of the paper describes query processing in

other records in order to check for matches with the new record. the ABC svstem. which achieves these goals by making use of
These 1/0s will be random due to the random order of input tuples, y j . 9 y making
Fome fundamental changes in database system architecture.

so the algorithm causes severe thrashing. Even if each new recor The problem with traditional database engines in this context lies
that is processed requires only a single random disk I/O, the pro- with thz fact that relational operations are tr%ated as “black boxes”
cessing rate will be only around 10,000 records/minute/disk (with This abstraction renders acgurate statistical estimation im 'bI.
a 3ms random /O time), with no easy way to address the problem. o . . - possible
because it hides intermediate results as well as internal state from

the remainder of the syster intermediate results are not exter-
nally visible, it is impossible for the system to guess the final

>< >
N N
/N >< >< 1

VAVRVAS-
AVAVAYA

Ri R R3 RyRs Rg Ry Rg
(1) Original query plan

?ﬂ/\/\/\

Rt RR Rz RyRs Ry

(2) All bottom-level joins
evaluated concurrently in
levelwise step #1. This step
produces the estimatdl;

/\
aalVANVAN

N>
VAN
Rse Rrg
(4) All bottom-level joins

>}

>
/ N\

Rio Rsg

evaluated concurrently in Ri2 Rag Rss Rrg
levelwise step #2, producing -
the second online estimatyp ~ (3) Remaining query plan
>< N3
Ri234 Rse7s /N\
(5) Remaining query plan Ri234 Rsg7s

R (6) Final join evaluated in
12345678 levelwise step #3

(7) Result relation <g=—"

Figure 1: Levelwise query evaluation in ABC.

answer to the querpecause no entity has access to information
about every input relatian

In order to provide for accurate online estimation, ABC’s execu-
tion engine is quite different. All of the operations at a single level
of the query plan aréaken togetheas the basic query-processing

abstraction. The operations executed at a single level in the query

plan are together referred to aseselwise stepAll of the opera-
tions within each levelwise step execute concurrently and share
information with one another. The reason for this is simple: assum-
ing for the time being that all leaves of the query plan are at the
same level, then by definition, all of the operations at a single level
of the query plan have access to enough information to compute
the final answer to the query. Actually computing the final answer
may take hours or days. But by carefully allowing each operation
to share some if its intermediate results with all of the other opera-
tions at the same level, it becomes possible to look for preliminary
result tuples in order to guess the final query answer.

The process of evaluating a query from startup through comple-
tion in ABC for a given query plan is depicted in Figure 1. In this
example, ABC’s engine begins by executing the first levelwise
step, where each operation at the bottom level of the plan is evalu-
ated concurrently. At all times, this step maintains an online esti-
matorN; for the final answer to the query by passing information
among the various constituent joins. As the levelwise step
progressesN; achieves more and more accuracy. Eventually, it

becomes frozen as the step completes. The resulting relations are
used as input to the second levelwise step, which produces an

online estimatoN,. At all times, N, is combined withN, to pro-
duce a single estimate for the final answer to the query. Finally,

progressed\s is combined with botiN; andN, (now both frozen)

to produce an estimate for the answer to the query. As the end of
query execution approacheblz will approach (and eventually
become equal to) the correct query result.

4 The Levelwise Step

As described above, all of the joins at iltle level of the query plan

are evaluated concurrently in ABC, and all of the joins that are
concurrently executed are collectively referred to aeweelwise
step The concurrent evaluation is necessary in order to provide a
running estimator for the eventual answer to the query throughout
execution, since it ensures that at least some information about
every relation is always in memory.

In the ABC prototype, each individual join is implemented as a
modified sort-merge join, though use of a sort-merge join is not a
fundamental requirement. It would also be possible to modify
other scalable, two-phase join algorithms for use (see the discus-
sion in Section 10), though this is beyond the scope of the paper.

Whatever two-phase join algorithm is used, the joins that make
up a levelwise step must be carefully coordinated to share informa-
tion among one another so that an estimate for the final answer to
the query can be maintained. This results in the partitioning of a
levelwise step into two phases:saanphase and anergephase.
These two phases are described now in the context of the sort-
merge join employed by the ABC prototype.

4.1 The Scan Phase

Thescan phasef a levelwise step is analogous to the sort phase of
a sort-merge join or the hash phase of a hash join except that the
phase is executed concurrently &t of the joins that make up the

ith levelwise step. There are several other key characteristics of the
scan phase of a levelwise step:

(1) Immediate discovery of output tuplés a manner similar to
the ripple join [6], at all times, the subsets of tuples stored in
memory from all relations are checked to see if they can be
joined to discover any output tuples immediately, which are then
used to guess the eventual answer to the query.

(2) Randomized sort ordem order to ensure that the statistical
properties of the estimate produced by examining those output
tuples are reasonable, the tuples must be input in a randomized
order. As we discuss below, this also implies theputof the

scan phase must be in a randomized order.

(3) Round-robin processing of rungn order to provide for
greater accuracy, runs are processed in a carefully choreo-
graphed, round-robin fashion. This round-robin processing of
runs leads to a “zig-zag” pattern that allows the algorithm to
produce a low-variance estimator, as we will discuss subse-
quently.

The scan phase of a levelwise step is implemented as follows:

(1) As the phase begins, one run of records from each relation is
read into memory from disk (or, since levels are pipelined, the
records are taken as input directly from the previous levelwise
step). Once one run from each input relation is present in mem-
ory, all of the records are immediately joined in order to search
for any result tuples. As is described in Section 5, these result
tuples are used to obtain an unbiased guess for the query answer.

(3) Assuming an arbitrary ordering for the input relations, in the
next step, the run from the “first” relation is sorted and written

after the second levelwise step ends, the last levelwise step is exe- back to disk, just as in a sort-merge join. However, there is one

cuted, which produces an online estimaiat Again, as this step

important difference. IR, is to be joined on the attribute.key,

Result tuple discovered Sorted orHq(B)

on-thefl
R R Rs Ry R R Rs Ry R R Rs Ry
LAB CDE FG H AB CDE FG_ H AB CDE FG HI

Sl 714711514l [1]1]9] [8[9]5 8|7/4| [7]1]5/4] A111]9] [8]9]5 8|7[4| [4/3[1]0] [1[1][9] [8][9]5
1[0[5| [O[5[4[5\ [7[2[0] [7[0[4 [9[7[4| [0[5[4[5]/(7[2[0]\[7[0[4 9[7[4| [6[4[9]3] [7[2[0] [7[0[4
97 4:10\252 1[4[9 1[0[5| 4B [2[512] Y49 110[5| [7[1[5[4] [2[5[2] [1[4]9
2/9 6/4/9/3| YS[O[THOI5[2 298/6_9: 5[0[1] [O[5]2 21918| [0[5[4[5] [5]0[1] [O]5]2
5[5[9] [1]7[2[7] [80[T| [O[2]1 51519/ [1[7[2[7] [8[0[L] [O[2[1 559 [1[7[2[7| [8[0[Z] [0[2[1
21410] [8[2[7/1] [6]917] [3[7[3] (4 214101 [8[2[7[1] |6]9{7] [3]7]3 (b) 21410| [8[2[7]1] [6]9[7] [3[7]3] (c)
919[8| [5[8[3[9] [4[3[3] [4]9[8 9198| [5[8[3]9] [4]3]3] [4]9]8 91918| |5/8[3[9] [4|3[3] [4|9]8
418[1] [9[1[8[8 [3[4[8] [2[5[0 4[8[1] [9[1[8[8 [3[4[8] [2[5[0 4[8[1] [9[1[8[g [3[4[8] [2[5[0
HiB) Hi (O} Hy@! HyH) HiB®? H O} HAG! HyH? HiBY Hi(O} HAG! HyH?
R Ry Rs R, R R Ry Ry Ry Ry Rs Ry
AB CDE FG H AB CDE FG H AB CDE FG HI
8[7[4] [4[3[1[0] [7]2]0] [8[9]5 8[7[4] [4[3[1]0] [7[2[0] [O[5[L 8| 714| 1431110 | 7120 |OI5]1
o7[4| [6[4[9[3] [5[0[1] [7]0 o[7[4| [6[4[9]3| [5[0[1] [7[0[4 9l714] [6[419[3] [5[0l1] [7]0]4
170/5| [7[[5[4] [2[5[2] [1[4[9 1[0[5] [7[1[5[4] [2[5[2] [8[9[5] Run 1[A{95] 71115141 121512 181915
2/9(8| [0[5[4]5| [1[1I9] AO[5[2 2(918| [0[5[4[5| [1[119] [1[4]9 20918 10151415 111410l 111419
5[59] [1[7[2[7] [8[o[1l [0[2[T SI5[0) [1[7[2[7| [B[O[IHO[2[1] Run2[2/4[0] [8[2]7]1} [8[0]1] [2[5/0
2(4l0] [8[2[7[1] /6[9]7] [3[7[3] (4 21410\ 8[21711] I6[O[7] [3[713] (o) (A8l (L2 148y [0aL
51181 578130/ 47313 [aro(g] (@) R EABEEEURKEEPEE o[98 [9[1[8[8| [6[9]7| [3[7[3
48T/ YOTI8I8! [3[4[8] [2[5]0 1) YolTIsrsf Y3[arsy [2[5 55? S[8[3[9] [3[4[8] [4]918
Hl(B)A Hl(C)A HZ(G)A H2(H)A Hl(B)A Hl(C)A HZ(G)A H2(H)A H1(B) Hl(c)A HZ(G)A HZ(FM

