
ng
he
or

hal-
first
ing
o
the

is

em-
o

ke
the

w-

iffi-
ch
u-
e
at
to

g
es
se
ss-

for
are
e,
g
a-
ed
ati-

zes
d
lity

le,
of

Scalable Approximate Query Processing with the ABC Engine
Abstract
This paper describes query processing in the ABC database sys-
tem. Like other database systems designed for ad-hoc, analytic
processing, ABC is able to compute the exact answer to queries
over a large relational database in a scalable fashion. Unlike any
other system designed for analytic processing, ABC can constantly
maintain a guess as to the final answer to an aggregate query
throughout execution, along with statistically meaningful bounds
for the guess’ accuracy. As ABC gathers more and more informa-
tion, the guess gets more and more accurate, until it is 100% accu-
rate as the query is completed. This allows the user to stop the
execution at any time that they are happy with the query accuracy,
and encourages exploratory data analysis.

1 Introduction
Modern database systems are ill-suited to the task of ad-hoc, ana-
lytic query processing over massive data sets. For proof of this, one
needs only to look at the TPC-H benchmark results, which show
that modern hardware and software can still provide dismal, day-
long query evaluation times given an ad-hoc analytic processing
workload. Such slow speeds render interactive, exploratory data
processing an impossibility.

One way to address this performance limitation is to re-design
database architecture from the ground up to support intense, ana-
lytic workloads. A promising idea is to makerandomizationthe
basic database design principle [11]. Under such a paradigm, a
database relies on randomized algorithms that immediately give an
approximate and statistically meaningful guess as to the eventual
query result. If the user is satisfied with the accuracy, or the guess
shows that the question will likely have an uninteresting answer
then the computation can be terminated. However, if the query is
allowed to run, the guess becomes more and more accurate as the
database system processes more data. If necessary, the user may
simply decide to wait until an exact answer is obtained.

This paper describes the design and implementation of the query
processing engine of a prototype database system based on such a
design, calledABC. ABC takes as input aSELECT-FROM-WHERE-
GROUP BYaggregate SQL query over an arbitrary number of disk-
based, input tables. Like a traditional database system, ABC com-
putes the exact answer to the query in a scalable fashion. However,
ABC is designed to make use of novel, randomized algorithms that
not only allow it to compute the exact answer to the query, but also
allow it to maintain a guess (with accuracy guarantees) as to the
final answer to the query at all times during query execution.

ABC demonstrates that by modifying certain basic principles of
database system design, it is possible to have the best of both
worlds: a database system that can process large data sets effi-
ciently, but also supports interactive data exploration through fast
and accurate approximation. This paper gives some evidence to

support the claim that by changing the DBMS query processi
engine, it is actually possible to have running estimates for t
final query result “for free” in the sense that there may be little
no performance hit compared to traditional query processing.

An Unsolved Problem: Scalable Online Approximation
The design and implementation of such a system presents a c
lenging set of research problems. Hellerstein, Haas, and Wang
proposed an idea along these lines in their 1997 paper describ
online aggregation[11], and later showed how to evaluate joins s
as to give accuracy guarantees during query execution (with
introduction of theripple join [6]). This work was later extended to
a parallel environment [15]. However, a problem with this work
that the proposed algorithms are not scalable. As soon as enough
data has been processed that it cannot all be stored in main m
ory (which will happen after only a few seconds or less), it is n
longer possible to provide statistical guarantees.

In response to this, Jermaine et al. [13] showed how to ma
online estimation scalable, and described a generalization of
ripple join called theSMS jointhat gives an estimate with statisti-
cal accuracy guarantees from startup through completion. Ho
ever, a problem with the SMS join is thatit is generally only
appropriate for joins over two large input tables. This is problem-
atic because the greater the number of input tables, the more d
cult it is to produce an accurate, approximate answer quickly. Ea
additional input table typically increases the variance (and inacc
racy) of the obvious randomized estimators in a multiplicativ
fashion. Thus, the more input tables to a query, the more likely th
a scalable algorithm will be required to process enough data
give an accurate answer.

Our Contributions
Given this, it is now impossible to realize the goal of combinin
scalable, efficient query processing with tight statistical guarante
from startup through completion. ABC specifically addresses the
limitations and demonstrates a new paradigm for analytic proce
ing. ABC is able to complete the answer toarbitrary select-
project-join query plans in a scalable fashion, and can provide
statistical guarantees from startup through completion. There
many technical innovations in ABC’s query processing engin
including: (1) a re-design of the traditional query processin
engine to facilitate information sharing across relational oper
tions; (2) a novel scheme for producing join tuples in a randomiz
fashion that facilitates statistical guarantees; (3) a deep mathem
cal analysis of the engine’s statistical properties that generali
existing analysis [6][13] to different types of randomization an
queries; (4) derivation of unbiased estimators for estimate qua
that allow analysis of queries over arbitrary numbers of tables.

Paper Outline
In Section 2, we discuss the difficulties associated with scalab
online approximate query processing. Section 3 gives an outline
1

ti-
ly
he
ed
ult.
la-

into
the
s-

r. If

e

m
ble

For
ult
e
ill
ies
at
if

sti-
n-
to
e

pro-
gh
to
a
are
g in
of

ies
s”.
ible
om

al
ABC’s query processing engine, and Section 4 gives more detail
on the engine’s fundamental abstraction, thelevelwise step. Sec-
tion 5 discusses how estimates are produced by the engine, and
Section 6 discusses some of the details of query processing in
ABC. Section 7 discusses statistical considerations in-depth, and
Section 8 benchmarks the engine’s performance. Section 9 consid-
ers related work, and Section 10 concludes the paper with future
work and additional issues that are beyond the scope if this paper,
such as query optimization and indexing.

2 Why Is This Hard?
The problem of combining scalability and online estimation is dif-
ficult. In order to achieve scalability, a database system must rely
on careful movement of data between memory and disk so that the
correct data are in memory when they are needed. On the other
hand, in order to perform statistical inference and provide accuracy
guarantees, a system must rely on randomization. Obviously, these
requirements are in direct opposition to one another: How is it pos-
sible to achieve careful organization and randomization at the same
time? In this Section, we discuss these difficulties in more detail.

2.1 The Ripple Join
The most well-known algorithm for performing online estimation
over multi-table queries is theripple join family of algorithms [6].
In our discussion of the ripple join (and of all of the algorithms
considered in this paper), we assume a TPC-H-style query of the
form:

SELECT n.name, SUM (...)
FROM customer c, orders o, lineitem l,

supplier s, nation n, region r
WHERE c.custkey = o.custkey AND

l.orderkey = o.orderkey AND ...
GROUP BY n.name

Or more generally:

SELECT SUM ()
FROM R1 as r1, R 1 as r2,..., R n as rn

In the above expression, is the concatenation operation, which
appends one tuple to another.f can encode any relational selection
or join predicate over the input tuples, and can also encode a
GROUP BY by selecting tuples only from a specific group.

The ripple join works by reading an ever-larger sample of each
input relation in a sequential fashion, and using those samples to
estimate the final query answer. As the sample grows, the algo-
rithm outputs estimates of ever-increasing accuracy. The fact that
the portion of the data space used to compute the estimate grows
from the lower left to upper right corner of the data space leads to
the name “ripple join”.

However, the algorithm is not scalable. Assuming a hash ripple
join, at the point that the join can no longer buffer all of the sam-
pled records in main memory, it becomes necessary to page out
one or more records to make room for a new record, and to page in
other records in order to check for matches with the new record.
These I/Os will be random due to the random order of input tuples,
so the algorithm causes severe thrashing. Even if each new record
that is processed requires only a single random disk I/O, the pro-
cessing rate will be only around 10,000 records/minute/disk (with
a 3ms random I/O time), with no easy way to address the problem.

2.2 The SMS Join
In response to this, Jermaine et al. proposed thesort-merge-shrink
join, a scalable join that is able to maintain online, statistical es
mates throughout query execution [13]. The SMS join is close
related to the classic sort-merge join [19], except that during t
sort phase of the SMS join, all of the input relations are process
concurrently in order to provide a guess as to the final query res
Unfortunately, the SMS join has problems scaling past two re
tions. Imagine that we want to answer the query:

SELECT SUM (R3.c)
FROM R1, R 2, R 3
WHERE R1.a = R2.a AND R2.b = R3.b

Like the SMS join, virtually all modern, scalable join algorithm
use a two-phase model, where data are first hashed or sorted
buckets or runs and written back to disk. In a second phase,
various buckets or runs are joined. In the above query, it is impo
sible to use such a two-phase algorithm to compute the answe
data fromR2 are sorted or hashed on attributeR2.a, then the result-
ing buckets or runs cannot be joined directly withR3 without re-
sorting or re-hashing (because the join withR3 is on the attribute
R2.b and the records will be sorted on the wrong attribute). If th
data fromR2 are sorted or hashed on attributeR2.b, thenR2 cannot
be joined directly withR1. Such a query must be implemented
using twoseparatejoins, and it is far from clear how two joins can
be combined in the SMS framework.

2.3 Fixing the Problem?
Unfortunately, all obvious ideas for addressing this proble
encounter difficulties. One idea would is use some sort of scala
“fast first” join algorithm [4][5] to processR1 R2, and to pipeline
result tuples from the first join into a second SMS join withR3.
However, there are problems associated with this approach.
example, almost any method for estimating the final query res
will require a random input ordering of tuples in order to provid
statistical guarantees. However, the output from the first join w
not have a randomized ordering, making the statistical propert
of such an algorithm very difficult to reason about. It is known th
producing such a randomized ordering is difficult [2]. Even
tuples were produced in a randomized fashion, it is difficult to
pipeline them into another join and use that join to produce an e
mate for the answer to the query due to important, unknown co
stants. For example, a ripple-join-style estimator would need
know the size of the intermediate relation, which would b
unknown until the relation is materialized.

3 ABC Query Evaluation: Overview
Because of such difficulties, designing a database system that
vides both scalability and accurate estimation from startup throu
completion is a daunting task. It appears to be impossible
achieve both goals by simply plugging algorithms directly into
traditional database engine; more fundamental design changes
needed. The remainder of the paper describes query processin
the ABC system, which achieves these goals by making use
some fundamental changes in database system architecture.

The problem with traditional database engines in this context l
with the fact that relational operations are treated as “black boxe
This abstraction renders accurate statistical estimation imposs
because it hides intermediate results as well as internal state fr
the remainder of the system. If intermediate results are not exter-
nally visible, it is impossible for the system to guess the fin

f r1 r2 … r n•••()

•

2

of

re

a
out
out

a
t a
fy
us-
r.
ke
a-

r to
f a

ort-

of
the

the

in
be
en

l
put
zed

eo-
of
to
e-

is
e

se
m-
ch
ult
wer.

e
n
ne
answer to the querybecause no entity has access to information
about every input relation.

In order to provide for accurate online estimation, ABC’s execu-
tion engine is quite different. All of the operations at a single level
of the query plan aretaken togetheras the basic query-processing
abstraction. The operations executed at a single level in the query
plan are together referred to as alevelwise step. All of the opera-
tions within each levelwise step execute concurrently and share
information with one another. The reason for this is simple: assum-
ing for the time being that all leaves of the query plan are at the
same level, then by definition, all of the operations at a single level
of the query plan have access to enough information to compute
the final answer to the query. Actually computing the final answer
may take hours or days. But by carefully allowing each operation
to share some if its intermediate results with all of the other opera-
tions at the same level, it becomes possible to look for preliminary
result tuples in order to guess the final query answer.

The process of evaluating a query from startup through comple-
tion in ABC for a given query plan is depicted in Figure 1. In this
example, ABC’s engine begins by executing the first levelwise
step, where each operation at the bottom level of the plan is evalu-
ated concurrently. At all times, this step maintains an online esti-
matorN1 for the final answer to the query by passing information
among the various constituent joins. As the levelwise step
progresses,N1 achieves more and more accuracy. Eventually, it
becomes frozen as the step completes. The resulting relations are
used as input to the second levelwise step, which produces an
online estimatorN2. At all times,N2 is combined withN1 to pro-
duce a single estimate for the final answer to the query. Finally,
after the second levelwise step ends, the last levelwise step is exe-
cuted, which produces an online estimatorN3. Again, as this step

progresses,N3 is combined with bothN1 andN2 (now both frozen)
to produce an estimate for the answer to the query. As the end
query execution approaches,N3 will approach (and eventually
become equal to) the correct query result.

4 The Levelwise Step
As described above, all of the joins at theith level of the query plan
are evaluated concurrently in ABC, and all of the joins that a
concurrently executed are collectively referred to as alevelwise
step. The concurrent evaluation is necessary in order to provide
running estimator for the eventual answer to the query through
execution, since it ensures that at least some information ab
every relation is always in memory.

In the ABC prototype, each individual join is implemented as
modified sort-merge join, though use of a sort-merge join is no
fundamental requirement. It would also be possible to modi
other scalable, two-phase join algorithms for use (see the disc
sion in Section 10), though this is beyond the scope of the pape

Whatever two-phase join algorithm is used, the joins that ma
up a levelwise step must be carefully coordinated to share inform
tion among one another so that an estimate for the final answe
the query can be maintained. This results in the partitioning o
levelwise step into two phases: ascanphase and amergephase.
These two phases are described now in the context of the s
merge join employed by the ABC prototype.

4.1 The Scan Phase
Thescan phaseof a levelwise step is analogous to the sort phase
a sort-merge join or the hash phase of a hash join except that
phase is executed concurrently forall of the joins that make up the
ith levelwise step. There are several other key characteristics of
scan phase of a levelwise step:

(1) Immediate discovery of output tuples. In a manner similar to
the ripple join [6], at all times, the subsets of tuples stored
memory from all relations are checked to see if they can
joined to discover any output tuples immediately, which are th
used to guess the eventual answer to the query.

(2) Randomized sort order. In order to ensure that the statistica
properties of the estimate produced by examining those out
tuples are reasonable, the tuples must be input in a randomi
order. As we discuss below, this also implies theoutputof the
scan phase must be in a randomized order.

(3) Round-robin processing of runs. In order to provide for
greater accuracy, runs are processed in a carefully chor
graphed, round-robin fashion. This round-robin processing
runs leads to a “zig-zag” pattern that allows the algorithm
produce a low-variance estimator, as we will discuss subs
quently.

The scan phase of a levelwise step is implemented as follows:

(1) As the phase begins, one run of records from each relation
read into memory from disk (or, since levels are pipelined, th
records are taken as input directly from the previous levelwi
step). Once one run from each input relation is present in me
ory, all of the records are immediately joined in order to sear
for any result tuples. As is described in Section 5, these res
tuples are used to obtain an unbiased guess for the query ans

(3) Assuming an arbitrary ordering for the input relations, in th
next step, the run from the “first” relation is sorted and writte
back to disk, just as in a sort-merge join. However, there is o
important difference. IfRj is to be joined on the attributeRj.key ,

R1 R4R3R2 R5 R6 R7 R8

R12 R34 R56 R78

R1234 R5678

R12345678

Figure 1: Levelwise query evaluation in ABC.

(1) Original query plan

R1 R4R3R2 R5 R6 R7 R8

(2) All bottom-level joins
evaluated concurrently in
levelwise step #1. This step

(3) Remaining query plan

R12 R34 R56 R78

(4) All bottom-level joins
evaluated concurrently in
levelwise step #2, producing

(5) Remaining query plan R1234 R5678

(6) Final join evaluated in
levelwise step #3

(7) Result relation

N1

N2

N3

produces the estimatorN1

the second online estimatorN2
3

ch
to
ins

(

es

he

for
ail

vel-
ate
on,

ly
ps,
ed
ed

-

it is not sorted onRj.key directly. Rather, it is sorted on the
value ofH(id, Rj.key), whereH is a randomizing or hash func-
tion that takes the valueid as a seed; in order to make sure that
none of the orderings are correlated, a different seed is used for
each join. This hashing is performed so it is possible to guaran-
tee a random output order for tuples from the subsequent merge
phase: if the sort order is chosen based upon some randomized
lexicographic ordering of the input tuples, tuples will be output
in an order that is statistically independent of all of the output
records’ attributes (except for the join attribute). This random-
ized output order means that the output tuples can then be used
as input to a join in thenext levelwise step.

(3) After the records from the first run of the first relation are
written back to disk, the next set of records from the first rela-
tion are read from disk (or taken directly from the pervious
merge phase if pipelined). They are immediately joined with all
of the other tuples currently in memory. Then, the first set of
records from thesecondrelation are sorted usingH and written
out to disk to make room for the second run of records from the
second relation. This second run is read in and immediately
joined with all of the other tuples in memory. This processing is
always performed in a systematic, round-robin fashion: first a
run from R1 is read and processed, then a run fromR2 is read
and processed, and so on; after a run from the last relation to be
joined at leveli is read, the nest run from relationR1 is read, and
the cycle begins again. An example is depicted in Figure 2.

4.2 The Merge Phase
The merge phase of the joins making up theith levelwise step is
very similar to the merge phase of a traditional sort-merge join,
except that the various merges of all of the joins are run concur-

rently. That is, the head of each run of each input relation to theith

levelwise step is read into memory, and runs of records from ea
output relation are produced in a round-robin fashion in order
pipeline the result records directly into the scan phase of the jo

making up the (i + 1)th levelwise step, without ever writing records
back to disk. Since the scan phases of the joins making up thei +

1)th levelwise step all run concurrently, so must the merge phas

of the ith levelwise step. An example merge phase (continuing t
example of Figure 2) is depicted in Figure 3.

5 Scan Phase Estimation In-Depth
The previous Section described at a high level the algorithm
computing a levelwise step. In this Section, we discuss in det
how to compute online estimates in ABC.

5.1 Estimating the First Time Around
As described previously, a key goal of the scan phase of each le
wise step is to use result tuples discovered on-the-fly to estim
the final answer to the query. In the remainder of this Subsecti
we make the assumption that each input relation fori from 1 to
n is fully materialized and resides on disk. However, this is on
the case in the first levelwise step. In subsequent levelwise ste
the result of the merge phase from the previous step is pipelin
into the scan phase. We consider the extension to the pipelin
case in the next Subsection.