Figure 2: Scan phase of a levelwise step. In this example, we assume an SQL query having the where cla¥8ElERE RB = R,.C
AND B.E = R3.F AND R3.G = R4.H", and we assume that the first levelwise step computes the joirig;><R, and RsP><IR,. In the
scan phase, a run from each input relation is first read into memory. In our example, we have enough memory to hold four tuples
from each relation, and the in-memory tuples are shaded. Next, these runs are immediately searched for any tuples that match the
final WHERElause, and any such tuples are immediately used to estimate the answer to the query (a). Then, in round-robin fash-
ion, in-memory runs are sorted based on a hash function associated with each joiH { for R{™R, and H, for Rs™<R,) and written

to disk; after a run is written to disk, it is immediately replenished with the next run from the appropriate input relation (b)-(e).

At all times, any discovered tuples that match the finaWHERI[Elause are used to help estimate the final query result. The process
is repeated until all input relations have been broken into runs that and sorted using the hash function (f).

it is not sorted onR;.key directly. Rather, it is sorted on the yently. That is, the head of each run of each input relation to"the

value ofH(id, R.key'), whereH is a randomizing or hash func- |eyelwise step is read into memory, and runs of records from each
tion that takes the valuel as a seed; in order to make sure that oytput relation are produced in a round-robin fashion in order to
none of the orderings are correlated, a different seed is used forpipeline the result records directly into the scan phase of the joins

each join. This hashing is performed so it is possible to guaran- . . th . . "
tee a random output order for tuples from the subsequent mergemaklng up thei(+ 1) ' levelwise step, without ever writing records

phase: if the sort order is chosen based upon some randomizeoba:r?k to dls_k' Since the scan phases of the joins making up the (
lexicographic ordering of the input tuples, tuples will be output 1) levelwise step all run concurrently, so must the merge phases
in an order that is statistically independent of all of the output of thei® levelwise step. An example merge phase (continuing the
records’ attributes (except for the join attribute). This random- example of Figure 2) is depicted in Figure 3.

ized output order means that the output tuples can then be used

as input to a join in theextlevelwise step. 5 Scan Phase Estimation |n-Depth

(3) After the records from the first run of the first relation are The previous Section described at a high level the algorithm for
written back to disk, the next set of records from the first rela- Computing a levelwise step. In this Section, we discuss in detail
tion are read from disk (or taken directly from the pervious how to compute online estimates in ABC.

merge phase if pipelined). They are immediately joined with all

of the other tuples currently in memory. Then, the first set of 5.1 Estimating the First Time Around

records from thesecondrelation are sorted usind and written A5 described previously, a key goal of the scan phase of each level-
out to disk to make room for the second run of records from the yjse step is to use result tuples discovered on-the-fly to estimate
second relation. This second run is read in and immediately the final answer to the query. In the remainder of this Subsection,
joined with all of the other tuples in memory. This processing is e make the assumption that each input relafon i foom 1 to
always perfqrmed in a systematic, round-robin fashlon: first a n is fully materialized and resides on disk. However, this is only
run from Ry is read and pr.ocessed, then a run fregiis @ad the case in the first levelwise step. In subsequent levelwise steps,
and processed, and so on; after a run from the last relation to bethe result of the merge phase from the previous step is pipelined

Jt?]med "’Ilt Isvei_ IS read_, th: nest runlfrpnzjrel_attl(ﬁ({}_ls 'r:e_ad, agd into the scan phase. We consider the extension to the pipelined
e cycle begins again. An example is depicted in Figure 2. case in the next Subsection.

4.2 The Merge Phase Let T(i, j, k) = Ry j xR ;% ... xR, ; for a given levelwise

IR
The merge phase of the joins making up ttielevelwise step is step. "_] oth_er wordsT_(l, i k) is _the_ cross product of all of t_he
very similar to the merge phase of a traditional sort-merge join, UPIes in theith run of input relation throughk. For example, in
except that the various merges of all of the joins are run concur-

Figure 2,T(1, 1, 4) is the cross product of all of the tuples in mem-

Shaded tuples are in memory

Ry R, Rs Ry Out%ut so far: .

AB/ CRE FG H 12 34

8 7¥4] [4[3N]0] [712[0] [0[5]1 ABCDE FGHI
o[74] [6[4[9K3| [5[0[1] [7[0[4 [2[4[4[3[1] [712[2]5
1[0[5| [7[1[5[4\ [2[5[2] [8[9[5 [4[8[8[2[7] [5/0[0/5
2[9[8| [0[5[4[5] \I[1[9] [1[4[9 5[0[0[2
2[4[0| [8[2[7[1] (801 [2[5[0 8/0[0/5
418[1] [1[7[2]7] [4]3[3] [0[2]1 8[0[0[2
o[9[8| [9[1]8[8] [6[97] [3[7]3

5[5[9] [5[8[3[9] [3[4[8] [4[9[8

HiB)! HiO! HyG! HyH? @)
R, Ry Ry Ry Output so far:

AB CDE FG HI Ri2 Raa
8[7[4] [4[3[1[0] [7[2[0] [O[5[T ABCDE FGHI
o[7[4] [6[4]9[3] [5[0[1] [7[0[4 214[4]3[1] [7[2][2]5
1[0/5| [7[1[5[4] [2[5]2| [8]9/5 4(8[8[2[7| [5/0[0/5
2/9(8| [0[Bl4[5] [1[1[9] [1[4[9 8[7[7[115| [5[0[0[2
2[4[0] [8[27[1] [8[0[1] [2[5[0 o[7[7/1/5) [8[0[0[5
418[1] [1[7[27] [4[3[3] [0[2]1 8[0[0[2
o[9[8| [9[1]8[8] [6[9]7] [3[7]3 43[3[7
5[5[9] [5[8[3[9] [3[4[8] [4[9[8

HiB)! HiO! HyG? HyH? (b)
Ry R, Rs Ry Output so far:

AB CDE FG HI Rz Ras
8[7[4] [4[3[1[0] [7[2[0] [O[5]L ABCDE FGHI
o[7/4] [6[4[9[3] [5[0[1] [7[0]4 14141311 [712[2]5
1[0/5| [7[1]5[4] [2[5]2| [8[9[5 478/8[27| [510/0/5
2/19(8| |0[5[4(5] [1[1[9] [1]4]9 8| 7[7[1[5] [5/0[0[2
2/4/0] [8]2]7]1] [8]/0[1] [2[5]0 ol7/7[1/5| [8/0/0[5
4(8[1] [1[7[2]7] [413[3] [0[2[1 1[0r0[5(4| [8[0/0[2
o9(8| [9[1[8[8 [6[9[7] [3[7]3 >r9[or1/8| [4133]7
5[5[9] [5[8[3[9 [3[4[8] [4[9]8 orol9[1l8l 31449

B! O HAG! Hyry! SESIEE S

C

Figure 3: The merge phase of a levelwise step used to compute
R, « Ri>R, and Rgy « Rs™R, for a query with the
WHERElause “WHERE BB = R,.C AND R,.E = R3.F AND
R3.G = R4.H™. First, the head of each run produced by the
levelwise step’s scan phase is read into memory, and all of the
in-memory records are joined (a). Note that because tuple
processing order is defined by the hash function$i; and H,
associated withR{><R, and RgP><IR,, respectively, the output
order of tuples to Ry, and R34 are random and independent,
except for the clustering of tuples having an identical join key.
This allows the output of R, and Rz, to be pipelined into the

scan phase of thenextlevelwise step. When any run’s in-mem-
ory tuples are exhausted, the next set of tuples are read from
disk and joined with those in memory (b). The process is
repeated until all of the level's joins have been completed (c).

easily be used to calculate an unbiased guess as to the final answer

to the query. Le3 be the ratio of the size of the overall data space
to the number of tuples considered by the scan phase; that is:

_ IRy xRy x ... xR
= p n-1
SP_T@in+ Y ¥ MaLlb)T(a-1,b+1n)
a=2b=1

Thenaf is an unbiased estimator for the final answer to the query
(see the Appendix of the paper for a proof). In the remainder of the
paper, we will use the notatioN; to denote the estimator associ-
ated with the scan phase of ittelevelwise step.

In general, it is not enough to be able to give an estimate; it is
also vital that we be able to characterize the accuracy of the esti-
mate. This characterization via a derivation of the varianchof
(denotedo™(N;)) is considered in Sections 5.5 and 7.

5.2 Estimation at Subsequent Levels

The estimation procedure for levelwise steps other than the first
one differs for two reasons. First, intermediate tuples are produced
by a merge phase only in semi-random order; tuples with the same
join key are produced all at one time in a group. For example, con-
sider Figure 3(a); all tuples with join key O appear at the same time
in relation Ry4. Second, cardinalities of intermediate input rela-
tions are not known as an intermediate levelwise step is computed.
This is because the levelwise steps are pipelined: the results from
the merge phase of tHi step are used immediately by the scan
phase of thei(+ 1)th step, before the input relation has been fully
materialized. The estimation and variance computation procedures
must take into account these properties.

To handle the grouping problem, we use a variation on the idea
proposed by Haas to remove the correlation induced when sam-
pling blocks of tuples rather than tuples [7]. We view each group of
tuples that all have the same join key and have all been produced
by the same merge phase assiagle indivisible output tuple,
which we subsequently refer to as a “clump”. Imagine that tuples
ty, to, ..., ty from intermediate relations 1 throughare actually

“clumps” or setsof tuples, where alt;" Ot; have the same join

*t,) during both the estima-
tion and variance computation process, we simply use:

f(tyetye .o t,) = g % . % f(ty oty .o ty))
tl’ t1 t2 t2 tn tn

This removes any correlation induced due to the grouping and the
clumps are, in fact, produced in random order.

To handle the fact that we do not know the size of the intermedi-
ate relations, we note that the tuples output from a join will appear
in sorted order, based on the result hash functi¢R.a). Rather
than choosing the size of each run beforehand, we choose the num-
ber of runs (or partitions) and break the output spacetsfinto p

key. Then to computef (t; » t, ...

ory in step (@); since there are four runs in memory and each run ¢ontiguous, (approximately) equi-sized ranges of key values. For

has four tuplesT(1, 1, 4) will contain 256 tuples in all. Thus, after

r runs have been processed from each relation by a levelwise step

the following is equivalent to the sum of the aggregate function
over all tuples that have been discovered:

. Z‘;:lLDT%Ln)f(t)}r
DI

|
a1b)t,O0T(a-T1,b+1n)

example, if the range dfi(R.a) is from O to (231 - 1), then we

might break the range ¢ into [0 to (2°- 1)], [2%%to (2%°- 1)],
[230t0 (229 + 230 - 1)], and [(Z° + 229 to (B - 1)) if p = 4.
Assuming equi-sized ranges, each “clump” of output tuples pro-
duced by the join then has a probability opdf falling into a
given run, and the sampling performed at all levels except for the
first is Bernoulli or “coin-flip” sampling. As a result, the unknown
size of the relation is unimportant, since we can scale up any esti-

Since it is equi-probable that any given tuple may be discovered mate produced using the records in memorydyto obtain an
during the scan phase, by simply scaling up, this summation canunbiased estimate for the eventual query result (this is because we

have a 1p sample of each of the relations that are input into the good results. However, what we have ignored thus far is how to
levelwise step). Since the summation used to compyitEon-

tains 1 + [- 1)n estimates (see Section 6.1), the scaling factor:
n

compute (or estimatec)z(Ni) for any givénlf i = d, then after
of p partitions have been processed, the variance is computed as

= —p 2 =
g 1+(r—1)n o (Ng)
can then be used to produce an unbialedor any scan phase E[Nﬁ] —EZ[Nd] = E[$ Bx_f(tj)g} —EZ[BZ Xjf(tj)]
' "4

receiving pipelined input tuples.

)) whereX; is a zero/one random variable indicating whetherjthe
5.3 Estimation At the Last Level tuple in the topmost relation of the query plan has been found in
Tuples output from the join in the very last levelwise step are used any of the firstr partitions produced by the ABC engine, ands
as input into a final estimatdidy.;, whered is the depth of the thejth result tuple. Note thaE[X;] = r / p, and using the “clump-
query planNg.; is computed in exactly the same way as the esti- ing” strategy of Section 5.2, each, X; pair is independent and so
mator described in the previous Section. The tuples output from E[XX] = 2] p2 Then simplifyingoz(Nd) . we have:

the final join are broken int@ partitions, and aftep partitions
2 2 2
2 re2 r g r
o 0°(Ng) = p_ziaf (t)+ Zk—zf(tj)f(tk)g—p—zgzﬁf(tj)g
T+(r=Dn rHy ik P r

have been processed, the sam of all tuples discovered is multi-
2 2

in the case of the final join). B O N I LN T N § 2t
By H0- 3 S = B)

plied by B =

5.4 Estimating the Final Answer to the Query _ . _ _ .

An unbiased statistical estimator for the eventual answer to the This value can easily be estimated by simply taking the sum of

query is associated with the level, and maintained online. The ran-the square of the aggregate functioapplied to each result tuple

dom variableN; characterizes the statistical estimator associated that has been found thus far, and multiplying the result by

with the scan phase bottom-most level of the query planNyid E?

associated with the tuples output from the merge phase of the top- 2

most levelwise step (that is, we have a query plan thdtlessels seenr/p of the tuples of the final result relation. Estimating

deep). Thus, at any given moment, there are a number of estima-

tors available, one associated with each level of the plan. Each

gives an independent estimate for the final query answer. . . .
Since there ard + 1 estimators in all (one associated with each 6 Additional Considerations

level in the query plan, plus one for the final output) they must be 6.1 Why Use the Round-Robin Approach?

combined to form a single estimate for the final result of the query. pecql that the scan phase cycles through the relations. For every

Since eachN; is unbiased (see Section 7), it follows that for \o|ation. the current run is written back to disk, the next run is read

{wy, ..., Wy, 1} Where id:iwi = 1, the following is an unbi- in, and_ the query _result is re-estimated. This _approac_h can deliver

ased estimate for the final answer to the query: very high estimation accuracy. The reason is that gimdnput

relations each broken intp partitions or runs, it is possible to

N = Zd:iwl N, search a fractiofl +n(p-1))/ pn of the data space during the
h .) luati) hscan phase. For example, consider Figure 4 above, where a level-
Furthermore, since ABC’s query evaluation engine computes eachise step is computed over three input relations, each broken into
N; in so that they are all statistically independent (since each level 4 oa runs. In total the round-robin approach searches
uses an independent random ordering), it is the case that: 1+n(p-1) or 7 combinations of runs for result tuples, out of 27
combinations total. This is due to to the fact that there is one com-
bination that makes use of the first run from the first relation; there
In order to minimize the error associated withwe seek to min- are them different combinations that make use of each of the sec-

imize the variance o over all possible weights. It can easily be ond throughp™ runs of the first relation. On the other hand, if we
had searched for result tuples only after a new run had been read

from everyinput relation (as the SMS join does), we would have
considered only three combinations of runs.

(which is equivalent tp/r, sincen =1

%l— %B to account for the fact that we have (on expectation)

02(Ni) fori #d is more complicated, and left to Section 7.

o%(N) = zi“:iwfcz(Ni)

shown using Lagrangian multipliers tha%(N) is minimized (and
hence the accuracy bfis maximized) by choosing:

a2 d+1 1 O .
w = /o (N) Y[l 50 6.2 Choosing the Number of Runs
O o (Ni) = One problem is how to chooge The goal is to choose the smallest
5.5 Providing Confidence Bounds number of runs possible, because the fewer the number of runs, the

2 o more tuples in memory at any given instant, and the better the esti-
Once the value ol ando™(N) have been computed, itis then an mation accuracy. Since one run from each relation must fit into
easy matter to associate confidence bounds with the quality of thememory, in the first levelwise step,is chosen by summing each
estimate oN using standard techniques [3], such as assuming that input relation’s size, and dividing by the available main memory.
N is normally distributed (justified by the central limit theorem At subsequent levels, choosimpgis more difficult because the
(CLT) [20]) or by using distribution-free bounds such as those pro- input relations are not materialized before they are processed, so
vided by Chebyshev's inequality [9]. In our implementation, we the size of each input relation is unknown. To handle this, the scan
use CLT bounds, which as we show in Section 8, seem to give phase at each levelwise step other than the first begins by reading

Run 1 SELECT SUM (R.A) (@) > (b) > (c)

RE: 2||% FROMR, S, T, U / \J /\
WHERE R.A = S.A AND /N /N\ Y\

Run{RST R.B = T.B AND 4 \r 4y Y

RST RST RST RST RST RST RC=UC
Figure 4: Using the round-robin method, seven combinations R’/ \S R/ \S \T /\U
of runs that are searched when relation®R, S, and T (each bro- SPneciaI scan
ken into three runs) are searched during the scan phase of a and re-randomize opérator

levelwise step. Figure 5: Handling a star-join query. The example query (a)

would typically be evaluated using a left- or right-deep plan in
tuples from each input relation so that the range of the hash func- a traditional system (b). In ABC, the plan must be augmented
tion H is processed at a constant rate for each run. That is, if there with three additional table-scan operations to ensure access to
are two relations to be processed, the scan phase should completall input data at each levelwise step (c).

the processing of the fir&b of H's range for both input relations -
at roughly the same time, for evekyAt the point that the available However, a query may be processed that cannot be compiled into
a bushy tree. This may happen, for example, when a fact table is

main memory is (almost) consumeglis chosen to bé 1/k | for S . : . .
h ind f the levelwi h f d oined with several smaller, dimension tables. Consider the query
the remainder of the levelwise step. Because the set of records,y Figure 5(a). If we wish to avoid materializing the result of a

from each relation that appear in the fiks of H's range is &% cross product, the only plans for this query are linear and non-
Bernoulli sample (without replacement) of each relation, and each bushy, because relatioBsT, andU must all be joined with.
subsequerk% of H's range is also &% Bernoulli sample of each There are several tactics for dealing with this. In our prototype,

relation, their corresponding runs will be (roughly) the same size. |, o require a scan and re-randomizatioratfof the relations that
Thu;, if the first run from each relation fits into memory, the sec- are “active” during a given levelwise step. This is depicted in Fig-
ond is likely to as well. ure 5(b) and (c), where the “normal” query plan for the SQL query
: of Figure 5(a) has been augmented with three additional operations

6.'3 Handling Data Skew i . _ that go not&i%g more than grjead the input tables and write 'E)hem out
Like any database system relying on hashing, the ABC system isp, 3 re.randomized order. The re-randomization is required so that
sensitive to data skew. There are two consequences of this. Firstegiimators associated with subsequent levelwise steps are not cor-
using the method from 6.2 for choosipgif we are very aggres- rgjated. The result is th®, S, T, andU all take part in the scan
sive and choose a small then subsequent partitions may be t00 phase of the first levelwise step, even thodigindU are not joined
large to fit into memory. If this happens, we fre¢ddas well asits jp, thjs first levelwise step. Their tuples are all read in concurrently,
variance estimate) for the remainder of the current scan phase, anqust as in the scan phase depicted in Figure 5, and any result tuples
run the offending scan phase just as one would run the sort phasehat are discovered are immediately used to produce an estimate.
of a set of classical, sort-merge join. After the problem scan phase The obvious cost associated with this technique is that the input
completes, the remainder of the levelwise steps can be executedelation T is processed multiple times. However in practice, this
normally and updates to the estimates resume. The cost of this is anay make little difference. First, this situation is encountered most
temporary freeze in updates to the ABC system’s estimates. often in a “star-join” scenario where the table that is repeatedly

Second, skew in join key values can also affect the accuracy of joined is much, much larger than the others, such as when it is a
the resulting estimator. Fortunately, as long as the method for han-warehouse fact table. In this case, the additional cost of scanning
dling “clumping” from Section 5.2 and the variance estimation one or more dimension tables more times than are needed may be
methods from Section 7 are used, the ABC system will taking into negligible. Second, it will often be possible to ensure that the ini-
account this drop in accuracy and still report correct confidence tial scans of relations likd and U are not wasted, by combining
bounds; they will simply be wider than if there had been no skew. the scans with projection or selection operations found in the query

. that can substantially reduce the table size.
6.4 Handling GROUP B and Other Aggregates

GROUP BY queries can trivially be handled within the ABC 7 Statistical Considerations

framework by using a separate "query" for each group. All of these This Section gives a formal, statistical analysis of the estimators

queries can be run concurrently with little additional overhead. A X . ; .
relational selection predicate that accepts only tuples belonging to 2S:%Cr'nat3ﬂt\r']v';h e;;gdle;f?g'cizsotﬁp dteh\?etlgorir: th?ﬁcﬁzomﬁ apig
a given group is added to each query. Other aggregate functions y ' P ping p ’

such aAVERAGENdSTD_DE\can also be handled easily, since estimators fonz(Ni) (that is, the variance of the estimator associ-

these are simply functions of multip@UMqueries. For example, sted with theth levelwise step) for the case whered +1.
AVERAGSHS the ratio of aSUMand aCOUNT{which is itself a

SUMquery). 7.1 Notation
6.5 Handli | ient . In this Section we introduce the notation used in Section 7. Let
.5 Handling Inconvenient Queries Ry, R, ..., R, be then relations that are the arguments of the

Thus far, we have assumed that ABC’s query processing engine is
always used to process queries that have been compiled into
bushy query plan. The reason for this assumption is that unless

aggregate query and left() be the aggregate function that is
%ummed over each tuple in the cross product of the input relations