Let T(i, j, k) = for a given levelwise

step. In other words,T(i, j, k) is the cross product of all of the
tuples in theith run of input relationsj throughk. For example, in
Figure 2,T(1, 1, 4) is the cross product of all of the tuples in mem

2

8
1
9
2
5
2
9
4

7
0
7
9
5
4
9
8

7
0
4
6
1
8
5
9

1
5
3
4
7
2
8
1

5
4
1
9
2
7
3
8

1
7
2
5
8
6
4
3

1
2
5
0
0
9
3
4

8
7
1
0
0
3
4
2

9
0
4
5
2
7
9
5

5
4
9
2
1
3
8
0

R1 R2 R3 R4
A B

4
5
4
8
9
0
8
1

H1(B)

C D E
4
5
0
3
7
1
9
8

H1(C)

9
0
2
1
1
7
3
8

H2(G)

F G HI

H2(H)

8
9
1

5

9
4

7
7
0
9
5

9
8

7
0
4
6
1
8
5
9

1
5
3
4
7
2
8
1

5
4
1
9
2
7
3
8

1
7
2
5
8
6
4
3

1
2
5
0
0
9
3
4

8
7
1
0
0
3
4
2

9
0
4
5
2
7
9
5

5
4
9
2
1
3
8
0

R1 R2 R3 R4
A B

4
4
5
8
9

8
1

H1(B)

C D E
4
5
0
3
7
1
9
8

H1(C)

9
0
2
1
1
7
3
8

H2(G)

F G HI

H2(H)

2

8
9
1

5
2
9
4

7
7
0
9
5
4
9
8

4
6
7
0
1
8
5
9

3
4
1
5
7
2
8
1

1
9
5
4
2
7
3
8

1
7
2
5
8
6
4
3

1
2
5
0
0
9
3
4

8
7
1
0
0
3
4
2

9
0
4
5
2
7
9
5

5
4
9
2
1
3
8
0

R1 R2 R3 R4
A B

4
4
5
8
9
0
8
1

H1(B)

C D E
0
3
4
5
7
1
9
8

H1(C)

9
0
2
1
1
7
3
8

H2(G)

F G H I

H2(H)

2 4 0

2

8
9
1

5
2

4

7
7
0
9
5
4

8

4
6
7
0
1
8
5
9

3
4
1
5
7
2
8
1

1
9
5
4
2
7
3
8

7
5
2
1

6
4
3

2
0
5
1

9
3
4

8
7
1
0
0
3
4
2

9
0
4
5
2
7
9
5

5
4
9
2
1
3
8
0

R1 R2 R3 R4
A B

4
4
5
8
9
0

1
H1(B)

C D E
0
3
4
5
7
1
9
8

H1(C)

0
1
2
9

7
3
8

H2(G)

F G HI

H2(H)

9 9 8

8 0 1
2

8
9
1

2

4

7
7
0
9

4

8

4
6
7
0
1
8
5
9

3
4
1
5
7
2
8
1

1
9
5
4
2
7
3
8

7
5
2
1

6
4
3

2
0
5
1

9
3
4

0
7
8
1

3

2

5
0
9
4

7

5

1
4
5
9

3

0

R1 R2 R3 R4
A B

4
4
5
8

0

1
H1(B)

C D E
0
3
4
5
7
1
9
8

H1(C)

0
1
2
9

7
3
8

H2(G)

F G HI

H2(H)

9 9 8

8 0 1 0 2 15 5 9

4 9 8

2

8
9
1

4

5

7
7
0
9

8

5

4
6
7
0
8
1
9
5

3
4
1
5
2
7
1
8

1
9
5
4
7
2
8
3

7
5
2
1

4
6
3

2
0
5
1

3
9
4

0
7
8
1

0

4

5
0
9
4

2

9

1
4
5
9

1

8

R1 R2 R3 R4
A B

4
4
5
8

1

9
H1(B)

C D E
0
3
4
5
1
7
8
9

H1(C)

0
1
2
9

3
7
8

H2(G)

F G H I

H2(H)

9 9 8

8 0 1 2 5 02 4 0

3 7 3

Result tuple discovered
on-the-fly

Sorted onH1(B)

Figure 2: Scan phase of a levelwise step. In this example, we assume an SQL query having the where clause “WHERE R1.B = R 2.C
AND R2.E = R 3.F AND R3.G = R4.H ”, and we assume that the first levelwise step computes the joinsR1 R2 and R3 R4. In the
scan phase, a run from each input relation is first read into memory. In our example, we have enough memory to hold four tuples
from each relation, and the in-memory tuples are shaded. Next, these runs are immediately searched for any tuples that match the
final WHEREclause, and any such tuples are immediately used to estimate the answer to the query (a). Then, in round-robin fash-
ion, in-memory runs are sorted based on a hash function associated with each join (H1 for R1 R2 and H2 for R3 R4) and written
to disk; after a run is written to disk, it is immediately replenished with the next run from the appropriate input relation (b)-(e).
At all times, any discovered tuples that match the finalWHEREclause are used to help estimate the final query result. The process
is repeated until all input relations have been broken into runs that and sorted using the hash function (f).

Run 1

Run 2

(a) (b) (c)

(d) (e) (f)

Ri

Rj i, Rj 1+ i, …× Rk i,××
4

swer
ce

ery
he
ci-

is
sti-

rst
ed
me
n-
e

-
ed.
om
n
y
res

ea
m-
of
ced

es

-

the

di-
ar

um-

or

o-

he

sti-

we
ory in step (a); since there are four runs in memory and each run
has four tuples,T(1, 1, 4) will contain 256 tuples in all. Thus, after
r runs have been processed from each relation by a levelwise step,
the following is equivalent to the sum of the aggregate functionf
over all tuples that have been discovered:

Since it is equi-probable that any given tuple may be discovered
during the scan phase, by simply scaling up, this summation can

easily be used to calculate an unbiased guess as to the final an
to the query. Let be the ratio of the size of the overall data spa
to the number of tuples considered by the scan phase; that is:

Then is an unbiased estimator for the final answer to the qu
(see the Appendix of the paper for a proof). In the remainder of t
paper, we will use the notation to denote the estimator asso
ated with the scan phase of theith levelwise step.

In general, it is not enough to be able to give an estimate; it
also vital that we be able to characterize the accuracy of the e
mate. This characterization via a derivation of the variance ofNi
(denoted) is considered in Sections 5.5 and 7.

5.2 Estimation at Subsequent Levels
The estimation procedure for levelwise steps other than the fi
one differs for two reasons. First, intermediate tuples are produc
by a merge phase only in semi-random order; tuples with the sa
join key are produced all at one time in a group. For example, co
sider Figure 3(a); all tuples with join key 0 appear at the same tim
in relation R34. Second, cardinalities of intermediate input rela
tions are not known as an intermediate levelwise step is comput
This is because the levelwise steps are pipelined: the results fr
the merge phase of theith step are used immediately by the sca
phase of the (i + 1)th step, before the input relation has been full
materialized. The estimation and variance computation procedu
must take into account these properties.

To handle the grouping problem, we use a variation on the id
proposed by Haas to remove the correlation induced when sa
pling blocks of tuples rather than tuples [7]. We view each group
tuples that all have the same join key and have all been produ
by the same merge phase as asingle, indivisible output tuple,
which we subsequently refer to as a “clump”. Imagine that tupl
t1, t2, ..., tn from intermediate relations 1 throughn are actually

“clumps” or setsof tuples, where all have the same join

key. Then to compute during both the estima

tion and variance computation process, we simply use:

This removes any correlation induced due to the grouping and
clumps are, in fact, produced in random order.

To handle the fact that we do not know the size of the interme
ate relations, we note that the tuples output from a join will appe
in sorted order, based on the result hash functionH(R.a). Rather
than choosing the size of each run beforehand, we choose the n
ber of runs (or partitions)p and break the output space ofH into p
contiguous, (approximately) equi-sized ranges of key values. F

example, if the range ofH(R.a) is from 0 to (231 - 1), then we

might break the range ofH into [0 to (229 - 1)], [229 to (230 - 1)],

[230 to (229 + 230 - 1)], and [(229 + 230) to (231 - 1)] if p = 4.
Assuming equi-sized ranges, each “clump” of output tuples pr
duced by the join then has a probability of 1/p of falling into a
given run, and the sampling performed at all levels except for t
first is Bernoulli or “coin-flip” sampling. As a result, the unknown
size of the relation is unimportant, since we can scale up any e

mate produced using the records in memory bypn to obtain an
unbiased estimate for the eventual query result (this is because

2

8
9
1

4

5

7
7
0
9

8

5

4
6
7
0
8
1
9
5

3
4
1
5
2
7
1
8

1
9
5
4
7
2
8
3

7
5
2
1

4
6
3

2
0
5
1

3
9
4

0
7
8
1

0

4

5
0
9
4

2

9

1
4
5
9

1

8

R1 R2 R3 R4
A B

4
4
5
8

1

9
H1(B)

C D E
0
3
4
5
1
7
8
9

H1(C)

0
1
2
9

3
7
8

H2(G)

F G HI

H2(H)

9 9 8

8 0 1 2 5 02 4 0

3 7 3

2

8
9
1

4

5

7
7
0
9

8

5

4
6
7
0
8
1
9
5

3
4
1
5
2
7
1
8

1
9
5
4
7
2
8
3

7
5
2
1

4
6
3

2
0
5
1

3
9
4

0
7
8
1

0

4

5
0
9
4

2

9

1
4
5
9

1

8

R1 R2 R3 R4
A B

4
4
5
8

1

9
H1(B)

C D E
0
3
4
5
1
7
8
9

H1(C)

0
1
2
9

3
7
8

H2(G)

F G HI

H2(H)

9 9 8

8 0 1 2 5 02 4 0

3 7 3

2
4

4
8

4
8

3
2

1
7

8

7
5
5

2
0
0
0

2
0
0
0

8 0 0

5
5
2
5
2

A B C D E

R12

F G HI

R34

9

2
4
8

4
8
7
7

4
8
7
7

3
2
1
1

1
7
5
5 8

7
5
5

4

2
0
0
0

3

2
0
0
0

3
8 0 0

5
5
2
5

7
2

A B C D E

R12

F G HI

R34

2

8
9
1

4

5

7
7
0
9

8

5

4
6
7
0
8
1
9
5

3
4
1
5
2
7
1
8

1
9
5
4
7
2
8
3

7
5
2
1

4
6
3

2
0
5
1

3
9
4

0
7
8
1

0

4

5
0
9
4

2

9

1
4
5
9

1

8

R1 R2 R3 R4
A B

4
4
5
8

1

9
H1(B)

C D E
0
3
4
5
1
7
8
9

H1(C)

0
1
2
9

3
7
8

H2(G)

F G H I

H2(H)

9 9 8

8 0 1 2 5 02 4 0

3 7 3

9

2
4
8

2

5

4
8
7
7

9

5

4
8
7
7

9

5
9 9 9

1 0 0

3
2
1
1

1

8
1

5

1
7
5
5

8

3
8

4
8

7
5
5

4

1

2
0
0
0

3

1

2
0
0
0

3

1
3 4 4

8 0 0

5
5
2
5

7

4
9

2

A B C D E

R12

F G H I

R34

Figure 3: The merge phase of a levelwise step used to compute
R12 R1 R2 and R34 R3 R4 for a query with the
WHEREclause “WHERE R1.B = R 2.C AND R2.E = R 3.F AND
R3.G = R4.H ”. First, the head of each run produced by the
levelwise step’s scan phase is read into memory, and all of the
in-memory records are joined (a). Note that because tuple
processing order is defined by the hash functionsH1 and H2

associated withR1 R2 and R3 R4, respectively, the output
order of tuples to R12 and R34 are random and independent,
except for the clustering of tuples having an identical join key.
This allows the output of R12 and R34 to be pipelined into the
scan phase of thenext levelwise step. When any run’s in-mem-
ory tuples are exhausted, the next set of tuples are read from
disk and joined with those in memory (b). The process is
repeated until all of the level’s joins have been completed (c).