. . 40 obtain the value of the aggregate query, as described in Section
levelwise step is able to access a random subset of the records fron% We will always use the notatidnandt.’ to denote tuples from
each oneof the input relations (or at least access temporary rela- *- y an i P

tions that contain records derived from each of the input relations), the relationR; (that s, if the subscript associated with a tuplg is
the engine cannot provide for an early guess as to the query resultthen it is assumed that the tuple came from relatjoamd we use

the convention that the argument to the aggregate funttan be

specified as a set of tuples (one from each relation) in any order; g Vpift=t'
we assume that the ordering and concatenation are performed E[X,] =1/p: E[X X,] El \R\ P '
automatically. We use the notatid®’ to designate a sample of the 03R |f t#£t,
relationR differing slightly from the body of the paper. Up ‘ "

Following the convention of the paper describing the SMS join _ 1 1 \Ri\ -p
[13], we will formally analyze samples from relations by introduc- =9, t'p +(1-5, ti’)p_zw—_l

ing zero/one random variables that indicate whether a tuple
belongs to the sample or not. To this end, we will use the notation ==
X to designate the random variable that takes value 1 when P (|R|-1)
t;0R’ (thatis, the tuple; is in the sample ofR;), and value 0 where we used the fact that the expectation of a zero-one random

otherwise. These random variables allow sums of the form Variable is equal to the probability that the variable is one. Note
; that these formulas are versions of the formulas derived in the
Zti IR’ f(t;) to be rewritten aiti 0R X f(t;)

|))) . paper describing the SMS join [13§, ;. is the Kronecker delta
Since we are dealing with general aggregate queries over joins, i

the theory will inevitably get complicated. To alleviate this prob- Symbol thatis equalto onetf = t;" and zero otherwise; express-
lem we introduce special notation to represent the terms thating cases using, . transforms an *if* statement into an alge-
appear in the analysis. We uBé) to denote the power set of the praic expression, and simplifies the analysis.We will use the fact
set{l..n}. ForasetSO P(n we usez{ti OR(iOS) to denote the that for any functiong, zjg(i,)8 = g(i,i) since the terms
multiple sumszti R Zt QR Zt OR, wherg={iy, iy, ..., \év;tgdi' # j have a zero multiplier. We can now show tbais unbi-
Theorem I Unbiasedness of:X

[EY

[(‘Ri‘ -p)+ ‘Ri‘(p_l)éti’ti']

i\t. With this notation, the aggregate over the cross product we are
trying to compute with the ABC system can be written as: B .
E[X] = Z{tiDRi\i 0101} f({ti‘l 0{1...n}})

. f{t|iO{1l...n}}) =
2“' ORJID{1...n}} " i.e, X is an unbiased estimator for the final answer to the query.

f(tyet,e ..ot
ZtIDRl thDRz ztnDRn (tre) Proof: The proof uses linearity of expectation and the indepen-
dence of the random variableg for various values (@k. the

7.2 Analysis ofNy: the First Levelwise Step expectation of products is product of expectations). We then have:

We begin with a formal analysis of the bias and variance of the n
.estlmat.oer assomateq with the flrst.leveIW|se.step. As.dlscussed E[X] = an{t OR[iO{L.} rl E[X,] f({t;]i O{1..n}})
in Section 5.1, the estimator in the first levelwise step is based on -

sampling without replacement from the relations (note that a dif- = z{t ORID(Ln} F{t]i O{L...n}})

ferent analysis applies to subsequent steps). We assume that each \

relation is randomly partitioned intp equi-sized parts. We begin

by showing that the estimator described in Section 5.1 is unbiased:

since |'| E[X] = in .0

i=1 p

7.2.1 Analysis of Expectation

The idea behind the process used in the scan phase is simple: eval-

uate the aggregate over the cross-product of the samples and scal

up the result to compensate for the difference in size between thedenoted byc (X) . Sinceoz(X) = E[XZ] —EZ[X] , we need

samples and relations. In the first levelwise step, every time a new

run is loaded into memory, all result tuples present in memory are

immediately joined and used to produce such an estinités

then essentially an average of all of the estimates that have beerProposition 1: For be arbitrary values;aand , i O { 1...n} :

produced thus far; since each of these estimates has identical statis- 0

tical properties, we refer to an arbitrary instance of such as esti- g % 0 J_l a th 6t t' |j

mate asX. The estimat& can be written formally as: {GORJITH{L..n ' ORy| it iO{L..n}
HCROIDRNCHT D)

X= antlﬂRl’ 2Lory 2 ory Tttt o)

7.2.2 Analysis of Variance
‘e now address the problem of computing the variance,of

only address the problem of computifgix?|since E[X] is given
above. We first need the following technical result:

2
_ . . A = DZ(a [1b. { f({t.'t.})}
p Z{t‘m,‘,m{lmn}};({t,\lm{l ni}) 1) S murlsc 'jDs I ofnos {tjm%ms% it
= an{tiDRi‘i aer.my 1% AL O{L1..n}}) Proof: The main idea is to introduce the following set of functions:
i=1

.)) Fk({tl,t|"(lD{k+1...n})}) =
In order to analyzeX, we first need to specify properties of each 1
X; . since each tuple is sampled independently, the random vari- g % 0 J_l a + b 6t t' |j
ables for different values dfare independent, which means that (ORI LHE ORTTHL..-nH 'Df({ll['_'nt}})f({t_, t'})
the expectation of the product ovéf, values is the product of il i

) and to show by induction that:
expectations. Thus, for any tuplgst,;” , we have

Fedt, (1 O{k+1...n})}) =

a b.
SDZ(nmﬂsc IiDS ‘o

f({tp ’ |})} x
%DS}LJ.DR%DS} !

f({ t|v Jv tr})}
{t;,0R|j0S%

Details of the proof are omitted due to space constrdints.
This now allows us to prove the following result:

Theorem 2 Second moment of X

E[xd] = { (p-1)" R [T (R|-p)
e oo R 1L TR
0
0 f(t,t)D}
{tiD%DS}E{tjDRijs} o

Proof: The result follows directly from Proposition 1 by observing
that, by the linearity of expectation and properties)@if E[XY is
the expression on the left of the identity in Proposition 1 as long as
_Rl-P R|(P— 1)
T [R[-1 IRl =
Using this, the variance of can be readily computed.
To check this result and to exemplify its use, let us consider the

situation whem = 2, for which the variance expressions are known
from the work on the SMS join [13]. In this case we have, by

expandingzSD A2) in the order {}, {1}, {2}, {1, 2} and denot-
ing the first relation byR and the second K.

-1 [irR-p)(s-pZ .o
E1X] = qr=pyag= (R -P0S AP IUCEE

+(p-DIR(S - 05 ftev)d
(p-DR(S-p) ¥ 55 f(t+v)7

andb; =

+(-DISIR-p 5 B - v

+(p—1)2\Rusg g £2(te v)
vOStOR

By observing that the formula for the variance>ofs the same as
the formula forE[X?] above except that the first term in the square
brackets has the coefficieitR — p)(|S| —p) — (IR —1)(|S| -1)

(p=-1)(p+1-|R-|9), the formula we derived here for

02(X) and the formula in the SMS join paper are identical.

7.2.3 Extending the Analysis tdN;

Using this analysis, we can address the problem of characterizing

the variance of the estimatd; = a3 from Section 5.1. First, if

each relation is partitioned randomly inpoequi-sized parts, then
N, can be written as the average of a series oftlestimators con-

whereCoW(X, X;) denotes the covariance of the two variables.

We already know how to computez(xi) ; since eaghhas an
identical variance, we simply use the formulas above.

The question is: How to compute the covariance terms? In our
prototype of the ABC system, we use the same tactic as the SMS
join [13] and simply ignore the covariances. Though space pre-
cludes presenting it here, we have produced a result similar to The-
orem 2 for the value oE[X;X]], which directly leads to a formula
for Cov(X, Xj). However, just as in the case of the SMS join, this

covariance is almost always negative. Thus, simply ignoring the

Cov(X, XJ-) in the formula foroz(Ni) leads to an over-estimated

variance. The result is that in practice, we may be somewhat pessi-
mistic in our confidence bounds. However, as argued in the SMS
join paper, such pessimism may be warranted. The reason is that it

is never practical to compumZ(Ni) directly, and it must always
be estimated (an issue we will consider presently). Ignoring the
covariance terms may tend to lend an additional margin of error in
this estimation process.

7.2.4 Estimating the Variance

In the previous subsection, we determined a formuladzqu)

as
a function of 2 aggregates over the cross product
R; xR, x ... xR, each taking the form:

O

O f({t, J})D

Ys = %
{t0 "DS}Q'{J-DR]UDS}

with SO P(n) . By obtaining estimates for each of these terms, an
estimate for the variance is readily obtained.

A very simple and also reasonable estimate for each of these
terms is based on the samplBs', R,"...R and is obtained by
computing the aggregate over these samples and scaling up the
result by a factor ob for each sum. More formallyrg =

N_ 0 [?
D IS % |_|SXt.D Z Xy, f({t, ;10
{4 ORT OS}i D qtjDRi“DSC}iEI O

While this estimate is reasonable, it will be biased and will actually
overestimate the true valug, Fortunately, an unbiased estimate

can be constructed frolgby observing that:

E[Yg = p* 'S E[X,] %
s {tiD%DS}iEIS %

#
E{D X, f({ti,t-})lil}
Qyorfosins ¥

- SM]E
- oeln v X, (L, ,})D
{t; ORTI OS} qtvDR-“DSC}iD

sidered above, each based on one sample from each relation. Thgve now observe that each of the expectation terms within the sum

expected value and variance of each of these estimators is the sam

as forX. Since expectation is linear, this implies tiNjtis an unbi-

ased estimator of the aggregate over the cross product.
When considering the variance df,, we observe that if

_ 1k
Nl_kZiz
2 1 <k
O(Nl):k—ZZi:l

i for identicalX;’s then:

35

a?(X;) + “Cov(X, X;)

&an be determined using Theorem 2 usshgnstead of {1..n} and
by ignoring the dependency éfon {t;}. With this and using the

more concise notation for these terms, we have:

ElYd = > csrDspr
TOP(S)

where the coefficient in front ofg; + is: 5

2 tendedpri
(p—l)m Q:: ‘avallqty ‘ extendedprice
C = —_— R. R — p o . o
ST .
rIiDP(SC)‘Ri‘_lilﬂ_U I‘iul_lTC‘ i N/ \ Q3 N/ \Y
Y.
where the complement dfis taken with respect tB(S%). Now, if / N\ \ / \O \
¥ . i SC - > Y Y. Olinenumber
we letYg 1 be anunbiased estimate for 1 O P(S) -0 / \ \ \ g |
and we let: Odze PS Oupprey © | g L
Yo = — ET(cs 1Y TH b | c
ST cenp S ST'S s |
CsoD TO P(%) -0 o Qs ‘zacctbal Q4 ‘ availgty Qs
b2

we have, using linearity of expectation and the above equations, g > ‘ totalprice
E[\?S] = yS.Thus,\?S is indeed an unbiased estimateyfgr . The e e AN D]
>

2 >< ><]
equation that define¥g can be solved recursively by making two C/ \o O/N\ p/ \PS L/ \) L/ \O
qty
| \
L

observations. FirstY;; is an unbiased estimateyfor O availqty

(which follows directly from Theorem 1 witti replaced byf2),
thus \?{1___n} =Y{1. ny - Second, the equation that defir}é§
depends only ofYg and unbiased estimates of teggns ~ wilere

is a strict superset d§, thus the recursion always terminates with 8 Benchmarking
the unbiased estimator fgf; ., in at mositeps.

PS
Figure 6: Test query plans.

This Section describes a set of benchmarking experiments. Space
. . precludes a detailed benchmark of the ABC engines performance
7.3 Analysis OfNi fori>1 characteristics; thus, we focus on the goal of answering the follow-
As described in Section 5.2, the estimates associated with the lev-ing questions:
elwise steps after the first one are different, in that each record has,
a 1p probability of appearing in each partition, and the sampling
of each record is independent. This changes the analysis.

In subsequent levelwise steps, the samples are produced by flip-
ping an independemtfaced coin for every tuple in the relation and
placing it in one of theo samples depending on the outcome. Using «Are the ABC confidence intervals reliable?

the same approach as in the previous section, the random variables . . .
X; have different behavior. In this case: How does the total execution time of the ABC engine compare

with the execution time of a traditional database system? Is the

How does the width of the confidence bounds produced by the
ABC engine decrease in time? Is the decrease rapid and smooth,
so that the ABC engine could be used to produce useful results in
a short period of time, and more useful results given more time?

Vpif =t overhead incurred by the statistical processing required by the
E[X] =1/p; E[X X)) = Ell/ o2it 1 £t ABC system acceptable?
1 I
= § t,l +(1-3, t,)i = i[l +(p-1)3, /] Experimental Setup In our experiments, we evaluate five queries
rhp b p2 2 i over the TPC-H schema. In order to introduce some mild skew into
SinceE[X,] = 1/p (just as in the first levelwise step)is unbi- the data in order to make the evaluation more interesting, we

implemented our own TPC-H data generator and generated a data-
base having a scale factor of 10, which creates a database that is
approximately 10 GB in size. The queries we run are over the fol-

ased just is in the first levelwise step. However, the second moment
of X is changed, along with the varianceXof

Theorem 3 Second moment of X lowing five tables: (1)ineitem (L) - 7GB and 60 million rows;
) S 0 B3 (2) orders (O) - 1.4 GB and 15 million rows; (3part (P) - 215
E[XT] = DZ((p-1) % O f(t;, tj)D MB and 2 million rows; (4)partsupp (PS) - 1.4 GB and 8 mil-
stfA(y (tORTIOS} qti OR[10S%) 0 lion rows; and (5)customer (C) - 240 MB and 1.5 million rows.

For more information, sewtp://www.tpc.org/ .
Proof: The proof is similar to the proof of Theorem 2, but here To test the width of the confidence bounds produced by the ABC
a =1andb = p-1.0 engine and to test total running time, we consider the five queries

.)) whose query plans are depicted in Figure 6. The relational selec-
Otherwise, not much changes in subsequent levelwise steps. Thgjon predicates off andL in Q; have selectivities of 20% and 60%

observations of Section 7.2.3 with respect to the covariance respectively. Those oh andPS in Q, have selectivities of 99%

between various trials over the variat{eéhold and the process of . . L
estimating the variance of eaehchanges only slightly. To deter- and 20% respectively. Those @randl. in Qg have selectivities of

mine unbiased estimates fgx the coefficientscg thave to be 99% and 20% respectively. Note that b@h andQ; make use of

the scan/re-randomize operator.
tak = (p-1)" . otherwise, th tions that gi ion usi
aken ascg 1 = (p-1) . erwise, the equauons that give These query plans were run to completion using the ABC
unbiased estimates for the variance can be solved as before. engine. The experimental platform was a 2.4GHz Pentium Xeon

machine with 2GB of RAM and dual 10K RPM, 80GB SCSI hard
disks. In Figure 7, we plot the relative confidence interval width