← ←

Output so far:

Output so far:

Output so far:

Shaded tuples are in memory

(a)

(b)

(c)

α f t()
t T a 1 n, ,()∈

∑a 1=
r∑ +=

f t1 t2•()
t2 T a 1 b,– 1+ n,()∈

∑
t1 T a 1 b, ,()∈

∑b 1=
n 1–∑a 2=

r∑

β

β
R1 R2 …× Rn××

T a 1 n, ,()
a 1=
p∑ T a 1 b, ,() T a 1 b,– 1+ n,()

b 1=

n 1–

∑
a 2=

p

∑+

---=

αβ

Ni

σ2
Ni()

ti ′ ti∈

f t1 t2• … tn••()

f t1 t2• … tn••() … f t1′ t2′• … tn′••()
tn′ tn∈
∑

t2′ t2∈
∑

t1′ t1∈
∑=
5

to

as

in

of

y

n)

ery
ad
iver

e
vel-
nto
es
7
m-
re
c-

ead
e

t
the
sti-
to

.

, so
an
ing
have a 1/p sample of each of then relations that are input into the
levelwise step). Since the summation used to computeNi con-
tains 1 + (r - 1)n estimates (see Section 6.1), the scaling factor:

can then be used to produce an unbiasedNi for any scan phase
receiving pipelined input tuples.

5.3 Estimation At the Last Level
Tuples output from the join in the very last levelwise step are used
as input into a final estimatorNd+1, whered is the depth of the
query plan.Nd+1 is computed in exactly the same way as the esti-
mator described in the previous Section. The tuples output from
the final join are broken intop partitions, and afterp partitions
have been processed, the sum of all tuples discovered is multi-

plied by (which is equivalent top/r, sincen = 1

in the case of the final join).

5.4 Estimating the Final Answer to the Query
An unbiased statistical estimator for the eventual answer to the
query is associated with the level, and maintained online. The ran-
dom variableN1 characterizes the statistical estimator associated
with the scan phase bottom-most level of the query plan, andNd is
associated with the tuples output from the merge phase of the top-
most levelwise step (that is, we have a query plan that isd levels
deep). Thus, at any given moment, there are a number of estima-
tors available, one associated with each level of the plan. Each
gives an independent estimate for the final query answer.

Since there ared + 1 estimators in all (one associated with each
level in the query plan, plus one for the final output) they must be
combined to form a single estimate for the final result of the query.
Since eachNi is unbiased (see Section 7), it follows that for

where , the following is an unbi-
ased estimate for the final answer to the query:

Furthermore, since ABC’s query evaluation engine computes each
Ni in so that they are all statistically independent (since each level
uses an independent random ordering), it is the case that:

In order to minimize the error associated withN, we seek to min-
imize the variance ofN over all possible weights. It can easily be

shown using Lagrangian multipliers that is minimized (and
hence the accuracy ofN is maximized) by choosing:

5.5 Providing Confidence Bounds

Once the value ofN and have been computed, it is then an
easy matter to associate confidence bounds with the quality of the
estimate ofN using standard techniques [3], such as assuming that
N is normally distributed (justified by the central limit theorem
(CLT) [20]) or by using distribution-free bounds such as those pro-
vided by Chebyshev’s inequality [9]. In our implementation, we
use CLT bounds, which as we show in Section 8, seem to give

good results. However, what we have ignored thus far is how

compute (or estimate) for any giveni. If i = d, then afterr
of p partitions have been processed, the variance is computed

 =

whereXj is a zero/one random variable indicating whether thejth
tuple in the topmost relation of the query plan has been found
any of the firstr partitions produced by the ABC engine, andtj is
the jth result tuple. Note thatE[Xi] = r / p, and using the “clump-
ing” strategy of Section 5.2, eachXi, Xj pair is independent and so

E[XiXj] = r2 / p2. Then simplifying , we have:

This value can easily be estimated by simply taking the sum
the square of the aggregate functionf applied to each result tuple
that has been found thus far, and multiplying the result b

to account for the fact that we have (on expectatio

seen r/p of the tuples of the final result relation. Estimating

 for is more complicated, and left to Section 7.

6 Additional Considerations
6.1 Why Use the Round-Robin Approach?
Recall that the scan phase cycles through the relations. For ev
relation, the current run is written back to disk, the next run is re
in, and the query result is re-estimated. This approach can del
very high estimation accuracy. The reason is that givenn input
relations each broken intop partitions or runs, it is possible to

search a fraction of the data space during th
scan phase. For example, consider Figure 4 above, where a le
wise step is computed over three input relations, each broken i
three runs. In total, the round-robin approach search

or 7 combinations of runs for result tuples, out of 2
combinations total. This is due to to the fact that there is one co
bination that makes use of the first run from the first relation; the
are thenn different combinations that make use of each of the se

ond throughpth runs of the first relation. On the other hand, if we
had searched for result tuples only after a new run had been r
from everyinput relation (as the SMS join does), we would hav
considered only three combinations of runs.

6.2 Choosing the Number of Runs
One problem is how to choosep. The goal is to choose the smalles
number of runs possible, because the fewer the number of runs,
more tuples in memory at any given instant, and the better the e
mation accuracy. Since one run from each relation must fit in
memory, in the first levelwise step,p is chosen by summing each
input relation’s size, and dividing by the available main memory

At subsequent levels, choosingp is more difficult because the
input relations are not materialized before they are processed
the size of each input relation is unknown. To handle this, the sc
phase at each levelwise step other than the first begins by read

α

β p
n

1 r 1–()n+
-----------------------------=

α

β p
n

1 r 1–()n+
-----------------------------=

w1 … wd 1+, ,{ } wii 1=
d 1+∑ 1=

N wiNii 1=
d 1+∑=

σ2
N() wi

2σ2
Ni()

i 1=
d 1+∑=

σ2
N()

wi 1 σ2
Ni() 1

σ2
N j()

j 1=
d 1+∑

 
 
 

⁄=

σ2
N()

σ2
Ni()

σ2
Nd()

E Nd
2[] E

2
Nd[]– E

p
r
---X

j
f t j()

j
∑ 

  2
E

2 p
r
--- Xj f t j()

j
∑–=

σ2
Nd()

σ2
Nd() p

2

r
2

------ r
p
--- f

2
t j()

j
∑ r

2

p
2

------ f t j() f tk()
j k≠
∑+

 
 
  p

2

r
2

------ r
p
--- f t j()

j
∑ 

  2
–=

p
2

r
2

------ r
p
--- f

2
t j()

j
∑ r

2

p
2

------ f
2

t j()
j

∑–
 
 
  p

r
--- 1 r

p
---– 

  f
2

t j()
j

∑= =

p
2

r
2

------ 1 r
p
---– 

 

σ2
Ni() i d≠

1 n p 1–()+() p
n⁄

1 n p 1–()+
6

into
is

ery
a
n-

e,

-
ry
ons
out
hat
cor-

ly,
ples
te.
put
is
st
ly

s a
ing
y be
i-

ery

rs
BC
ed

ci-

et
e
t is
ns

tion
tuples from each input relation so that the range of the hash func-
tion H is processed at a constant rate for each run. That is, if there
are two relations to be processed, the scan phase should complete
the processing of the firstk% of H’s range for both input relations
at roughly the same time, for everyk. At the point that the available
main memory is (almost) consumed,p is chosen to be for
the remainder of the levelwise step. Because the set of records
from each relation that appear in the firstk% of H’s range is ak%
Bernoulli sample (without replacement) of each relation, and each
subsequentk% of H’s range is also ak% Bernoulli sample of each
relation, their corresponding runs will be (roughly) the same size.
Thus, if the first run from each relation fits into memory, the sec-
ond is likely to as well.

6.3 Handling Data Skew
Like any database system relying on hashing, the ABC system is
sensitive to data skew. There are two consequences of this. First,
using the method from 6.2 for choosingp, if we are very aggres-
sive and choose a smallp, then subsequent partitions may be too
large to fit into memory. If this happens, we freezeNi (as well as its
variance estimate) for the remainder of the current scan phase, and
run the offending scan phase just as one would run the sort phase
of a set of classical, sort-merge join. After the problem scan phase
completes, the remainder of the levelwise steps can be executed
normally and updates to the estimates resume. The cost of this is a
temporary freeze in updates to the ABC system’s estimates.

Second, skew in join key values can also affect the accuracy of
the resulting estimator. Fortunately, as long as the method for han-
dling “clumping” from Section 5.2 and the variance estimation
methods from Section 7 are used, the ABC system will taking into
account this drop in accuracy and still report correct confidence
bounds; they will simply be wider than if there had been no skew.

6.4 HandlingGROUP BYs and Other Aggregates
GROUP BY queries can trivially be handled within the ABC
framework by using a separate “query” for each group. All of these
queries can be run concurrently with little additional overhead. A
relational selection predicate that accepts only tuples belonging to
a given group is added to each query. Other aggregate functions
such asAVERAGEandSTD_DEVcan also be handled easily, since
these are simply functions of multipleSUMqueries. For example,
AVERAGEis the ratio of aSUMand aCOUNT(which is itself a
SUM query).

6.5 Handling Inconvenient Queries
Thus far, we have assumed that ABC’s query processing engine is
always used to process queries that have been compiled into a
bushy query plan. The reason for this assumption is that unless a
levelwise step is able to access a random subset of the records from
each oneof the input relations (or at least access temporary rela-
tions that contain records derived from each of the input relations),
the engine cannot provide for an early guess as to the query result.

However, a query may be processed that cannot be compiled
a bushy tree. This may happen, for example, when a fact table
joined with several smaller, dimension tables. Consider the qu
of Figure 5(a). If we wish to avoid materializing the result of
cross product, the only plans for this query are linear and no
bushy, because relationsS, T, andU must all be joined withR.

There are several tactics for dealing with this. In our prototyp
we require a scan and re-randomization ofall of the relations that
are “active” during a given levelwise step. This is depicted in Fig
ure 5(b) and (c), where the “normal” query plan for the SQL que
of Figure 5(a) has been augmented with three additional operati
that do nothing more than read the input tables and write them
in a re-randomized order. The re-randomization is required so t
estimators associated with subsequent levelwise steps are not
related. The result is thatR, S, T, andU all take part in the scan
phase of the first levelwise step, even thoughT andUare not joined
in this first levelwise step. Their tuples are all read in concurrent
just as in the scan phase depicted in Figure 5, and any result tu
that are discovered are immediately used to produce an estima

The obvious cost associated with this technique is that the in
relation T is processed multiple times. However in practice, th
may make little difference. First, this situation is encountered mo
often in a “star-join” scenario where the table that is repeated
joined is much, much larger than the others, such as when it i
warehouse fact table. In this case, the additional cost of scann
one or more dimension tables more times than are needed ma
negligible. Second, it will often be possible to ensure that the in
tial scans of relations likeT andU are not wasted, by combining
the scans with projection or selection operations found in the qu
that can substantially reduce the table size.

7 Statistical Considerations
This Section gives a formal, statistical analysis of the estimato
associated with each levelwise step that form the basis of the A
system, with a particular focus on developing practical, unbias

estimators for (that is, the variance of the estimator asso

ated with theith levelwise step) for the case where + 1.

7.1 Notation
In this Section we introduce the notation used in Section 7. L

be then relations that are the arguments of th
aggregate query and let be the aggregate function tha
summed over each tuple in the cross product of the input relatio
to obtain the value of the aggregate query, as described in Sec
5. We will always use the notationti and to denote tuples from
the relation (that is, if the subscript associated with a tuple isi,
then it is assumed that the tuple came from relationi) and we use

1 k⁄

R S T R S T R S T R S T R S T R S T R S T
Figure 4: Using the round-robin method, seven combinations
of runs that are searched when relationsR, S, and T (each bro-
ken into three runs) are searched during the scan phase of a
levelwise step.

Run 1

Run 2

Run 3

SELECT SUM (R.A)
FROM R, S, T, U
WHERE R.A = S.A AND
 R.B = T.B AND
 R.C = U.C

R S T U

(a) (b)

Special scan
and re-randomize operator

R S

T

U

(c)

Figure 5: Handling a star-join query. The example query (a)
would typically be evaluated using a left- or right-deep plan in
a traditional system (b). In ABC, the plan must be augmented
with three additional table-scan operations to ensure access to
all input data at each levelwise step (c).

ϒ ϒ

ϒ

σ2
Ni()

i d≠

R1 R2 … Rn, , ,
f ()

ti ′
Ri
7

om
te
he
ta

s-
e-

ct

y.

n-

ve:

:

the convention that the argument to the aggregate functionf can be
specified as a set of tuples (one from each relation) in any order;
we assume that the ordering and concatenation are performed
automatically. We use the notation to designate a sample of the
relationR differing slightly from the body of the paper.

Following the convention of the paper describing the SMS join
[13], we will formally analyze samples from relations by introduc-
ing zero/one random variables that indicate whether a tuple
belongs to the sample or not. To this end, we will use the notation

to designate the random variable that takes value 1 when

(that is, the tupleti is in the sample of), and value 0
otherwise. These random variables allow sums of the form

 to be rewritten as .

Since we are dealing with general aggregate queries over joins,
the theory will inevitably get complicated. To alleviate this prob-
lem we introduce special notation to represent the terms that
appear in the analysis. We useP(n) to denote the power set of the
set {1...n}. For a set we use to denote the

multiple sums whereS= { i1, i2, ...,

ik}. With this notation, the aggregate over the cross product we are
trying to compute with the ABC system can be written as:

7.2 Analysis ofN1: the First Levelwise Step
We begin with a formal analysis of the bias and variance of the
estimatorN1 associated with the first levelwise step. As discussed
in Section 5.1, the estimator in the first levelwise step is based on
sampling without replacement from the relations (note that a dif-
ferent analysis applies to subsequent steps). We assume that each
relation is randomly partitioned intop equi-sized parts. We begin
by showing that the estimator described in Section 5.1 is unbiased.

7.2.1 Analysis of Expectation
The idea behind the process used in the scan phase is simple: eval-
uate the aggregate over the cross-product of the samples and scale
up the result to compensate for the difference in size between the
samples and relations. In the first levelwise step, every time a new
run is loaded into memory, all result tuples present in memory are
immediately joined and used to produce such an estimate.N1 is
then essentially an average of all of the estimates that have been
produced thus far; since each of these estimates has identical statis-
tical properties, we refer to an arbitrary instance of such as esti-
mate asX. The estimateX can be written formally as:

In order to analyzeX, we first need to specify properties of each
. since each tuple is sampled independently, the random vari-

ables for different values ofi are independent, which means that
the expectation of the product over values is the product of

expectations. Thus, for any tuples , we have

where we used the fact that the expectation of a zero-one rand
variable is equal to the probability that the variable is one. No
that these formulas are versions of the formulas derived in t
paper describing the SMS join [13]. is the Kronecker del

symbol that is equal to one if and zero otherwise; expres
ing cases using transforms an “if” statement into an alg

braic expression, and simplifies the analysis.We will use the fa
that for any functiong, since the terms

with have a zero multiplier. We can now show thatX is unbi-
ased:

Theorem 1: Unbiasedness of X:

i.e, X is an unbiased estimator for the final answer to the quer

Proof: The proof uses linearity of expectation and the indepe
dence of the random variables for various values ofi (i.e. the

expectation of products is product of expectations). We then ha

since .

7.2.2 Analysis of Variance
We now address the problem of computing the variance ofX,

denoted by . Since , we need

only address the problem of computingE[X2]sinceE[X] is given
above. We first need the following technical result:

Proposition 1: For be arbitrary values ai and bi, :

Proof: The main idea is to introduce the following set of functions

and to show by induction that:

Ri ′

Xti

ti Ri ′∈ Ri

f ti()
ti Ri ′∈∑ Xti

f ti()
ti Ri∈∑

S P n()∈
ti Ri∈ i S∈{ }∑

…
tik

Rik
∈∑ti2

Ri2
∈∑ti1

Ri1
∈∑

… f t1 t2• …• tn•()
tn Rn∈∑t2 R2∈∑t1 R1∈∑

f ti i 1…n{ }∈{ }()
ti Ri∈ i 1…n{ }∈{ }∑ =

X p
n … f t1 t2• …• tn•()

tn Rn′∈∑t2 R2′∈∑t1 R1′∈∑=

p
n

f ti i 1…n{ }∈{ }()
ti Ri ′∈ i 1…n{ }∈{ }∑= (1)

p
n

Xti
f ti i 1…n{ }∈{ }()

i 1=

n

∏ti Ri∈ i 1…n{ }∈{ }∑=

Xti

Xti

ti ti ′,

E Xti
[] 1 p⁄= E Xti

Xti ′
[]

1 p⁄ if ti ti ′=

1

p
2

Ri p–

Ri 1–
----------------- if ti ti ′≠







=;

δti ti ′,
1
p
--- 1 δti ti ′,–() 1

p
2

Ri p–

Ri 1–
-----------------+=

1

p
2

Ri 1–()
---------------------------- Ri p–() Ri p 1–()δti ti ′,+[]=

δti ti ′,

ti ti ′=
δti ti ′,

g i j,()δi jj∑ g i i,()=

i j≠

E X[] f ti i 1…n{ }∈{ }()
ti Ri∈ i 1…n{ }∈{ }∑=

Xti

E X[] p
n

E Xti
[] f ti i 1…n{ }∈{ }()

i 1=

n

∏ti Ri∈ i 1…n{ }∈{ }∑=

f ti i 1…n{ }∈{ }()
ti Ri∈ i 1…n{ }∈{ }∑=

E Xti
[]

i 1=

n

∏ 1

p
n

------=

σ2
X() σ2

X() E X
2[] E

2
X[]–=

i 1…n{ }∈

ai biδti ti ′,+
i 1…n{ }∈

∏ 
  ×

ti ′ Ri∈ i 1…n{ }∈{ }
∑

ti Ri∈ i 1…n{ }∈{ }
∑

f ti{ }() f ti ′{ }()

ai bj
j S∈
∏

i S
C∈

∏
S P n()∈

∑ f ti t j,{ }()
t j Rj∈ j S

C∈{ }
∑

2

ti Ri∈ i S∈{ }
∑=

Fk tl tl ′, l k 1+ …n{ }∈(){ }() =

ai biδti ti ′,+
i 1…n{ }∈

∏ 
  ×

ti ′ Ri∈ i 1…n{ }∈{ }
∑

ti Ri∈ i 1…n{ }∈{ }
∑

f ti tl,{ }() f ti ′ tl ′,{ }()

Fk tl tl ′, l k 1+ …n{ }∈(){ }() =
8

s.

ur
MS
re-
he-

s
he

d

ssi-
S

at it

s
he
in

as

t

n

se
by
the

lly
e

um
Details of the proof are omitted due to space constraints.