10

Query 1 Query 2 Query 3 Cl Accuracy Query 4 CI Accuracy

c ! < 1 - < 99 < 99
§ =3 o > 2 98
5 0.1 — % 0.1 9 g 98 g 97
g om S 0.01 \ @ < % <%
< — ~N ™ - N o % o os
z oo} g | & 5y o001}l & & B 8 5
o | ® n o o g % g o
0.0001 0.0001 S o S o1
0 300 600 900 1200 1500 0 300 600 900 1200 5 10 15 20 5 10 15 20 25 30 35 40
Seconds Elapnsed Seconds Elapsed Minutes Elapsed Minutes Elapsed
Query 3 Query 4 i . .
- 1 ® 1 = Figure 8: Observed 95% interval accuracy over 100 indepen-
3 aQ .
s . 8 o a dent query executions.
g — o o . :
£ ol o N 001 \\ _results do strongly indicate that_ alg_orlthms un_derlylng ABC d_o not
¢ ey 2 g g incur much of an overhead, validating our claim that the statistical
R o 0.001 g g W analysis provided by ABC does not come at too high a cost.
® 0.0001 0 300 o0 o0 1200 1500 0.0001 Second, these results show that the engine is able to consistently
0 600 1200 1800 2400 3000 - : : H
Seconds Elapsed Seoonds Elapsed narrow confidence intervals throughout execution. At the begin-
Query 5 ning of each level, the intervals tend to narrow very quickly (since
= ! the estimators associated with each subsequent level are far more
2 o accurate than the estimators associated with previous one), but the
: 0oL o . intervals narrow consistently within each level as well.
s oy Z Furthermore, these results show that scalability is an absolute
5 o000 n n necessity in this type of online approximation. In our experiments,
[5] . .
T o001 ABC fully consumed main memory in 15 to 20 seconds from the
320 d6°|° d90° start of query processing. Up until this time, the ABC estimate
) _ | Seconds Blapse _] would be identical to the estimate provided by a hashed ripple join,
Figure 7: Relative confidence interval width as a function of which must be terminated when the main memory is consumed.

))) From Figure 7, it is clear that after such a short time period, the
produced by ABC as a function of time for these queries (the rela- gstimates obtained can be far from accurate. For exampl@, in
tive confidence interval width is the ratio between confidence inter- the estimate starts out with a 95% confidence interval width that is

V?égl(ig] dansd.r:heacé‘;/enésr?]}.m?‘tfglghglsem%g;iaastii:a%;nsi;’;'cer_ealmost wider than the magnitude of the estimate itself. But by the
produ using 0 ' vel, ing U"end of the first levelwise step, ABC is able to shrink that width to

lated variance ofo” , bounds of approximatetc around the less than 10% of the estimate; by the end of the second levelwise

estimate were used. Thus, a relative interval width of 0.12 means Step, the width is less than 1% of the estimate. Given the extreme
that the width of the 95% confidence bounds are 12% as large asharrowness of the confidence intervals observed after one or two
the current estimate. levels in every case, it is reasonable to claim that for many applica-
To test the accuracy of the given confidence intervals, we re-gen- tion-specific accuracy requirements, ABC query processing can be
erate the database 100 times and for each instance of the databastgrminated early with a satisfactory answer. _
we re-runQz andQ, to completion. For each query, we consider Finally, Figure 8 gives strong evidence that the variance calcula-
all of the confidence intervals reported at the end of mimutef tions described in the paper and the CLT-based bounds we use are
the query execution as a group, and for each value ofe com- in fact vall_d. Using the bl_nomlal _dlstrlbutlon, itcan easily be calcu-
pute the fraction of confidence intervals that did, in fact, contain lated that if the true confidence interval probability were 95%, over

the actual query answer. The results of this experiment are given asL00 trials we would expect a 96% chance of observing between 91
Figure 8 and 99 “correct” confidence intervals. From Figure 8 we observe

Finally, the time required for completing each query is given as that for the 100 query repetitions tested o@grandQ,, only three
Figure 9. This time is Compared with the time required to run the of the 62 minutes have less than 91 correct intervals or more than
same query to completion on the same machine, using the Postgre§9. Significantly, (62 - 3)/62 = 95.2%, which is very close to the
system. While we realize that other, widely-used commercial sys- 96% that one would expect given 62 sets of 100 tests over true,
tems such as Oracle are likely to be faster than Postgres, legal95% confidence intervals. Granted, this is not irrefutable evidence
restrictions prohibit publishing such a comparison. Still, Postgres Of correctness. Only two queries were tested (since each test
is widely used. Thus, this experiment should be seen as testingrequires several days) and the 62 minutes reported are not indepen-
whether query execution time in ABC is at least “in the ballpark” dent (a correct interval in one minute makes it more likely to

of what one might expect in terms of completion time from a com- ©bserve a correct interval in the next). But this certainly is a strong
mercial system. argument that our derivations are in fact valid.

Discussion It is possible to draw a few conclusions from these 9 Related Work

results. First, there does not appear to be much of a hit in terms of

additional execution time with the ABC engine as compared to a As discussed previously in the paper, the work most closely related
traditional database system. Our experiments show that ABC isto the ABC engine is the previous work on online aggregation
actually significantly faster than Postgres in evaluating each of [6][7][10][11] and the SMS join [13]. Online aggregation has its
these particular queries. This does not imply that ABC would be roots in early work linking approximation with processing time
faster than any commercial system, especially since Postgres ig12]. This paper takes inspiration from, and extends both. For
surprising CPU-bound for this particular workload. However, these example, the statistical results given in Section 7 extends the

11

within the ABC system, because they are targeted towards small
samples and require random disk 1/0Os to sample from a relational
Query| ABC | Postgres selection predicate. Developing indexing and file organizations
that support fast sampling from selection predicates is important.

Q1 26m42s| 43m47s

Qo 20m08s| 34m27s

Query Execution Time

*How can the randomized data ordering be maintained during
data updat@® ABC requires a random clustering of data on disk.

Q3 29m12s| 37m40s Developing new, easily-maintained randomized file organiza-
Q 47mO05s | 88m28s tions that support fast updates will be a priority.
Qs 17m28s| 46m31s *Can ABC be extended past joins containing equality condifions

Other operations such as relational subtraction, non-equi-join
queries, and duplicate removal are important. There has been
some initial work in this area [14], but more effort is needed to
results of Haas et al. [6][7][8] by extending their analysis to the allow for truly scalable processing.

different types of finite-population sampling without replacement

required by the ABC engine, and extends the results of Jermaine etReferences

al. [13] by considering Bernoulli (coin-flip) sampling and arbitrary [1] s, Acharya, P. Gibons, V. Poosala, S. Ramaswamy: Join Syn-
numbers of relations. The algorithms used by ABC clearly have opses for Approximate Query Processit8GMOD 1999:
their roots both in the ripple join and in the SMS join, but dramati- 275-286.

cally extend the applicability of both to the point where the ABC [2] S, Chaudhuri, R. Motwani, V.R. Narasayya: On Random
engine may actually be competitive with traditional query-process- Sampling over JoinSIGMOD1999: 263-274

ing methodologies, thereby giving online estimates and accuracy[3] . Cochran:Sampling TechniquesViley and Sons, 1977

guarantees “for free”. . _ [4] J.-P. Dittrich, B. Seeger, D.S. Taylor, Peter Widmayer: On
There is a body of relevant work in the database literature on producing join results earfpPODS2003: 134-142

sampling-based algorithms for approximate query processing. B P, : .)
Olken’s work, summarized in his PhD thesis [16], ia well-known. [5] ‘;NZ I\D/llétrréc;h,\]lgi.n:siegggnlg.r% aTﬁéloﬁ‘oﬁngﬂggegoﬁiﬁg;fd
The two papers most closely related to this one describe join syn- Join Algorithm.VLDB 2002; 299-310

opses [1] and Chaudhuri et al.'s work discusses important issues[s] P.J. Haas, J.M. Hellerstein: Ripple Joins for Online Aggrega-
associated with sampling from joins [2]. However, neither of these tibﬁ SIGI\)IO.Di999' 287-298

papers has the systems-oriented focus of our work, where the goal[1 ')
is to build a system that can run a query from start-up through
completion. Join synopses provide a single, fixed precision esti- 8
mate and are limited to foreign key joins, and it is not clear how to (8]
scale Chaudhuri et al.’s work so thedt of the tuples resulting from

a multi-gigabyte join can be sampled in a scalable fashion.

Figure 9: Completion time of ABC vs. Postgres.

P.J. Haas: Large-Sample and Deterministic Confidence Inter-
vals for Online AggregatiorsSDBM1997: 51-63
P.J. Haas, J. F. Naughton, S. Seshadri, A. N. Swami: Selectiv-
ity and Cost Estimation for Joins Based on Random Sam-
pling. J. Com. Syst. S&2(3): 550-569 (1996)

[9] G. H. Hardy, J. E. Littlewood, and G. Poly#equalities

: Cambridge University Press, 1988.

10 Future Work and Concludlng Remarks [10] J.M. Hellerstein, R. Avnur, A. Chou, C. Hidber, C. Olston, V.
This paper has described how the ABC query execution engine can Raman, T. Roth, P.J. Haas: Interactive data Analysis: The
processSELECTFROMWVHERESROUP B¥aggregate SQL que- Control ProjectlEEE ComputeB2(8): 51-59 (1999)
ries over multiple input relations in a scalable fashion, and give [11] J.M. Hellerstein, P.J. Haas, H.J. Wang: Online Aggregation.
statistically rigorous accuracy guarantees from start-up through SIGMOD1997; 171-182
completion of the plan. This has required significant algorithmic [12] G. Ozsoyoglu, K. Du, S.G. Swamy, W.-C. Hou: Processing
innovation, as well as an extensive statistical analysis of the prop- Real-Time, Non-Aggregate Queries with Time-Constraints in
erties of our new algorithms. The focus of the paper was specifi- CASE-DB.ICDE 1992: 410-417
cally directed towards query processing (both algorithmic and [13] C. Jermaine, A. Dobra, S. Arumugam, S. Joshi, A. Pol: A
statistical issues). To keep the paper’s scope at a manageable level, Disk-Based Join with Probabilistic Guarante€&&GMOD
other important questions must be deferred to future work. These 2005: 456-467.
questions include the following: [14] C. Jermaine, A. Dbora, A. Pol, S. Joshi: Online Estimation for

*How should query optimization be performed in the ABC sy&tem Subset-Based SQL Queriad.DB 2005: 745-756.
This will be a challenging task, because ABC has two competing [15] G. Luo, C. Ellmann, P.J. Haas, J.F. Naughton: A scalable hash
optimization goals: running the query to completion quickly, and ripple join algorithmSIGMOD2002: 252-262 _
giving accurate estimates that converge quickly. We plan to use [16] F. Olken:Random Sampling from Databas€D Thesis, U.

user input to specify the relative importance of the two goals. of California, Berkeley, 1993

. . . . [17] F. Olken, D. Rotem, P. Xu: Random Sampling from Hash
«Are there other join algorithms suitable for use within ABOur Files.SIGMOD1990: 375-386

preliminary work has focused only on a variance of the sort- [18] F. Olken, D. Rotem: Random Sampling from B+-Trees.
merge join. It may be desirable to give ABC the ability to use VLDB 1989: 269-277

otherjoins.(such as the hybrid hash join) during the computation [19] L.D. Shapiro: Join Processing in Database Systems with

of a levelwise step. Large Main MemoriesACM Trans. Database Syst1(3):
*How must indexing change in the ABC systaburrent sampling- 239-264 (1986)

based indexing methodologies [17][18] are likely not useful [20] J. ShaoMathematical StatisticsSSpringer-Verlag, 1999.

12

	1 Introduction
	2 Why Is This Hard?
	2.1 The Ripple Join
	2.2 The SMS Join
	2.3 Fixing the Problem?

	3 ABC Query Evaluation: Overview
	Figure 1 : Levelwise query evaluation in ABC.

	4 The Levelwise Step
	4.1 The Scan Phase
	Figure 2 : Scan phase of a levelwise step. In this example, we assume an SQL query having the whe...

	4.2 The Merge Phase

	5 Scan Phase Estimation In-Depth
	Figure 3 : The merge phase of a levelwise step used to compute R12R1R2 and R34R3R4 for a query wi...
	5.1 Estimating the First Time Around
	5.2 Estimation at Subsequent Levels
	5.3 Estimation At the Last Level
	5.4 Estimating the Final Answer to the Query
	5.5 Providing Confidence Bounds

	6 Additional Considerations
	6.1 Why Use the Round-Robin Approach?
	6.2 Choosing the Number of Runs
	Figure 4 : Using the round-robin method, seven combinations of runs that are searched when relati...

	6.3 Handling Data Skew
	6.4 Handling GROUP BYs and Other Aggregates
	6.5 Handling Inconvenient Queries
	Figure 5 : Handling a star-join query. The example query (a) would typically be evaluated using a...

	7 Statistical Considerations
	7.1 Notation
	7.2 Analysis of N1: the First Levelwise Step

	7.2.1 Analysis of Expectation
	7.2.2 Analysis of Variance
	7.2.3 Extending the Analysis to N1
	7.2.4 Estimating the Variance
	7.3 Analysis of Ni for i > 1

	8 Benchmarking
	Figure 6 : Test query plans.
	Figure 7 : Relative confidence interval width as a function of time for the five test query plans.
	Figure 8 : Observed 95% interval accuracy over 100 independent query executions.

	9 Related Work
	Figure 9 : Completion time of ABC vs. Postgres.

	10 Future Work and Concluding Remarks
	[1] S. Acharya, P. Gibons, V. Poosala, S. Ramaswamy: Join Synopses for Approximate Query Processi...
	[2] S. Chaudhuri, R. Motwani, V.R. Narasayya: On Random Sampling over Joins. SIGMOD 1999: 263-274
	[3] W. Cochran: Sampling Techniques. Wiley and Sons, 1977
	[4] J.-P. Dittrich, B. Seeger, D.S. Taylor, Peter Widmayer: On producing join results early. PODS...
	[5] J.-P. Dittrich, B. Seeger, D.S. Taylor, P. Widmayer: Progressive Merge Join: A Generic and No...
	[6] P.J. Haas, J.M. Hellerstein: Ripple Joins for Online Aggregation. SIGMOD 1999: 287-298
	[7] P.J. Haas: Large-Sample and Deterministic Confidence Intervals for Online Aggregation. SSDBM ...
	[8] P.J. Haas, J. F. Naughton, S. Seshadri, A. N. Swami: Selectivity and Cost Estimation for Join...
	[9] G. H. Hardy, J. E. Littlewood, and G. Polya. Inequalities. Cambridge University Press, 1988.
	[10] J.M. Hellerstein, R. Avnur, A. Chou, C. Hidber, C. Olston, V. Raman, T. Roth, P.J. Haas: Int...
	[11] J.M. Hellerstein, P.J. Haas, H.J. Wang: Online Aggregation. SIGMOD 1997: 171-182
	[12] G. Özsoyoglu, K. Du, S.G. Swamy, W.-C. Hou: Processing Real-Time, Non-Aggregate Queries with...
	[13] C. Jermaine, A. Dobra, S. Arumugam, S. Joshi, A. Pol: A Disk-Based Join with Probabilistic G...
	[14] C. Jermaine, A. Dbora, A. Pol, S. Joshi: Online Estimation for Subset-Based SQL Queries. VLD...
	[15] G. Luo, C. Ellmann, P.J. Haas, J.F. Naughton: A scalable hash ripple join algorithm. SIGMOD ...
	[16] F. Olken: Random Sampling from Databases. PhD Thesis, U. of California, Berkeley, 1993
	[17] F. Olken, D. Rotem, P. Xu: Random Sampling from Hash Files. SIGMOD 1990: 375-386
	[18] F. Olken, D. Rotem: Random Sampling from B+-Trees. VLDB 1989: 269-277
	[19] L.D. Shapiro: Join Processing in Database Systems with Large Main Memories. ACM Trans. Datab...
	[20] J. Shao: Mathematical Statistics. Springer-Verlag, 1999.