This now allows us to prove the following result:

Theorem 2: Second moment of X:

Proof: The result follows directly from Proposition 1 by observing

that, by the linearity of expectation and properties of ,E[X2] is

the expression on the left of the identity in Proposition 1 as long as

 and .

Using this, the variance ofX can be readily computed.
To check this result and to exemplify its use, let us consider the

situation whenn = 2, for which the variance expressions are known
from the work on the SMS join [13]. In this case we have, by

expanding in the order {}, {1}, {2}, {1, 2} and denot-

ing the first relation byR and the second byS:

By observing that the formula for the variance ofX is the same as

the formula forE[X2] above except that the first term in the square
brackets has the coefficient

= , the formula we derived here for

 and the formula in the SMS join paper are identical.

7.2.3 Extending the Analysis toN1
Using this analysis, we can address the problem of characterizing
the variance of the estimatorN1 = from Section 5.1. First, if
each relation is partitioned randomly intop equi-sized parts, then
N1 can be written as the average of a series of theX estimators con-
sidered above, each based on one sample from each relation. The
expected value and variance of each of these estimators is the same
as forX. Since expectation is linear, this implies thatN1 is an unbi-
ased estimator of the aggregate over the cross product.

When considering the variance ofN1, we observe that if

, for identicalXi’s then:

where denotes the covariance of the two variable

We already know how to compute ; since eachXi has an
identical variance, we simply use the formulas above.

The question is: How to compute the covariance terms? In o
prototype of the ABC system, we use the same tactic as the S
join [13] and simply ignore the covariances. Though space p
cludes presenting it here, we have produced a result similar to T
orem 2 for the value ofE[XiXj], which directly leads to a formula
for . However, just as in the case of the SMS join, thi
covariance is almost always negative. Thus, simply ignoring t

in the formula for leads to an over-estimate

variance. The result is that in practice, we may be somewhat pe
mistic in our confidence bounds. However, as argued in the SM
join paper, such pessimism may be warranted. The reason is th

is never practical to compute directly, and it must alway
be estimated (an issue we will consider presently). Ignoring t
covariance terms may tend to lend an additional margin of error
this estimation process.

7.2.4 Estimating the Variance
In the previous subsection, we determined a formula for

a function of 2n aggregates over the cross produc
, each taking the form:

with . By obtaining estimates for each of these terms, a
estimate for the variance is readily obtained.

A very simple and also reasonable estimate for each of the
terms is based on the samples and is obtained
computing the aggregate over these samples and scaling up
result by a factor ofp for each sum. More formally,YS =

While this estimate is reasonable, it will be biased and will actua
overestimate the true valueyS. Fortunately, an unbiased estimat
can be constructed fromYSby observing that:

We now observe that each of the expectation terms within the s

can be determined using Theorem 2 usingSC instead of {1...n} and
by ignoring the dependency off on {ti}. With this and using the
more concise notation for these terms, we have:

ai bj
j S∈
∏

i S
C∈

∏
S P n()∈

∑ f ti t j tl, ,{ }()
t j Rj∈ j S

C∈{ }
∑ ×

ti Ri∈ i S∈{ }
∑

f ti t j tl ′, ,{ }()
t j Rj∈ j S

C∈{ }
∑

E X
2[] p 1–() S

Ri 1–
i 1…n{ }∈∏

--- Ri Ri p–()
i S

C∈
∏

i S∈
∏

S P n()∈
∑=

f ti t j,()
t j Rj∈ j S

C∈{ }
∑ 

 
  2

ti Ri∈ i S∈{ }
∑

Xti

ai

Ri p–

Ri 1–
-----------------= bi

Ri p 1–()
Ri 1–

-------------------------=

S P 2()∈∑

E X
2[] 1

R 1–() S 1–()
--- R p–() S p–() f t v•()

v S∈
∑

t R∈
∑ 

  2
=

p 1–() R S p–() f t v•()
v S∈
∑ 

  2

t R∈
∑+

p 1–() S R p–() f t v•()
t R∈
∑ 

  2

v S∈
∑+

p 1–()2
R S f

2
t v•()

t R∈
∑

v S∈
∑+

R p–() S p–() R 1–() S 1–()–

p 1–() p 1 R S––+()

σ2
X()

αβ

N1
1
k
--- Xii 1=

k∑=

σ2
N1() 1

k
2

----- σ2
Xi()

i 1=

k∑ 1

k
2

----- Cov Xi X j,()
i j≠

k∑+=

Cov Xi X j,()

σ2
Xi()

Cov Xi X j,()

Cov Xi X j,() σ2
Ni()

σ2
Ni()

σ2
X()

R1 R2 …× Rn××

yS f ti t j,{ }()
t j Rj∈ j S

C∈{ }
∑ 

 
  2

ti Ri∈ i S∈{ }
∑=

S P n()∈

R1′ R2′…Rn′,

p
2n

S–
Xti

i S∈
∏

ti Ri∈ i S∈{ }
∑ Xt j

i S∈
∏ f ti t j,{ }()

t j Rj∈ j S
C∈{ }

∑ 
 
  2

E YS[] p
2n

S–
E Xti

[]
i S∈
∏

ti Ri∈ i S∈{ }
∑ ×=

E Xt j
i S∈
∏ f ti t j,{ }()

t j Rj∈ j S
C∈{ }

∑ 
 
  2

p
S

C

E Xt j
i S∈
∏ f ti t j,{ }()

t j Rj∈ j S
C∈{ }

∑ 
 
  2

ti Ri∈ i S∈{ }
∑=

E YS[] cS T, yS T∪⋅
T P S

C()∈
∑=
9

ace
nce
w-

he
oth,
s in
e?

re
the
the

s
to

we
ata-
at is
ol-

C
ies
ec-

C
on
d
th
where the coefficient in front of is:

where the complement ofT is taken with respect toP(SC). Now, if

we let be an unbiased estimate for for ,
and we let:

we have, using linearity of expectation and the above equations,

. Thus, is indeed an unbiased estimate for . The

equation that defines can be solved recursively by making two

observations. First, is an unbiased estimate for

(which follows directly from Theorem 1 withf replaced byf2),

thus = . Second, the equation that defines

depends only on and unbiased estimates of terms where
is a strict superset ofS, thus the recursion always terminates with
the unbiased estimator for in at mostn steps.

7.3 Analysis ofNi for i > 1
As described in Section 5.2, the estimates associated with the lev-
elwise steps after the first one are different, in that each record has
a 1/p probability of appearing in each partition, and the sampling
of each record is independent. This changes the analysis.

In subsequent levelwise steps, the samples are produced by flip-
ping an independentp-faced coin for every tuple in the relation and
placing it in one of thep samples depending on the outcome. Using
the same approach as in the previous section, the random variables
Xi have different behavior. In this case:

Since (just as in the first levelwise step),X is unbi-
ased just is in the first levelwise step. However, the second moment
of X is changed, along with the variance ofX:

Theorem 3: Second moment of X:

Proof: The proof is similar to the proof of Theorem 2, but here
 and .

Otherwise, not much changes in subsequent levelwise steps. The
observations of Section 7.2.3 with respect to the covariance
between various trials over the variableX hold and the process of
estimating the variance of eachX changes only slightly. To deter-
mine unbiased estimates foryS the coefficientscS,T have to be

taken as . Otherwise, the equations that give
unbiased estimates for the variance can be solved as before.

8 Benchmarking
This Section describes a set of benchmarking experiments. Sp
precludes a detailed benchmark of the ABC engines performa
characteristics; thus, we focus on the goal of answering the follo
ing questions:

•How does the width of the confidence bounds produced by t
ABC engine decrease in time? Is the decrease rapid and smo
so that the ABC engine could be used to produce useful result
a short period of time, and more useful results given more tim

•Are the ABC confidence intervals reliable?

•How does the total execution time of the ABC engine compa
with the execution time of a traditional database system? Is
overhead incurred by the statistical processing required by
ABC system acceptable?

Experimental Setup. In our experiments, we evaluate five querie
over the TPC-H schema. In order to introduce some mild skew in
the data in order to make the evaluation more interesting,
implemented our own TPC-H data generator and generated a d
base having a scale factor of 10, which creates a database th
approximately 10 GB in size. The queries we run are over the f
lowing five tables: (1)lineitem (L) - 7GB and 60 million rows;
(2) orders (O) - 1.4 GB and 15 million rows; (3)part (P) - 215
MB and 2 million rows; (4)partsupp (PS) - 1.4 GB and 8 mil-
lion rows; and (5)customer (C) - 240 MB and 1.5 million rows.
For more information, seehttp://www.tpc.org/ .

To test the width of the confidence bounds produced by the AB
engine and to test total running time, we consider the five quer
whose query plans are depicted in Figure 6. The relational sel
tion predicates onP andL in Q1 have selectivities of 20% and 60%
respectively. Those onL andPS in Q2 have selectivities of 99%
and 20% respectively. Those onCandL in Q3 have selectivities of
99% and 20% respectively. Note that bothQ1 andQ3 make use of
the scan/re-randomize operator.

These query plans were run to completion using the AB
engine. The experimental platform was a 2.4GHz Pentium Xe
machine with 2GB of RAM and dual 10K RPM, 80GB SCSI har
disks. In Figure 7, we plot the relative confidence interval wid

yS T∪

cS T,
p 1–() T

Ri 1–
i P S

C()∈∏
-- Ri

i T∈
∏ Ri p–

i T
C∈

∏=

ŶS T, yS T, T P S
C() ∅–∈

YS
ˆ 1

cS ∅,
----------- YS cS T, ŶS T,

T P S
C() ∅–∈

∑–
 
 
 

=

E YS
ˆ[] yS= YS

ˆ yS

YS
ˆ

Y 1…n{ } y 1…n{ }

Ŷ 1…n{ } Y 1…n{ } YS
ˆ

YS yS′ S′

y 1…n{ }

E Xti
[] 1 p⁄= ; E Xti

Xti ′
[]

1 p⁄ if ti ti ′=

1 p
2⁄ if ti ti ′≠




=

δti ti ′,
1
p
--- 1 δti ti ′,–() 1

p
2

------+
1

p
2

------ 1 p 1–()δti ti ′,+[]= =

E Xti
[] 1 p⁄=

E X
2[] p 1–() S

f ti t j,()
t j Rj∈ j S

C∈{ }
∑ 

 
  2

ti Ri∈ i S∈{ }
∑

S P n()∈
∑=

ai 1= bi p 1–=

cS T, p 1–() T
=

ϒ

σlinenumberO
σmktsgmt

L O

Q3:

Q5:

Σextendedprice

Σtotalprice

L
C

Figure 6: Test query plans.

Oσsize PS

L

Σavailqty

P

ϒ

σsuppkey

ϒ

ϒ

Q1:

σavailqty
C O

L PS

Q2:
Σacctbal

σqty

P PS L O

Q4:
Σavailqty
10

ot
al

ntly
in-
e
ore
the

ute
ts,
e

te
in,
ed.
he

t is
he
o
ise
me
two
a-
be

la-
are
-
er
91
ve

an
e
ue,
ce

test
pen-
o
ng

ted
n

s
e
or
the
produced by ABC as a function of time for these queries (the rela-
tive confidence interval width is the ratio between confidence inter-
val width and the current estimate). These CLT-based bounds were
produced using a 95% confidence level, meaning that for a calcu-

lated variance of , bounds of approximately around the
estimate were used. Thus, a relative interval width of 0.12 means
that the width of the 95% confidence bounds are 12% as large as
the current estimate.

To test the accuracy of the given confidence intervals, we re-gen-
erate the database 100 times and for each instance of the database,
we re-runQ3 andQ4 to completion. For each query, we consider
all of the confidence intervals reported at the end of minutem of
the query execution as a group, and for each value ofm we com-
pute the fraction of confidence intervals that did, in fact, contain
the actual query answer. The results of this experiment are given as
Figure 8

Finally, the time required for completing each query is given as
Figure 9. This time is compared with the time required to run the
same query to completion on the same machine, using the Postgres
system. While we realize that other, widely-used commercial sys-
tems such as Oracle are likely to be faster than Postgres, legal
restrictions prohibit publishing such a comparison. Still, Postgres
is widely used. Thus, this experiment should be seen as testing
whether query execution time in ABC is at least “in the ballpark”
of what one might expect in terms of completion time from a com-
mercial system.

Discussion. It is possible to draw a few conclusions from these
results. First, there does not appear to be much of a hit in terms of
additional execution time with the ABC engine as compared to a
traditional database system. Our experiments show that ABC is
actually significantly faster than Postgres in evaluating each of
these particular queries. This does not imply that ABC would be
faster than any commercial system, especially since Postgres is
surprising CPU-bound for this particular workload. However, these

results do strongly indicate that algorithms underlying ABC do n
incur much of an overhead, validating our claim that the statistic
analysis provided by ABC does not come at too high a cost.

Second, these results show that the engine is able to consiste
narrow confidence intervals throughout execution. At the beg
ning of each level, the intervals tend to narrow very quickly (sinc
the estimators associated with each subsequent level are far m
accurate than the estimators associated with previous one), but
intervals narrow consistently within each level as well.

Furthermore, these results show that scalability is an absol
necessity in this type of online approximation. In our experimen
ABC fully consumed main memory in 15 to 20 seconds from th
start of query processing. Up until this time, the ABC estima
would be identical to the estimate provided by a hashed ripple jo
which must be terminated when the main memory is consum
From Figure 7, it is clear that after such a short time period, t
estimates obtained can be far from accurate. For example, inQ2
the estimate starts out with a 95% confidence interval width tha
almost wider than the magnitude of the estimate itself. But by t
end of the first levelwise step, ABC is able to shrink that width t
less than 10% of the estimate; by the end of the second levelw
step, the width is less than 1% of the estimate. Given the extre
narrowness of the confidence intervals observed after one or
levels in every case, it is reasonable to claim that for many applic
tion-specific accuracy requirements, ABC query processing can
terminated early with a satisfactory answer.

Finally, Figure 8 gives strong evidence that the variance calcu
tions described in the paper and the CLT-based bounds we use
in fact valid. Using the binomial distribution, it can easily be calcu
lated that if the true confidence interval probability were 95%, ov
100 trials we would expect a 96% chance of observing between
and 99 “correct” confidence intervals. From Figure 8 we obser
that for the 100 query repetitions tested overQ3 andQ4, only three
of the 62 minutes have less than 91 correct intervals or more th
99. Significantly, (62 - 3)/62 = 95.2%, which is very close to th
96% that one would expect given 62 sets of 100 tests over tr
95% confidence intervals. Granted, this is not irrefutable eviden
of correctness. Only two queries were tested (since each
requires several days) and the 62 minutes reported are not inde
dent (a correct interval in one minute makes it more likely t
observe a correct interval in the next). But this certainly is a stro
argument that our derivations are in fact valid.

9 Related Work
As discussed previously in the paper, the work most closely rela
to the ABC engine is the previous work on online aggregatio
[6][7][10][11] and the SMS join [13]. Online aggregation has it
roots in early work linking approximation with processing tim
[12]. This paper takes inspiration from, and extends both. F
example, the statistical results given in Section 7 extends

0.0001

0.001

0.01

0.1

1

0 300 600 900

R
el

at
iv

e
In

te
rv

al
 W

id
th

Seconds Elapsed

Query 5

 S
te

p
1

 S
te

p
3

0.0001

0.001

0.01

0.1

1

0 300 600 900 1200

R
el

at
iv

e
In

te
rv

al
 W

id
th

Seconds Elapsed

Query 2

 S
te

p
1

 S
te

p
2

 S
te

p
3

0.0001

0.001

0.01

0.1

1

0 600 1200 1800 2400 3000

R
el

at
iv

e
In

te
rv

al
 W

id
th

Seconds Elapsed

Query 4

 S
te

p
1

 S
te

p
2

 S
te

p
3

0.0001

0.001

0.01

0.1

1

0 300 600 900 1200 1500

R
el

at
iv

e
In

te
rv

al
 W

id
th

Seconds Elapsed

Query 1

0.0001

0.001

0.01

0.1

1

0 300 600 900 1200 1500 1800

R
el

at
iv

e
In

te
rv

al
 W

id
th

Seconds Elapsed

Query 3

Figure 7: Relative confidence interval width as a function of

 S
te

p
1

 S
te

p
2

 S
te

p
3

 S
te

p
4

 S
te

p
1

 S
te

p
2

 S
te

p
3

σ2
2σ±

94

95

96

97

98

99

5 10 15 20

O
bs

er
ve

d
C

I A
cc

ur
ac

y
%

Minutes Elapsed

Query 3 CI Accuracy

91
92
93
94
95
96
97
98
99

5 10 15 20 25 30 35 40

O
bs

er
ve

d
C

I A
cc

ur
ac

y
%

Minutes Elapsed

Query 4 CI Accuracy

Figure 8: Observed 95% interval accuracy over 100 indepen-
dent query executions.
11

all
nal
ns
nt.

g
k.
a-

s
in

een
o

yn-

m

n

s-
d

a-

er-

tiv-
m-

.
he

n.

g
in

A

r

sh

h

.

ith
results of Haas et al. [6][7][8] by extending their analysis to the
different types of finite-population sampling without replacement
required by the ABC engine, and extends the results of Jermaine et
al. [13] by considering Bernoulli (coin-flip) sampling and arbitrary
numbers of relations. The algorithms used by ABC clearly have
their roots both in the ripple join and in the SMS join, but dramati-
cally extend the applicability of both to the point where the ABC
engine may actually be competitive with traditional query-process-
ing methodologies, thereby giving online estimates and accuracy
guarantees “for free”.

There is a body of relevant work in the database literature on
sampling-based algorithms for approximate query processing.
Olken’s work, summarized in his PhD thesis [16], ia well-known.
The two papers most closely related to this one describe join syn-
opses [1] and Chaudhuri et al.’s work discusses important issues
associated with sampling from joins [2]. However, neither of these
papers has the systems-oriented focus of our work, where the goal
is to build a system that can run a query from start-up through
completion. Join synopses provide a single, fixed precision esti-
mate and are limited to foreign key joins, and it is not clear how to
scale Chaudhuri et al.’s work so thatall of the tuples resulting from
a multi-gigabyte join can be sampled in a scalable fashion.

10 Future Work and Concluding Remarks
This paper has described how the ABC query execution engine can
processSELECT-FROM-WHERE-GROUP BYaggregate SQL que-
ries over multiple input relations in a scalable fashion, and give
statistically rigorous accuracy guarantees from start-up through
completion of the plan. This has required significant algorithmic
innovation, as well as an extensive statistical analysis of the prop-
erties of our new algorithms. The focus of the paper was specifi-
cally directed towards query processing (both algorithmic and
statistical issues). To keep the paper’s scope at a manageable level,
other important questions must be deferred to future work. These
questions include the following:

•How should query optimization be performed in the ABC system?
This will be a challenging task, because ABC has two competing
optimization goals: running the query to completion quickly, and
giving accurate estimates that converge quickly. We plan to use
user input to specify the relative importance of the two goals.

•Are there other join algorithms suitable for use within ABC? Our
preliminary work has focused only on a variance of the sort-
merge join. It may be desirable to give ABC the ability to use
other joins (such as the hybrid hash join) during the computation
of a levelwise step.

•How must indexing change in the ABC system? Current sampling-
based indexing methodologies [17][18] are likely not useful

within the ABC system, because they are targeted towards sm
samples and require random disk I/Os to sample from a relatio
selection predicate. Developing indexing and file organizatio
that support fast sampling from selection predicates is importa

•How can the randomized data ordering be maintained durin
data update? ABC requires a random clustering of data on dis
Developing new, easily-maintained randomized file organiz
tions that support fast updates will be a priority.

•Can ABC be extended past joins containing equality condition?
Other operations such as relational subtraction, non-equi-jo
queries, and duplicate removal are important. There has b
some initial work in this area [14], but more effort is needed t
allow for truly scalable processing.

References
[1] S. Acharya, P. Gibons, V. Poosala, S. Ramaswamy: Join S

opses for Approximate Query Processing.SIGMOD 1999:
275-286.

[2] S. Chaudhuri, R. Motwani, V.R. Narasayya: On Rando
Sampling over Joins.SIGMOD 1999: 263-274

[3] W. Cochran:Sampling Techniques. Wiley and Sons, 1977
[4] J.-P. Dittrich, B. Seeger, D.S. Taylor, Peter Widmayer: O

producing join results early.PODS 2003: 134-142
[5] J.-P. Dittrich, B. Seeger, D.S. Taylor, P. Widmayer: Progre

sive Merge Join: A Generic and Non-blocking Sort-base
Join Algorithm.VLDB 2002: 299-310

[6] P.J. Haas, J.M. Hellerstein: Ripple Joins for Online Aggreg
tion. SIGMOD 1999: 287-298

[7] P.J. Haas: Large-Sample and Deterministic Confidence Int
vals for Online Aggregation.SSDBM 1997: 51-63

[8] P.J. Haas, J. F. Naughton, S. Seshadri, A. N. Swami: Selec
ity and Cost Estimation for Joins Based on Random Sa
pling. J. Com. Syst. Sci. 52(3): 550-569 (1996)

[9] G. H. Hardy, J. E. Littlewood, and G. Polya.Inequalities.
Cambridge University Press, 1988.

[10] J.M. Hellerstein, R. Avnur, A. Chou, C. Hidber, C. Olston, V
Raman, T. Roth, P.J. Haas: Interactive data Analysis: T
Control Project.IEEE Computer 32(8): 51-59 (1999)

[11] J.M. Hellerstein, P.J. Haas, H.J. Wang: Online Aggregatio
SIGMOD 1997: 171-182

[12] G. Özsoyoglu, K. Du, S.G. Swamy, W.-C. Hou: Processin
Real-Time, Non-Aggregate Queries with Time-Constraints
CASE-DB.ICDE 1992: 410-417

[13] C. Jermaine, A. Dobra, S. Arumugam, S. Joshi, A. Pol:
Disk-Based Join with Probabilistic Guarantees.SIGMOD
2005: 456-467.

[14] C. Jermaine, A. Dbora, A. Pol, S. Joshi: Online Estimation fo
Subset-Based SQL Queries.VLDB 2005: 745-756.

[15] G. Luo, C. Ellmann, P.J. Haas, J.F. Naughton: A scalable ha
ripple join algorithm.SIGMOD 2002: 252-262

[16] F. Olken:Random Sampling from Databases. PhD Thesis, U.
of California, Berkeley, 1993

[17] F. Olken, D. Rotem, P. Xu: Random Sampling from Has
Files.SIGMOD 1990: 375-386

[18] F. Olken, D. Rotem: Random Sampling from B+-Trees
VLDB 1989: 269-277

[19] L.D. Shapiro: Join Processing in Database Systems w
Large Main Memories.ACM Trans. Database Syst. 11(3):
239-264 (1986)

[20] J. Shao:Mathematical Statistics. Springer-Verlag, 1999.

Figure 9: Completion time of ABC vs. Postgres.

Query Execution Time

Query ABC Postgres

Q1 26m42s 43m47s

Q2 20m08s 34m27s

Q3 29m12s 37m40s

Q4 47m05s 88m28s

Q5 17m28s 46m31s
12

	1 Introduction
	2 Why Is This Hard?
	2.1 The Ripple Join
	2.2 The SMS Join
	2.3 Fixing the Problem?

	3 ABC Query Evaluation: Overview
	Figure 1 : Levelwise query evaluation in ABC.

	4 The Levelwise Step
	4.1 The Scan Phase
	Figure 2 : Scan phase of a levelwise step. In this example, we assume an SQL query having the whe...

	4.2 The Merge Phase

	5 Scan Phase Estimation In-Depth
	Figure 3 : The merge phase of a levelwise step used to compute R12R1R2 and R34R3R4 for a query wi...
	5.1 Estimating the First Time Around
	5.2 Estimation at Subsequent Levels
	5.3 Estimation At the Last Level
	5.4 Estimating the Final Answer to the Query
	5.5 Providing Confidence Bounds

	6 Additional Considerations
	6.1 Why Use the Round-Robin Approach?
	6.2 Choosing the Number of Runs
	Figure 4 : Using the round-robin method, seven combinations of runs that are searched when relati...

	6.3 Handling Data Skew
	6.4 Handling GROUP BYs and Other Aggregates
	6.5 Handling Inconvenient Queries
	Figure 5 : Handling a star-join query. The example query (a) would typically be evaluated using a...

	7 Statistical Considerations
	7.1 Notation
	7.2 Analysis of N1: the First Levelwise Step

	7.2.1 Analysis of Expectation
	7.2.2 Analysis of Variance
	7.2.3 Extending the Analysis to N1
	7.2.4 Estimating the Variance
	7.3 Analysis of Ni for i > 1

	8 Benchmarking
	Figure 6 : Test query plans.
	Figure 7 : Relative confidence interval width as a function of time for the five test query plans.
	Figure 8 : Observed 95% interval accuracy over 100 independent query executions.

	9 Related Work
	Figure 9 : Completion time of ABC vs. Postgres.

	10 Future Work and Concluding Remarks
	[1] S. Acharya, P. Gibons, V. Poosala, S. Ramaswamy: Join Synopses for Approximate Query Processi...
	[2] S. Chaudhuri, R. Motwani, V.R. Narasayya: On Random Sampling over Joins. SIGMOD 1999: 263-274
	[3] W. Cochran: Sampling Techniques. Wiley and Sons, 1977
	[4] J.-P. Dittrich, B. Seeger, D.S. Taylor, Peter Widmayer: On producing join results early. PODS...
	[5] J.-P. Dittrich, B. Seeger, D.S. Taylor, P. Widmayer: Progressive Merge Join: A Generic and No...
	[6] P.J. Haas, J.M. Hellerstein: Ripple Joins for Online Aggregation. SIGMOD 1999: 287-298
	[7] P.J. Haas: Large-Sample and Deterministic Confidence Intervals for Online Aggregation. SSDBM ...
	[8] P.J. Haas, J. F. Naughton, S. Seshadri, A. N. Swami: Selectivity and Cost Estimation for Join...
	[9] G. H. Hardy, J. E. Littlewood, and G. Polya. Inequalities. Cambridge University Press, 1988.
	[10] J.M. Hellerstein, R. Avnur, A. Chou, C. Hidber, C. Olston, V. Raman, T. Roth, P.J. Haas: Int...
	[11] J.M. Hellerstein, P.J. Haas, H.J. Wang: Online Aggregation. SIGMOD 1997: 171-182
	[12] G. Özsoyoglu, K. Du, S.G. Swamy, W.-C. Hou: Processing Real-Time, Non-Aggregate Queries with...
	[13] C. Jermaine, A. Dobra, S. Arumugam, S. Joshi, A. Pol: A Disk-Based Join with Probabilistic G...
	[14] C. Jermaine, A. Dbora, A. Pol, S. Joshi: Online Estimation for Subset-Based SQL Queries. VLD...
	[15] G. Luo, C. Ellmann, P.J. Haas, J.F. Naughton: A scalable hash ripple join algorithm. SIGMOD ...
	[16] F. Olken: Random Sampling from Databases. PhD Thesis, U. of California, Berkeley, 1993
	[17] F. Olken, D. Rotem, P. Xu: Random Sampling from Hash Files. SIGMOD 1990: 375-386
	[18] F. Olken, D. Rotem: Random Sampling from B+-Trees. VLDB 1989: 269-277
	[19] L.D. Shapiro: Join Processing in Database Systems with Large Main Memories. ACM Trans. Datab...
	[20] J. Shao: Mathematical Statistics. Springer-Verlag, 1999.

